Witten's Approach to Morse Theory

LMU

July 23, 2020

Morse Theory

Morse theory deals with a compact smooth manifold M, and on it a smooth function $h: M \to \mathbb{R}$.

- The points $p \in M$ such that $\nabla h(p) = 0$ are called **critical points**.
- Morse functions are those h such that the Hessian

$$H_h(X,Y) = X \cdot (Y \cdot f)(p) - (\nabla_X Y) \cdot f(p)$$

is non-singular for every $p \in \operatorname{Crit}(p)$.

- The **index** of a critical point p is the number of negative eigenvalues of its Hessian $H_h(p)$.
- (Morse Lemma) There are local coordinates (x_j) at each critical point p such that h is a diagonal quadratic form

$$h(p) = \frac{1}{2} \sum \lambda_j x_j^2$$

with λ_j negative precisely for j = 1, ..., index(p).

Theorem (Morse Inequalities)

Let h be a Morse function on the compact manifold M. Let β_j denote the j-th Betti number $b_j(M) = \dim H^j_{dR}(M)$ and let ν_j denote the number of critical points of index j. Then we have the inequality

$$\sum_{j=1}^{k} (-1)^{j} \beta_{j} \le \sum_{j=1}^{k} (-1)^{j} \nu_{j}$$

with equality when $k = \dim M$.

- A standard proof could be found in Milnor, Morse Theory, Ch 5.
- In this talk, we prove this theorem via an alternative approach by means of the perturbed de Rham complex on M.

Definition (Perturbed de Rham Operator)

Consider the Clifford bundle $S = \bigwedge^* T^*M$ on M. Let $s \in \mathbb{R}^+$. The **perturbed de Rham operator** is given by

$$D_s = d_s + d_s^* = D + sR$$

where R is a self-adjoint endomorphism of S given by $dh \wedge -dh_{\perp}$.

• In terms of the endomorphism \mathbf{H}_h of $\bigwedge^* T^*M$ defined in terms of the Hessian relative to an orthonormal frame e_i ,

$$\mathbf{H}_h = \sum_{i,j} H_h(e_i, e_j) L_{e_i} R_{e_j}$$

where L_{e_i} and R_{e_j} are left and right Clifford multiplications, we have the formula

$$D_s^2 = D^2 + s^2 |dh|^2 + s\mathbf{H}_h.$$

Some useful properties of D carry over to the perturbed version D_s :

- D_s belongs to the class of self-adjoin generalized Dirac operators, thus the basic elliptic theory of Chapter 5 applies.
- Finite propagation speed also holds with the same proof for the standard Dirac operator in Chapter 7.

Proposition

The Garding inequality holds for D_s , i.e. there exists a constant C > 0 such that for any $w \in C^{\infty}(S)$,

$$||w||_1 \le C(||w||_0 + ||D_sw||_0)$$

where $|| \cdot ||_k$ denotes the Sobolev-k norm.

The Witten complex

Proof. Write $D_s^2 = D^2 + s\mathbf{H}_h + s^2|dh|^2 = D^2 + L$ where L is of order zero. Therefore

$$||D_sw||^2 = ||Dw||^2 + \langle Lw, w \rangle \ge ||Dw||^2 - C_1 ||w||^2$$

for some constant C_1 . Hence

$$(1+C_1)(||D_sw||^2+||w||^2) \ge ||Dw||^2+||w||^2 \ge \frac{1}{C_2}||w||_1^2,$$

where the second inequality follows from the usual Garding inequality. \Box

Remark. The norm of L is of order s^2 , so the constant C_1 is bounded by a polynomial in s. Analogously, so are the constants in the elliptic estimates bounded by polynomials in s.

Proposition

Consider the Betti numbers of the generalized Dirac complex (S, d),

$$\beta_j{}^s = \dim H^j(S, d),$$

and for a smooth rapidly decreasing positive function φ with $\varphi(0) = 1$, set

$$\mu_j = \operatorname{Tr}(\varphi(D^2)\big|_{S_j}).$$

Then

$$\sum_{j=1}^{k} (-1)^{j} \beta_{j}^{s} \le \sum_{j=1}^{k} (-1)^{j} \mu_{j}$$

with equality when $k = \dim M$.

• To deduce the standard Morse inequalities, we take the family D_s above, and investigate the perturbed inequalities as $s \to \infty$.

LMU

Perturbed Morse Inequalities

Proof. We want to show

$$\sum_{j=1}^{k} (-1)^{j} (\mu_{j} - \beta_{j}^{s}) \ge 0$$

with equality holding when k is of top dimension.

By Hodge theory in Chapter 6,

 $\beta_j^s = \dim \ker D^2.$

Since D^2 has discrete spectrum, there is a smooth, positive, rapidly decreasing function $\tilde{\varphi}$ on \mathbb{R}^+ such that $\tilde{\varphi}(0) = 1$ and $\tilde{\varphi}(\lambda) = 0$ on all of the eigenvalues of D^2 . Therefore,

$$\beta_j{}^s = \operatorname{Tr}(\tilde{\varphi}(D^2)|_{S_j}).$$

Perturbed Morse Inequalities

Now we may assume that $\varphi \geq \tilde{\varphi}$. Then

$$\mu_j - \beta_j{}^s = \operatorname{Tr}((\varphi - \tilde{\varphi})(D^2)|_{S_j}).$$

For a positive, rapidly decreasing function ψ , vanishing and differentiable at 0, we may write

$$(\varphi - \tilde{\varphi})(\lambda) = \lambda(\psi(\lambda))^2$$

By functional calculus, we may write

$$(\varphi - \tilde{\varphi})(D^2) = D^2(\psi(D^2))^2.$$

Now $D^2 = dd^* + d^*d$, using the trace argument in Chapter 10,

$$Tr(dd^{*}(\varphi(D^{2}))^{2}|_{S_{j}}) = Tr(d^{*}(\varphi(D^{2}))^{2}|_{S_{j}}d)$$

= Tr(d^{*}d(\varphi(D^{2}))^{2}|_{S_{j-1}}).

Perturbed Morse Inequalities

Therefore,

$$\sum_{j=1}^{k} (-1)^{j} (\mu_{j} - \beta_{j}^{s}) = (\mu_{j} - \beta_{j}^{s}) - (\mu_{j-1} - \beta_{j-1}^{s}) - \cdots$$
$$= \operatorname{Tr}((dd^{*} + d^{*}d)(\varphi(D^{2}))^{2}|_{S_{j}}) - \cdots$$
$$= \operatorname{Tr}(d^{*}d(\varphi(D^{2}))^{2}|_{S_{j}}) + \operatorname{Tr}(d^{*}d(\varphi(D^{2}))^{2}|_{S_{j-1}}) - \cdots$$
$$= \operatorname{Tr}(d^{*}d(\varphi(D^{2}))^{2}|_{S_{j}})$$

The last equality follows since the middle terms cancel pairwise and the last term

$$\operatorname{Tr}(dd^*(\varphi(D^2))^2|_{S_0}) = 0$$

In particular, when j is of top dimension, the expression vanishes, yielding the desired equality.

Meanwhile, we may write for $A = d\varphi(D^2)|_{S_j}$,

$$\operatorname{Tr}(d^*d(\varphi(D^2))^2|_{S_j}) = \operatorname{Tr}(A^*A)$$

which is positive, since for any orthonormal basis, we may compute

$$\operatorname{Tr}(A^*A) = \sum_i \langle A^*Ae_i, e_i \rangle = \sum_i ||Ae_i||^2 \ge 0.$$

This gives

$$\sum_{j=1}^{k} (-1)^{j} (\mu_{j} - \beta_{j}^{s}) = \operatorname{Tr}(d^{*}d(\varphi(D^{2}))^{2}|_{S_{j}}) \ge 0.$$

as desired, with equality in top dimension.

We first investigate the asymptotics of $\varphi(D_s)$ as $s \to \infty$ outside the critical points of h.

Fix a number $\rho > 0$, and choose a positive even function $\varphi \in \mathcal{S}(\mathbb{R})$ with $\varphi(0) = 1$ such that the Fourier transform $\hat{\varphi}$ is supported within $[\rho, -\rho]$.

Lemma

On the complement of a 2ρ -neighborhood of Crit(h) the smoothing kernel $k_s(p,q)$ on $M \times M$ of $\varphi(D_s)$ tends uniformly to zero as $s \to \infty$.

Proof.

• Existence of self-adjoint extension A:

Since M is compact, there is a constant C > 0 such that $|\nabla h(x)| \ge C$ for all x in the complement of a ρ -neighborhood of $\operatorname{Crit}(h)$.

By the formula

$$D_s^2 = D^2 + s\mathbf{H}_h + s^2|dh|^2$$

we find that for s large

$$\langle D_s^2 \omega, \, \omega \rangle \geq \frac{1}{2} C^2 s^2 ||\omega||^2.$$

Let \mathscr{H} denote the Hilbert space of L^2 differential forms on M that vanish on a ρ -neighborhood of $\operatorname{Crit}(h)$. Then D_s^2 is a positive formally self-adjoint (symmetric) operator on \mathscr{H} .

By Friedrichs' extension theorem, there exists a self-adjoint extension A on $\mathcal H.$

• Claim: If ω is supported in the complement of a 2ρ -neighborhood of $\operatorname{Crit}(h)$, then

$$\varphi(D_s)\omega = \varphi(\sqrt{A})\omega.$$

Consider the time dependent differential form

$$\omega_t = \cos(tD_s)\omega = \frac{1}{2}(e^{itD_s} + e^{-itD_s})\omega$$

which is the unique solution to the partial differential equation

$$\frac{\partial^2 \omega_t}{\partial t^2} + D_s^2 \omega_t = 0$$

with the initial conditions $\omega_0 = \omega$, $\dot{\omega}_0 = 0$.

By the unit propagation speed property, ω_t is supported in the complement of a ρ -neighborhood of $\operatorname{Crit}(h)$ for $|t| < \rho$. Therefore $D_s^2 \omega_t = A \omega_t$. Thus ω_t for $|t| < \rho$ is also the unique solution to the equation with the same initial conditions

$$\frac{\partial^2 \omega_t}{\partial t^2} + A\omega_t = 0.$$

We thus write $\omega_t = \cos(t\sqrt{A})\omega$. We compute

 φ

$$(D_s)\omega = \frac{1}{2\pi} \int_{-\rho}^{\rho} (e^{itD_s})\hat{\varphi}(t) dt$$

$$= \frac{1}{\pi} \int_{0}^{\rho} \hat{\varphi}(t) \cos(tD_s)\omega dt$$

$$= \frac{1}{\pi} \int_{0}^{\rho} \hat{\varphi}(t)\omega_t dt$$

$$= \frac{1}{\pi} \int_{0}^{\rho} \hat{\varphi}(t) \cos(t\sqrt{A})\omega dt$$

$$= \varphi(\sqrt{A})\omega.$$

This proves our claim.

Now \sqrt{A} is positive. In fact, $\sqrt{A} \ge Cs/2$ as a result of the inequality

$$\langle D_s^2 \omega, \omega \rangle \ge \frac{1}{2} C^2 s^2 ||\omega||^2.$$

By the spectral theorem, the operator norm of $\varphi(\sqrt{A})$ is bounded above by

$$c(s) = \sup \left\{ |\varphi(\lambda)| : \lambda \ge \frac{1}{2}Cs \right\}$$

That is,

$$||\varphi(D_s)w|| \le c(s)||w||$$

For w supported outside a complement of a 2ρ -neighborhood of the critical points. But since φ is rapidly decreasing, we have that $c(s) \to 0$ rapidly as $s \to \infty$.

This is very close to what we want for the kernel.

• Claim: There is a $c_1(s) \to 0$ as $s \to \infty$, with

$$||\varphi(D_s)\omega||_{L^{\infty}} \le c_1(s)||\omega||_{L^1}.$$

Elliptic estimates: for any k, the operator $(1 + D_s^2)^{-1}$ is bounded as an operator from W^k to W^{k+2} with norm bounded by polynomials in s.

Sobolev embedding: $W^p \subset L^\infty$ for p > n/2. Therefore $(1 + D_s)^{-k}$ is bounded from L^2 to L^∞ for k > n/4. By duality and self-adjointness $(1 + D_s)^{-k}$ is also bounded as an operator from L^1 to L^2 , with both bounds being polynomial in s.

Therefore, $\varphi(D_s)$ acting as an operator from L^1 to L^{∞} is bounded by a polynomial in S times the norm of

$$\varphi'(D_s) = (1 + D_s^2)^{2k} \phi(D_s),$$

where $\varphi'(\lambda) = (1 + \lambda^2)^{2k} \varphi(\lambda)$.

But since φ' satisfies the same conditions as φ , we have the estimate

 $||\varphi'(D_s)w|| \le c'(s)||w||.$

with c'(s) rapidly decaying in s.

Combining these results, we have the bound

 $||\varphi(D_s)w||_{L^{\infty}} \le c_1(s)||w||_{L^1}$

where $c_1(s) = c'(s) \times (\text{polynomial in } s)$, and tends to zero as $s \to \infty$. This proves the lemma, since the supremum of the kernel can be estimated by the left and side of the claim.

Remark. This result suggests that as $s \to \infty$, $\text{Tr}(\varphi(D_s))$ is given by a sum of contributions from the critical points of h. This quantity becomes useful when considering the perturbed Morse inequalities.

Contribution from critical points

- Choose a metric g on M as follows: Let g be flat Euclidean $g_{ij} = \delta_{ij}$ in Morse coordinates near each critical point, and patch these metrics away from $\operatorname{Crit}(h)$ via a partition of unity.
- Choose ρ small such that g is flat Euclidean at least a distance 4ρ from each critical point.
- Then by a previous calculation in Chapter 9, we have

$$D_s^2 := L_s = \sum_j -\left(\frac{\partial}{\partial x_j}\right)^2 + s^2 \lambda_j^2 x_j^2 + s \lambda_j Z_j$$

where $Z_j = [dx_j \,\lrcorner\,, dx_j \,\land\,]$ and λ_j supplied by the Morse lemma. • Furthermore, L_s has eigenvalues for $p_j = 0, 1, 2, ...$ and $q_j = \pm 1$.

$$s\sum_{j}(|\lambda_j|(1+2p_j)+\lambda_jq_j)$$

Restricted to k-forms, the spectrum has the additional property that exactly k of the q_j 's are equal to +1.

LMU

Index Theorem

Contribution from critical points

Now let φ be as in the previous lemma with $\varphi(0) = 1$. Then $\varphi(D_s) = \varphi(\sqrt{L_s})$ is smoothing and hence of trace class. (Thm 8.10)

Lemma

Suppose that the first m of the λ_j 's are negative. We have (i):

$$\lim_{s \to \infty} \operatorname{Tr} \left(\varphi(\sqrt{L_s}) \big|_{\bigwedge^k} \right) = \begin{cases} 1 & (k \neq m) \\ 0 & (k = m) \end{cases}$$

(ii) Furthermore, the same limit holds for

$$\lim_{s \to \infty} \operatorname{Tr} \left(B\varphi(\sqrt{L_s}) \big|_{\bigwedge^k} \right) = \begin{cases} 1 & (k \neq m) \\ 0 & (k = m) \end{cases}$$

where B is the multiplication operator on \mathbb{R}^n by some $\beta \in C_c^{\infty}(\mathbb{R}^n)$ with $\beta(0) = 1$.

.

Proof. We have

$$\operatorname{Tr}\left(\varphi(\sqrt{L_s})\big|_{\bigwedge^k}\right) = \sum_{p_j,q_j} \varphi\left(\sqrt{s\sum_j (|\lambda_j|(1+2p_j)+\lambda_j q_j)}\right)$$

(i) If $k \neq m$ then all the eigenvalues of L_s are of order s. Since φ is rapidly decreasing, the sum tends to 0 as $s \to \infty$.

Meanwhile, if k = m, then precisely one eigenvalue is 0 while the others are of order s. So

$$\operatorname{Tr}\left(\varphi(\sqrt{L_s})\Big|_{\bigwedge^k}\right) = 1 + \sum_{\text{rest of } p,q} \varphi(M_{p,q}\sqrt{s})$$

for constants $M_{p,q} > 0$ which tends to 1 as $s \to \infty$.

Contribution from critical points

(ii) Let $e(p_j, q_j)$ be normalized eigenforms of L_s of (p_j, q_j) . Then

$$\operatorname{Tr}\left(B\varphi(\sqrt{L_s})\big|_{\bigwedge^k}\right) = \sum_{p_j,q_j} \varphi\left(\sqrt{s\sum_j (|\lambda_j|(1+2p_j)+\lambda_j q_j)}\right) \langle Be(p_j,q_j), e(p_j,q_j)\rangle$$

Only the zero eigenvalue contribute, giving the value $\langle Be_0, e_0 \rangle$ in the limit $s \to \infty$, where e_0 is the eigenform corresponding to eigenvalue 0. Now e_0 is the ground state of the harmonic oscillator multiplied by $dx^1 \wedge \cdots \wedge dx^k$. Explicitly,

$$e_0 = (s^{n/2} f(\lambda_j)) \exp(-sg(\lambda_j) dx^1 \wedge \dots \wedge dx^k)$$

for some functions f and g. In particular, as $s \to \infty$, $\langle Be_0, e_0 \rangle \to 1$, which proves the second statement.

LMU

Proof. (Morse inequalities)

- Let g metric on M, $\rho > 0$ and φ positive even function be as described above such that the previous results (asymptotic calculation, contribution from critical points) are applicable.
- Moreover, note that since φ is even, we can write $\varphi(D_s) = \psi(D_s^2)$ for some function ψ , so the perturbed Morse inequalities also hold for

$$\beta_j{}^s = \dim H^j(S, d_s), \quad \mu_j = \operatorname{Tr}(\varphi(D_s)|_{\bigwedge^k T^*M})$$

• Claim 1: $\beta_j{}^s = \beta_j$.

Recall the latter is the dimension of the standard de Rham cohomology. The perturbed dimension is unchanged due to the nature of the perturbation.

Proof of the Theorem

• Claim 2: $\mu_j^s \to \nu_j$ as $s \to \infty$.

Recall ν_j is the number of critical points of index j. Now

$$\operatorname{Tr}(D_s)\big|_{\bigwedge^j} = \int \operatorname{tr} k_s(m,m) \, dvol_M,$$

where the trace is taken over $k(m,m) \in S_m \otimes S_m^*$. By our asymptotic calculation $k_s(m,m) \to 0$ uniformly as $s \to \infty$ outside a neighborhood of critical points.

So the only contribution to the trace is from critical points, which for some $p \in \operatorname{Crit}(h)$ could be written as

$$\lim_{s\to\infty} \operatorname{Tr}(B\varphi(D_s)\big|_{\wedge^j})$$

for B multiplication by a smooth function $\beta \equiv 1$ on a 2ρ -nbhd of p and supp (β) is contained in a 3ρ -nbhd of p.

LMU

Taking Morse coordinates around p, we can identify a 4ρ -nbhd of p in M with a 4ρ -nbhd of \mathbb{R}^n . Under this identification $D_s^2 = L_s$ as in the results before. By an analogous unit propagation speed argument to that of the asymptotic calculations, we have

$$\varphi(D_s)w = \varphi(\sqrt{L_s})w$$

for w supported in a 3ρ -neighborhood of p. Hence

$$\operatorname{Tr}(B\varphi(D_s)|_{\Lambda^j}) = \operatorname{Tr}(B\varphi(\sqrt{L_s})|_{\Lambda^j})$$

which as $s \to \infty$, tends to 1 if the critical point has index j, and zero otherwise.