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13 October 2015

(1) Topological spaces; Hausdorffness; continuity.
(2) Metric spaces, and their induced topology. This topology is always Hausdorff.
(3) Euclidean space Rn with its metric topology. By considering balls with rational radii cen-

tered at points with rational coordinates, one finds a countable collection of open sets such
that all open sets are suitable unions of these.

(4) Bases for topologies. Remark that by the previous item, Euclidean space has a countable
bases for its topology.

(5) Topological manifolds (of dimension n) are topological spaces that are locally homeo-
morphic to Rn, are Hausdorff, and have a countable basis for their topology. The latter
condition is a weakening of compactness that will allow us to make inductive construc-
tions to pass from local to global statements.

15 October 2015

(6) A differentiable manifold is a topological manifold together with an atlas whose transition
maps are differentiable. Such an atlas is called a differentiable or smooth atlas.

(7) A differentiable structure is an equivalence class of atlases, equivalently a maximal atlas.
(8) Every maximal Cr atlas with r ≥ 1 contains a C∞ atlas. Because of this fact (which

we do not prove), we will restrict ourselves to C∞ manifolds throughout. So the words
differentiable or smooth will usually mean C∞.

(9) We define differentiability for maps between differentiable manifolds using charts.
(10) We will consider two differentiable manifolds to be the same if there is a diffeomorphism

between them, i.e. a differentiable bijection with differentiable inverse. Since differen-
tiablity implies continuity, every diffeomorphism is a homeomorphism (but not the other
way around!).

(11) A topological manifold may or may not have any differentiable structure. If it does have
one, it is sometimes unique, for example if the dimension is ≤ 3, but often it is not unique.
There exist topological manifolds which have uncountably many distinct differentiable
structures, for example R4.

20 October 2015

(12) Dimensions of manifolds and smooth invariance of domain.
(13) Examples of differentiable manifolds and their dimensions: Euclidean spaces Rn, spheres

Sn, tori T n, real projective spaces RP n and complex projective spaces CP n. An open
subset of a manifold is a manifold (of the same dimension); products of manifolds are
manifolds (and the dimensions add up).
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(14) If we retain from a smooth atlas for a manifold M only the knowledge of the images of
charts, together with the identifications that are to be performed according to the transition
maps, then we can reconstruct M ; see [1, Sections 3.1 and 3.2].

22 October 2015

(15) The tangent bundle TM of a differentiable manifold M of dimension n is itself a differ-
entiable manifold of dimension 2n.

(16) The natural projection π : TM −→ M is differentiable. The preimage TxM = π−1(x) of
any point x ∈ M has a well-defined structure as an n-dimensional real vector space. We
call this the tangent space of M at x.

(17) For any differentiable map f : M −→ N , we define the derivative Df : TM −→ TN .
This restricts to every tangent space TxM as a linear map Dxf : TxM −→ Tf(x)N , called
the derivative of f at x ∈M .

27 October 2015

(18) Immersions and submersions; examples.
(19) Submanifolds and embeddings. Not every injective immersion is an embedding.
(20) Applications of the inverse function theorem to the normal form of a submersion. Preim-

ages of points under submersions are submanifolds.

29 October 2015

(21) Every manifold M is paracompact, meaning that every open cover has an open locally
finite refinement. We prove the following more precise statement. Given an open covering
{Ui}i∈I of M , there is an atlas {(Vk, ϕk)} such that the covering by the Vk is a locally finite
refinement of the given covering, and such that ϕk(Vk) is an open ball B3 of radius 3 for
all k and the open sets Wk = ϕ−1

k (B1) cover M .

Proof. We prove first that there is a sequence Gi, i = 1, 2, . . . of open sets with compact
closures, such that the Gi cover M and satisfy

Gi ⊂ Gi+1

for all i. To this end let Ai, i = 1, 2, . . . be a countable basis of the topology consisting of
open sets with compact closures. Set G1 = A1. Suppose inductively that we have defined

Gk = A1 ∪ . . . ∪ Ajk .
Then let jk+1 be the smallest integer greater than jk with the property that

Gk ⊂ A1 ∪ . . . ∪ Ajk+1
,

and define
Gk+1 = A1 ∪ . . . ∪ Ajk+1

.

This defines the sequence Gk as desired.
Let {Ui}i∈I be an arbitrary open covering of M . For every x ∈ M we can find a

chart (Vx, ϕx) at x with Vx contained in one of the Ui and such that ϕx(Vx) = B3. Let
Wx = ϕ−1

x (B1). We can cover each set Gk \ Gk−1 by finitely many such Wxj
such that at
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the same time the corresponding Vxj
are contained in the open set Gk+1 \Gk−2. Taking all

these Vxj
as i ranges over the positive integers we obtain the desired atlas. �

(22) We construct smooth bump functions on Rn and transfer them to differentiable manifolds
via charts. This allows us to construct various kinds of differentiable functions with special
properties.

(23) Every open covering of a differentiable manifold admits a subordinate differentiable par-
tition of unity. This follows from paracompactness and the existence of smooth bump
functions.

3 November 2015

(24) The Whitney embedding theorem: every n-dimensional differentiable manifold embeds
differentiably in R2n+1. This is true for all (paracompact) manifolds, but we gave the proof
only for compact ones.

(25) A particular consequence of the embedding of manifolds in Euclidean spaces is the ex-
istence of Riemannian metrics, that is, fiberwise positive definite scalar products on the
tangent bundle. One just restricts the scalar product of the Euclidean space to the tangent
spaces.

5 November 2015

(26) Differentiable vector bundles over manifolds; see [1] Section 3.3. Local vs. global trivial-
ity; isomorphisms of bundles.

(27) Examples of vector bundles: product bundles, the tangent bundle of a differentiable mani-
fold, the Möbius band.

(28) Sections of vector bundles, and the characterization of triviality of bundles through the
existence of sufficiently many sections that are pointwise linearly independent.

10 November 2015

(29) Cocycles of transition maps for systems of local trivializations for vector bundles. Recon-
structing a vector bundle from a cocycle. See [1, Section 3.4].

(30) Isomorphism classes of rank k vector bundles correspond to certain equivalence classes of
cocycles, which we denote by H1(M ;GLk(R)).

(31) Some linear algebra of vector bundles: dualization, Whitney sum, subbundles.

12 November 2015

(32) For a subgroup G ⊂ GLk(R), a G-structure on a rank k vector bundle is a system of local
trivializations whose associated cocycle takes values in G. (This is called a G-reduction
in [1].) Isomorphism classes of G-structures correspond to equivalence classes of cocycles
with values in G, denoted H1(M ;G).

(33) The forgetful map H1(M ;G) −→ H1(M ;GLk(R)), which sends a G-structure to the
isomorphism class of the underlying bundle, is neither injective nor surjective in general.
The failure of surjectivity means that there are bundles not admitting a G-structure for a
givenG, and the failure of injectivity means that certain bundles may have several different
G-structures.
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(34) Examples of G-structures:
(1) For G = {e} the trivial group, G-structures are global trivializations.
(2) For G = GL+

k (R), the group of orientation-preserving isomorphisms of Rk, G-
structures are orientations. A vector bundle is called orientable, if it admits an orien-
tation.

(3) If k = 2m is even, we identify R2m = Cm, and consider G = GLm(C) as a subgroup
of GL2m(R). In this case a G-structure is a complex structure. A (real) vector bundle
with a complex structure is, in an obvious way, a complex vector bundle.

(4) ForG = O(k) the orthogonal group, aG-structure is a smooth positive-definite metric
on the fibers.

(35) If H ⊂ G is a subgroup, then any H-structure gives rise to a G-structure. For example,
every complex structure gives rise to an orientation.

(36) Using partitions of unity we proved that every vector bundle has a metric, i.e. it admits an
O(k)-structure. This is the only case in the above list of examples where H1(M ;G) −→
H1(M ;GLk(R)) is surjective for every M .

(37) If F ⊂ E is a subbundle, then choosing a metric on E and taking fiber-wise orthogonal
complements defines another subbundle F⊥, with the property that E is isomorphic to
F ⊕ F⊥.

(38) The proof of existence of a metric on every vector bundle relies on positive definiteness to
ensure that convex combinations of metrics are again metrics. Indeed, the existence is false
for indefinite metrics. For example, by a light cone argument, TS2 −→ S2 does not admit
any metric of signature (1, 1).

17 November 2015

(39) An infinitesimal G-structure on a smooth manifold M is a G-structure on the vector
bundle π : TM −→ M . Such a structure is said to be integrable if it arises from the
derivatives of the transition maps for a suitable atlas for M .

(40) We discussed infinitesimal G-structures and their integrability in the following examples:
(1) For G = {e} the trivial group, an infinitesimal G-structure on M is a trivialization

of the tangent bundle. This can only be integrable if M has an atlas whose transition
maps are translations. The easiest example of a manifold with trivial tangent bundle
but no integrable trivialization is S2 × S1.

(2) For G = GL+
n (R), the group of orientation-preserving isomorphisms of Rn, infinites-

imal G-structures are orientations of the vector bundle π : TM −→ M . We proved
that these structures are always integrable. We define M to be orientable if it admits
an infinitesimal GL+

n (R)-structure. A choice of orientation is an isomorphism class of
such structures.

(3) If n = 2m is even, we identify R2m = Cm, and consider G = GLm(C) as a subgroup
of GL2m(R). In this case an infinitesimal G-structure on M is a complex structure
on the tangent bundle. (This is sometimes called an almost complex structure on M .)
It is integrable if an only if it arises from at atlas for M whose transition maps have
C-linear derivatives, i.e. they are holomorphic maps. Such an atlas makes M into a
complex manifold.
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(4) For G = O(n) the orthogonal group, an infinitesimal G-structure on M is a smooth
positive-definite metric on the fibers of the tangent bundle. This is called a Rie-
mannian metric. It is integrable only if the curvature tensor of the metric vanishes
identically.

(5) For G =

{(
A B
0 C

)
| A ∈ GLl(R), C ∈ GLn−l(R)

}
, the subgroup of GLn(R) pre-

serving the first factor in the product decomposition Rn = Rl ×Rn−l, an infinitesimal
G-structure on M is a subbundle F ⊂ TM of rank l. Such a structure is integrable
if and only if M has a foliation by l-dimensional leaves tangent to F . Later in this
course we will prove the so-called Frobenius theorem, which gives a necessary and
sufficient condition for the integrability of a subbundle.

19 November 2015

(41) Pullbacks and homomorphisms of vector bundles.
(42) Global flows on manifolds, and the vector fields obtained by differentiation.

24 November 2015

(43) Local flows obtained by locally integrating a vector fields. The correspondence between
vector fields and equivalence classes of local flows.

(44) Completeness of vector fields. Every vector field with compact support is complete.
(45) Vector fields X act as derivations on smooth functions f by the Lie derivative LX .

26 November 2015

(46) The Lie derivative gives an isomorphism of vector spaces

X (M) −→ Der(C∞(M))

X 7−→ LX .

(47) Since for any two vector fields X and Y , the map LXLY − LYLX is a derivation, by the
above isomorphism there is a unique vector field [X, Y ] such that L[X,Y ] = LXLY −LYLX .
This is called the commutator of X and Y .

(48) The commutator of vector fields satisfies three important properties: it is R-bilinear, it is
skew-symmetric, and the following Jacobi identity holds

[[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0 ∀X, Y, Z ∈ X (M) .

This means that the bracket makes the vector space X (M) into a Lie algebra.
(49) A Lie group G is a smooth manifold with a group structure such that multiplication and

taking inverses are smooth maps. Basic examples are Rn with addition of vectors giving the
group structure, and GLk(R) with composition, or matrix multiplication. Any subgroup of
GLk(R) that is a submanifold is also a Lie group.

(50) IfM = G is a Lie group, then the left-invariant vector fields onG form a finite-dimensional
sub-Lie algebra g ⊂ X (G). Its dimension, as a vector space, agrees with the dimension of
G as a manifold.

5



1 December 2015

(51) We can also define a Lie derivative acting on vector fields, rather than functions. It turns
out that LXY = [X, Y ].

(52) Two vector fields commute if and only if their local flows commute.
(53) We defined integral manifolds for subbundles E ⊂ TM . Such a subbundle is integrable

if there is an integral manifold through every point. This is equivalent to the integrability
of the infinitesimal G-structure defined by E.

3 December 2015

(54) We proved the following:

Theorem 1. Let X1, . . . , Xk ∈ X (M) be such that [Xi, Xj] ≡ 0 for all i and j. If p ∈ M
is such thatX1(p), . . . , Xk(p) are linearly independent in TpM , then there is a chart (U,ϕ)
for M with p ∈M such that Dϕ(Xi|U) = ∂

∂xi
for all 1 ≤ i ≤ k.

(55) A k-flow on a smooth manifold M is a smooth group action of the additive group of Rk on
M . Equivalently, it consists of k global flows, or k complete vector fields, that commute
pairwise. A k-flow is non-singular if the corresponding k vector fields are everywhere
pointwise linearly independent.

(56) An application of the Theorem above shows that if an n-dimensional connected smooth
manifold M admits a non-singular n-flow, then it is diffeomorphic to a product T ` ×Rn−`

for some `. Therefore, if such an M is compact, it is a torus.
(57) Recall that an infinitesimal G-structure on M for G the trivial group is a trivialization of

the tangent bundle of M . If M is compact and connected, but not a torus, then the previous
item shows that the G-structure cannot be integrable. This applies for example to M = S3

and to M = S1 × S2.
(58) Another application of the above Theorem is:

Theorem 2 (Frobenius Theorem). Let E ⊂ TM be a subbundle of rank k. The following
are equivalent:
(a) E is integrable,
(b) Γ(E) is closed under [ , ],
(c) there is a covering of M by the domains of charts (U,ϕ) with the property that ∂

∂xi
∈

Dϕ(E) for all 1 ≤ i ≤ k.

If one, and therefore all, of these properties hold, then E is the tangent bundle along the
leaves of a k-dimensional foliation on M , whose leaves are the integral manifolds of E.
The charts in the last item are the foliated charts for the foliation.

8 December 2015

(59) Some more details on the proof of the Frobenius Theorem.
(60) A differential form of degree k on a smooth manifold M is a map

ω : X (M)× . . .×X (M) −→ C∞(M)
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of C∞(M)-modules, in other words, it is function-linear in all k arguments. In addition, it
is required to satisfy the following condition:

(1) ω(Xσ(1), . . . , Xσ(k)) = sign(σ)ω(X1, . . . , Xk)

for all permutations σ ∈ Sk.
(61) We have the following:

Lemma 3. If ω is a differential form, then the value of the function ω(X1, . . . , Xk) at a
point p ∈ M depends on the vector fields Xi only through their values Xi(p) at the point
p.

This means that ω has a value ωp at p, which is a k-multilinear map

ωp : TpM × . . .× TpM −→ R
defined on (X1(p), . . . , Xk(p)) by extending the Xi(p) to global vector fields, evaluating
ω on these vector fields, and then evaluating the resulting function at p. (This multilinear
map of course inherits property (1).)

(62) We build a universal model for multilinear maps, first for vector spaces (like TpM ), and
then for vector bundles (like TM ). This will allow us to interpret differential forms as
sections of suitable vector bundles, so that ωp will be simply the value of the section ω
at p. The universal model for bilinear maps on V × W is given by the tensor product
V ×W −→ V ⊗W . (See [1] Section 7.1.). We proved that the tensor product of vector
spaces is uniquely characterized by its universal property.

10 December 2015

(63) Existence of the tensor product.
(64) Iterating the construction of the tensor product we obtain tensor products of k vector spaces

which have the universal property for k-linear maps. The tensor algebra of a vector space
V is the direct sum of the tensor products T k(V ) of k copies of V , for k = 0, 1, 2, . . .
endowed with the natural mutiplication given by the tensor product. Here T 0(V ) is just
the ground field, and T 1(V ) is V itself. The tensor algebra is a graded associative algebra.
(See [1, Section 7.1].)

(65) For skew-symmetric multilinear maps there is a universal model V × . . . × V −→ ΛkV
obtained as the quotient of T k(V ) by the intersection of T k(V ) with the alternating ideal
in the tensor algebra.

(66) The exterior algebra of a vector space V over a field of characteristic 6= 2 is the direct
sum

Λ(V ) =
∞⊕
k=0

ΛkV

(See [1, Section 7.2].)
(67) We compute the dimensions of tensor end exterior products as follows:

dim(V ⊗W ) = dimV · dimW ,

dim ΛkV =

(
dimV

k

)
.

This shows in particular that the exterior algebra, unlike the tensor algebra, is non-trivial in
only finitely many degrees.
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(68) Induced maps on the tensor algebra and on the exterior algebra. The following lemma
will be important:

Lemma 4. If V is a vector space of dimension n and f : V −→ V is a linear map, then
the induced map λ(f) : Λn(V ) −→ Λn(V ) is multiplication by the determinant det(f).

The proof is left as a homework exercise.

15 December 2015

(69) Multilinear algebra constructions applied to vector bundles. See [1, Section 7.4].
(70) Differential forms as sections of exterior powers of the cotangent bundle.
(71) Orientability and orientations on vector bundles via their maximal exterior powers.
(72) Orientability and orientations on manifolds via the co-/tangent bundle and its maximal

exterior power. Orientability is equivalent to the existence of a volume form.

17 December 2015

(73) Exterior derivatives; existence and uniqueness, and explicit formulas in small degrees.
(74) Pullback of differential forms. The pullback commutes with the exterior derivative.

22 December 2015

(75) Contractions and Lie derivatives of differential forms.
(76) Cartan’s formula LX = iX ◦ d+ d ◦ iX .
(77) Manifolds with boundary.

7 January 2016

(78) Tangent spaces and tangent bundles for manifolds with boundary.
(79) Orientations for manifolds with boundary and the induced orientations on the boundary.
(80) The integral of n-forms with compact support on oriented n-manifolds. (See [1] Sec-

tion 8.2.)

12 January 2016

(81) The integral is well-defined.
(82) Stokes’s Theorem for oriented manifolds with boundary:∫

M

dω =

∫
∂M

ω .

(See [1] Section 8.2.)

14 January 2016

(83) Closed and exact k-forms; the de Rham complex and its cohomology, called the de Rham
cohomology Hk

dR(M) of a differentiable manifold M .
(84) The wedge product of forms induces a well-defined multiplication on de Rham cohomol-

ogy, making the total de Rham cohomology of a manifold into a graded algebra.
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(85) The forms with compact support form a subcomplex of the de Rham complex. Its coho-
mology is called the (de Rham) cohomology with compact support and denoted Hk

c (M).
For compact manifolds this is of course the same as the ordinary de Rham cohomology
defined above.

(86) Calculations of de Rham cohomology (with or without compact supports) for R.
(87) For any oriented n-dimensional manifold M without boundary, the integral gives a well-

defined surjective linear map:∫
M

: Hn
c (M) −→ R

[ω] 7−→
∫
M

ω .

19 January 2016

(88) A differentiable map f : M −→ N induces a map on de Rham cohomology

f ∗ : Hk
dR(N) −→ Hk

dR(M)

defined by pulling back closed forms. (Recall that on forms the pullback commutes with
exterior differentiation.)

(89) The Poincaré lemma: If it0 : M −→ M × R is the inclusion of M as M × {t0} and
π : M ×R −→M is the projection, then i∗t0 and π∗ are inverses of each other on cohomol-
ogy. Thus M and M × R have isomorphic de Rham cohomology.

(90) Consequences of the Poincaré lemma: smoothly homotopic maps induce the same ho-
momorphism on de Rham cohomology, smoothly homotopy equivalent smooth manifolds
have the same de Rham cohomology, in particular contractible manifolds have the de Rham
cohomology of a point. This means that all closed forms are locally exact.

(91) As consequences of the Poincaré lemma we have in particular a complete calculation of
the de Rham cohomology of Rn by induction on n.

21 January 2016

(92) Some more details for the proof of the Poincaré lemma.
(93) By induction on n we find the cohomology of Rn with compact supports, and, at the same

time, the de Rham cohomology of Sn. In degree n these are both one-dimensional, with
the isomorphism to R given by integration.

(94) For any connected oriented n-dimensional manifoldM without boundary, we haveHn
c (M) =

R, with the isomorphism again given by integration.

26 January 2016

(95) A smooth manifold M is called closed if it is compact without boundary. For now we only
consider connected oriented manifolds, so often closed manifolds are implicitly assumed
to be connected and oriented.
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(96) Let f : M −→ N be a smooth map between closed n-dimensional manifolds. (As said
above, M and N are assumed to be connected and oriented.) Then f ∗ : Hn

dR(N) −→
Hn
dR(M) is a linear map between one-dimensional real vector spaces. We identify both

these vector spaces with R using the isomorphism given by integration. Then f ∗ : R −→ R
is multiplication by a real number λ, which we call the degree of f , and denote by deg(f).

(97) Here are the most basic properties of the degree:
(0) If f and g are two (smoothly) homotopic maps, then deg(f) = deg(g), since in this

case f ∗ = g∗.
(1) If f : M −→ N and g : N −→ L, then deg(g ◦ f) = deg(f) · deg(g), since in this

case (g ◦ f)∗ = f ∗ ◦ g∗.
(2) If there is a compact oriented manifold W with boundary ∂W = M , and an extension

of f : M −→ N to a smooth map F : W −→ N , then deg(f) = 0.
(3) If f is a diffeomorphism, then deg(f) = ±1, according to whether f is orientation-

preserving, or not.
(4) The degree is always an integer, in fact, it is the algebraic number of preimages of a

regular value of f , where preimages are counted with signs, according to whether the
derivative of f at the point is orientation-preserving, or not. In particular, if f is not
surjective, then deg(f) = 0.

(98) As a first application of the degree, we proved the following statement: If W is a com-
pact oriented smooth manifold with boundary ∂W = M , then there is no smooth map
r : W −→ M with the property r|∂W = IdM . (Such an r would be called a retraction
of W onto its boundary.) A direct derivation of this statement from Stokes’s theorem is
possible, without using the degree. However, once we have the above properties of the
degree, the argument is purely formal. First of all, we may assume that W is connected.
If r were to exist, then M would be the continuous image of a connected manifold, and
therefore connected. Now M is closed, connected and oriented, and by property (3) above,
we have deg(IdM) 6= 0. However, if r were to exist, we would conclude from property (2)
that deg(IdM) = 0. This contradiction completes the proof.

(99) From the fact that the closed ball B1(0) ⊂ Rn does not retract onto its boundary Sn−1 we
deduced the Brouwer fixed point theorem: every smooth map f : B1(0) −→ B1(0) has a
fixed point.

(100) A somewhat deeper application of the notion of degree is the proof of the hairy ball theo-
rem: The sphere Sn admits a vector field without zeroes if and only if n is odd. A vector
field without zeroes allows us to produce a homotopy between the identity and the antipo-
dal map of Sn. Now the degree of the antipodal map on Sn is (−1)n+1 by applying property
(3) above, so if n is even we get a contradiction with property (0).
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