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(1) Topological spaces; Hausdorffness; continuity.
(2) Metric spaces, and their induced topology. This topology is always Hausdorff.
(3) Euclidean space Rn with its metric topology. By considering balls with rational radii cen-

tered at points with rational coordinates, one finds a countable collection of open sets such
that all open sets are suitable unions of these.

16 October 2013

(4) Bases for topologies. Remark that by the previous item, Euclidean space has a countable
bases for its topology.

(5) Topological manifolds are locally Euclidean spaces that are Hausdorff and have a count-
able basis for their topology.

(6) A differentiable manifold is a topological manifold together with an atlas whose transition
maps are differentiable. Such an atlas is called a differentiable or smooth atlas.

(7) We define differentiability for maps between differentiable manifolds using charts. A spe-
cial case concerns real-valued functions.

(8) A differentiable structure is an equivalence class of atlases, equivalently a maximal atlas.
(9) If we retain from a smooth atlas for a manifold M only the knowledge of the images of

charts, together with the identifications that are to be performed according to the transition
maps, then we can reconstruct M ; see [1, Sections 3.1 and 3.2].

(10) Every maximal Cr atlas with r ≥ 1 contains a C∞ atlas. Because of this fact (which
we do not prove), we will restrict ourselves to C∞ manifolds throughout. So the words
differentiable or smooth will usually mean C∞.

(11) A topological manifold may or may not have any differentiable structure. If it does have
one, it is sometimes unique, for example if the dimension is ≤ 3, but often it is not unique.
There exist topological manifolds which have uncountably many distinct differentiable
structures, for example R4.

22 October 2013

(12) Dimensions of manifolds and smooth invariance of domain.
(13) Examples of differentiable manifolds and their dimensions: Euclidean spaces Rn, spheres

Sn, tori T n, GL(n,R),. . . An open subset of a manifold is a manifold (of the same dimen-
sion); products of manifolds are manifolds (and the dimensions add up).

(14) The tangent bundle TM of a differentiable manifold M of dimension n is itself a (topo-
logical) manifold of dimension 2n.

23 October 2013

(15) The tangent bundle of a differentiable manifold is in fact a differentiable manifold, since
the natural atlas is differentiable.
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(16) The natural projection π : TM −→ M is differentiable. The preimage TxM = π−1(x) of
any point x ∈ M has a well-defined structure as an n-dimensional real vector space. We
call this the tangent space of M at x.

(17) For any differentiable map f : M −→ N , we define the derivative Df : TM −→ TN .
This restricts to every tangent space TxM as a linear map Dxf : TxM −→ Tf(x)N , called
the derivative of f at x ∈M .

29 October 2013

(18) Differentiable vector bundles over manifolds; see [1] Section 3.3. Local vs. global trivial-
ity; isomorphisms of bundles.

(19) Examples of vector bundles: product bundles, the tangent bundle of a differentiable mani-
fold, the Möbius band.

(20) Sections of vector bundles, and the characterization of triviality of bundles through the
existence of sufficiently many sections that are pointwise linearly independent.

30 October 2013

(21) Cocycles of transition maps for systems of local trivializations for vector bundles. Recon-
structing a vector bundle from a cocycle. See [1, Section 3.4].

(22) Some linear algebra of vector bundles: dualization, Whitney sum, subbundles.
(23) For a subgroup G ⊂ GLk(R), a G-structure on a rank k vector bundle is a system of local

trivializations whose associated cocycle takes values in G. (This is called a G-reduction
in [1].)

(24) Orientations of vector bundles as GL+
k (R)-structures.

5 November 2013

(25) Every manifold M is paracompact, meaning that every open cover has an open locally
finite refinement. We prove the following more precise statement. Given an open covering
{Ui}i∈I of M , there is an atlas {(Vk, ϕk)} such that the covering by the Vk is a locally finite
refinement of the given covering, and such that ϕk(Vk) is an open ball B3 of radius 3 for
all k and the open sets Wk = ϕ−1

k (B1) cover M .

Proof. We prove first that there is a sequence Gi, i = 1, 2, . . . of open sets with compact
closures, such that the Gi cover M and satisfy

Gi ⊂ Gi+1

for all i. To this end let Ai, i = 1, 2, . . . be a countable basis of the topology consisting of
open sets with compact closures. Set G1 = A1. Suppose inductively that we have defined

Gk = A1 ∪ . . . ∪ Ajk .
Then let jk+1 be the smallest integer greater than jk with the property that

Gk ⊂ A1 ∪ . . . ∪ Ajk+1
,

and define
Gk+1 = A1 ∪ . . . ∪ Ajk+1

.

This defines the sequence Gk as desired.
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Let {Ui}i∈I be an arbitrary open covering of M . For every x ∈ M we can find a
chart (Vx, ϕx) at x with Vx contained in one of the Ui and such that ϕx(Vx) = B3. Let
Wx = ϕ−1

x (B1). We can cover each set Gk \ Gk−1 by finitely many such Wxj such that at
the same time the corresponding Vxj are contained in the open set Gk+1 \Gk−2. Taking all
these Vxj as i ranges over the positive integers we obtain the desired atlas. �

(26) We construct smooth bump functions on Rn and transfer them to differentiable manifolds
via charts. This allows us to construct various kinds of differentiable functions with special
properties.

(27) Every open covering of a differentiable manifold admits a subordinate differentiable par-
tition of unity. This follows from paracompactness and the existence of smooth bump
functions.

6 November 2013

(28) Let π : E −→ M be a vector bundle of rank k > 0 over a base manifold of positive
dimension. We have the following applications of the existence of smooth bump functions
and of partitions of unity:
• the evaluation map

ev : M × Γ(E) −→ E

(p, s) 7−→ s(p)

is surjective,
• the space of sections Γ(E) is infinite-dimensional,
• E admits a fibre-wise positive definite scalar product depending smoothly on the fiber;

this is called a metric on E, and the existence of a metric is equivalent to the existence
of an O(k)-structure,
• every subbundle F ⊂ E admits a complementary subbundle given by the orthogonal

complement F⊥ with respect to a metric, so that E is isomorphic to F ⊕ F⊥.
(29) The proof of existence of a metric relies on positive definiteness to ensure that convex

combinations of metrics are again metrics. Indeed, the existence is false for indefinite
metrics. For example, by a light cone argument, TS2 −→ S2 does not admit any metric of
signature (1, 1).

12 November 2013

(30) Immersions, embeddings (= proper, injective, immersions), submanifolds.
(31) The Whitney embedding theorem: every n-dimensional differentiable manifold embeds

differentiably in R2n+1. This is true for all (paracompact) manifolds, but we gave the proof
only for compact ones.

13 November 2013

(32) Global flows on manifolds, and the vector fields obtained by differentiation.
(33) Local flows obtained by locally integrating a vector fields. The correspondence between

vector fields and equivalence classes of local flows.
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(34) Completeness of vector fields. Every vector field with compact support is complete.

19 November 2013

(35) Vector fields X act as derivations on smooth functions f by the Lie derivative LX . This
gives an isomorphism of vector spaces

X (M) −→ Der(C∞(M))

X 7−→ LX .

(36) Since for any two vector fields X and Y , the map LXLY − LYLX is a derivation, by the
above isomorphism there is a unique vector field [X, Y ] such that L[X,Y ] = LXLY −LYLX .
This is called the commutator of X and Y .

20 November 2013

(37) The commutator of vector fields satisfies the following three properties: it is R-bilinear, it
is skew-symmetric, and the Jacobi identity holds:

[[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0 ∀X, Y, Z ∈ X (M) .

This means that the bracket makes the vector space X (M) into a Lie algebra.
(38) IfM = G is a Lie group, then the left-invariant vector fields onG form a finite-dimensional

sub-Lie algebra g ⊂ X (G). Its dimension, as a vector space, agrees with the dimension of
G, as a manifold.

(39) We can also define a Lie derivative acting on vector fields, rather than functions. It turns
out that LXY = [X, Y ].

26 November 2013

(40) Two vector fields commute if and only if their local flows commute.
(41) A differential form of degree k on a smooth manifold M is a map

ω : X (M)× . . .×X (M) −→ C∞(M)

of C∞(M)-modules, in other words, it is function-linear in all k arguments. In addition, it
is required to satisfy the following condition:

(1) ω(Xσ(1), . . . , Xσ(k)) = sign(σ)ω(X1, . . . , Xk)

for all permutations σ ∈ Sk.
(42) We have the following:

Lemma 1. If ω is a differential form, then the value of the function ω(X1, . . . , Xk) at a
point p ∈ M depends on the vector fields Xi only through their values Xi(p) at the point
p.

This means that ω has a value ωp at p, which is a k-multilinear map

ωp : TpM × . . .× TpM −→ R
defined on (X1(p), . . . , Xk(p)) by extending the Xi(p) to global vector fields, evaluating
ω on these vector fields, and then evaluating the resulting function at p. (This multilinear
map of course inherits property (1).)
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(43) We build a universal model for multilinear maps, first for vector spaces (like TpM ), and
then for vector bundles (like TM ). This will allow us to interpret differential forms as
sections of suitable vector bundles, so that ωp will be simply the value of the section ω
at p. The universal model for bilinear maps on V × W is given by the tensor product
V ×W −→ V ⊗W . (See [1] Section 7.1.).

27 November 2013

(44) Iterating the construction of the tensor product we obtain tensor products of k vector spaces
which have the universal property for k-linear maps. The tensor algebra of a vector space
V is the direct sum of the tensor products T k(V ) of k copies of V , for k = 0, 1, 2, . . .
endowed with the natural mutiplication given by the tensor product. Here T 0(V ) is just
the ground field, and T 1(V ) is V itself. The tensor algebra is a graded associative algebra.
(See [1, Section 7.1].)

(45) For skew-symmetric multilinear maps there is a universal model V × . . . × V −→ ΛkV
obtained as the quotient of T k(V ) by the intersection of T k(V ) with the alternating ideal
in the tensor algebra.

(46) The exterior algebra of a vector space V over a field of characteristic 6= 2 is the direct
sum

Λ(V ) =
∞⊕
k=0

ΛkV

(See [1, Section 7.2].)
(47) We compute the dimensions of tensor end exterior products as follows:

dim(V ⊗W ) = dimV · dimW ,

dim ΛkV =

(
dimV

k

)
.

This shows in particular that the exterior algebra, unlike the tensor algebra, is non-trivial in
only finitely many degrees.

(48) Induced maps on the tensor algebra and on the exterior algebra. The following lemma
will be important:

Lemma 2. If V is a vector space of dimension n and f : V −→ V is a linear map, then
the induced map Λn(f) : Λn(V ) −→ Λn(V ) is multiplication by the determinant det(f).

The proof is left as a homework exercise.

3 December 2013

(49) Multilinear algebra constructions applied to vector bundles. See [1, Section 7.4].
(50) Differential forms as sections of exterior powers of the cotangent bundle. The wedge

product of forms.
(51) Exterior derivatives.

4 December 2013

(52) Existence and uniqueness of the exterior derivative.
(53) Pullback of differential forms. The pullback commutes with the exterior derivative.
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(54) Interpretation of the derivative of a smooth map f : M −→ N as a section of the vector
bundle Hom(TM, f ∗TN) = T ∗M ⊗ f ∗TN over M .

10 December 2013

(55) Orientability and orientations on manifolds via the co-/tangent bundle and its maximal
exterior power. Orientability is equivalent to the existence of a volume form.

(56) The integral of n-forms with compact support on oriented n-manifolds. (See [1] Sec-
tion 8.2.)

(57) Manifolds with boundary; their boundaries and their interiors. Every manifold (in the
usual sense) is also a “manifold with boundary”, but the boundary happens to be empty.

11 December 2013

(58) Orientations of manifolds with boundary and the induced orientation on the boundary.
(59) Stokes’s Theorem for oriented manifolds with boundary:∫

M

dω =

∫
∂M

ω .

(See [1] Section 8.2.)
(60) Easy consequences from Stokes’s theorem...

17 December 2013

(61) Closed and exact k-forms; the de Rham complex and its cohomology, called the de Rham
cohomology Hk

dR(M) of a differentiable manifold M .
(62) The wedge product of forms induces a well-defined multiplication on de Rham cohomol-

ogy, making the total de Rham cohomology of a manifold into a graded algebra.
(63) The forms with compact support form a subcomplex of the de Rham complex. Its coho-

mology is called the (de Rham) cohomology with compact support and denoted Hk
c (M).

For compact manifolds this is of course the same as the ordinary de Rham cohomology
defined above.

(64) Calculations of de Rham cohomology (with or without compact supports) for R.
(65) For any oriented n-dimensional manifold M without boundary, the integral gives a well-

defined surjective linear map:∫
M

: Hn
c (M) −→ R

[ω] 7−→
∫
M

ω .

(66) The Poincaré lemma: If it0 : M −→ M × R is the inclusion of M as M × {t0} and
π : M ×R −→M is the projection, then i∗t0 and π∗ are inverses of each other on cohomol-
ogy. Thus M and M × R have isomorphic de Rham cohomology.

(67) More generally, any differentiable map f : M −→ N induces a map on de Rham cohomol-
ogy

f ∗ : Hk
dR(N) −→ Hk

dR(M)

defined by pulling back closed forms. (Recall that on forms the pullback commutes with
exterior differentiation.)
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(68) We reduced the proof of the Poincaré lemma to the construction of a certain chain homo-
topy.

18 December 2013

(69) We produced the chain homotopy required in the proof of the Poincaré lemma.
(70) Consequences of the Poincaré lemma: smoothly homotopic maps induce the same ho-

momorphism on de Rham cohomology, smoothly homotopy equivalent smooth manifolds
have the same de Rham cohomology, in particular contractible manifolds have the de Rham
cohomology of a point. This means that all closed forms are locally exact.

(71) As consequences of the Poincaré lemma we have in particular a complete calculation of
the de Rham cohomology of Rn by induction on n.

(72) By induction on n we find the cohomology of Rn with compact supports, and, at the same
time, the de Rham cohomology of Sn. In degree n these are both one-dimensional, with
the isomorphism given by integration.

7 January 2014

(73) We now begin the discussion of connections and curvature on vector bundles.
Let E → M be a differentiable vector bundle of rank k over a smooth manifold M of

dimension n.

Definition 3. A connection on E is an R-linear map

(2) ∇ : Γ(E) −→ Ω1(E)

satisfying the Leibniz rule

(3) ∇(fs) = df ⊗ s+ f∇(s)

for all f ∈ C∞(M) and s ∈ Γ(E).

Here Ω1(E) = Γ(T ∗M ⊗ E) is the space of 1-forms on M with values in E. One can
evaluate the 1-form on a vector field X to obtain

(4) ∇X(s) := 〈∇(s), X〉 ∈ Γ(E) .

(74) We prove the following fundamental properties of connections:
• A connection ∇ does not increase the support of sections, i. e. if s ∈ Γ(E) vanishes

on some open set U ⊂M , then so does∇(s).
• The value of∇(s) at a point p ∈ B depends only on the restriction of s to an orbitrarily

small open neighbourhood of p. (In other words, ∇ is a differential operator, and
∇(s)(p) depends only on the germ of s at p.)
• If ∇1 and ∇2 are connections, then so is t∇1 + (1− t)∇2 for all t ∈ [0, 1].
• If ∇1 and ∇2 are connections, then∇1 −∇2 ∈ Ω1(End(E)) = Γ(T ∗B ⊗ E∗ ⊗ E).

(75) Using these properties and a partition of unity subordinate to a covering of M by open sets
over which the restriction of E is trivial, we prove:

Proposition 4. Every vector bundleE admits connections. The space of all connections on
E is an affine space for the space Ω1(End(E)) of 1-forms on M with values in End(E).

(76) Next we extend the differential operator given by a connection ∇ to bundle-valued forms
of higher degree.
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Lemma 5. For every connection∇ on E →M there is a unique R-linear map

∇̄ : Ωl(E) −→ Ωl+1(E)

which satisfies

(5) ∇̄(ω ⊗ s) = dω ⊗ s+ (−1)lω ∧∇(s)

for all ω ∈ Ωl(M) and s ∈ Γ(E). Moreover, this operator satisfies

(6) ∇̄(f(ω ⊗ s)) = (df ∧ ω)⊗ s+ f∇̄(ω ⊗ s)
for all smooth functions f on M .

8 January 2014

(77) Consider the operator ∇̄ ◦ ∇ : Ω0(E) −→ Ω2(E) associated with a connection ∇ on E.
It turns out that this is linear over C∞(M), and is therefore given by an element F∇ ∈
Ω2(End(E)). This is called the curvature of∇.

(78) A (local) frame for E is a set of smooth sections s1, . . . , sk defined over some open set
U ⊂M , whose values are linearly independent at every point p ∈ U .

Thus a set of k local smooth sections s1, . . . , sk is a frame if and only if s1(p), . . . , sk(p)
is a basis of Ep = π−1(p) for every p ∈ U . Therefore a frame defined over U defines a
trivialization of E|U , and, conversely, every such trivialization

ψ : π−1(U) −→ U × Rk

defines a local frame by setting si(p) = ψ−1(p, ei), where e1, . . . , ek is the standard basis
of Rk.

(79) Fix a local frame s1, . . . , sk for the restriction of E to a trivialising open set in M . This
choice determines a connection ∇0 defined by the requirement ∇0(si) = 0 for all i. Every
other connection ∇ differs from ∇0 by the addition of a 1-form with values in End(E).
However, the given trivialization of E induces a trivialization of End(E), and so a 1-form
with values in End(E) is nothing but a k × k matrix of ordinary 1-forms. Thus ∇ can be
expressed by the matrix ω = (ωij) of 1-forms given by

∇(si) =
k∑
j=1

ωij ⊗ sj .

(80) From the definition of the curvature we calculate

F∇(si) =
k∑
j=1

Ωij ⊗ sj

with

Ωij = dωij −
k∑
l=1

ωil ∧ ωlj .

We can write this briefly as Ω = dω − ω ∧ ω, where the wedge product on the right-hand-
side includes matrix multiplication, and is therefore not necessarily trivial unless k = 1.

(81) Similarly we compute dΩ = ω ∧ Ω− Ω ∧ ω. This is the Bianchi identity.
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(82) A choice of a (local) frame is called a choice of gauge in physics terminology. The connec-
tion and curvature matrices represent ∇ and F∇ with respect to this choice. Connections
are referred to as gauge fields.

Suppose we have another frame s′1, . . . , s
′
k on the same domain of definition as the orig-

inal frame. Let ω′ and Ω′ denote the connection and curvature matrices of ∇ with respect
to this new frame. If

s′i =
k∑
i=1

gijsj ,

we find that ω′ = dg g−1 + gωg−1.

14 January 2014

(83) Using ω′ = dg g−1 + gωg−1, we calculate Ω′ = gΩg−1, where g = (gij). The change of
basis g is called a gauge transformation, and these formulae show how connection and
curvature matrices behave under gauge transformations. The curvature matrix Ω is more
invariant than the connection matrix ω.

(84) Recall that with respect to a frame s1, . . . , sk of E a connection∇ is expressed by a matrix
(ωij) of one-forms. If we choose a chart for the base manifold M with local coordinates
x1, . . . , xn, then in the domain of this chart every one-form can be expressed uniquely as a
linear combination of the dxi. In particular, there are smooth functions ωαij on the domain
of the chart such that

(7) ωij =
n∑

α=1

ωαijdxα .

Denoting the vector fields ∂
∂xα

by ∂α, we find the following:

∇∂αsi = 〈∂α,∇si〉 =
k∑
j=1

〈∂α, ωij〉sj =
k∑
j=1

ωαijsj .

More generally, if

s =
k∑
i=1

fisi ,

then

∇∂αs =
k∑
j=1

(
∂fj
∂xα

+
k∑
i=1

fiω
α
ij)sj .

WritingAα for the matrix (ωαij) of functions we see that the covariant derivative∇∂α , which
we abbreviate to∇α, has the form∇α = ∂α + Aα.

(85) We can now give a first geometric interpretation of the curvature, or at least of its vanishing.
A connection∇ is called flat if F∇ = 0.

Proposition 6. [∇α,∇β]si =
∑k

j=1 Ωij(∂α, ∂β)sj

Corollary 7. The connection∇ is flat if and only if [∇α,∇β] = 0 for every local coordinate
system x1, . . . , xn on the base manifold M .

Thus the curvature quantifies the failure of the commutativity of covariant derivatives.
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(86) If E → M is a vector bundle with a connection ∇, we say that a section s ∈ Γ(E) is
parallel with respect to∇ if∇s = 0. In the special case that∇ is the connection given by
some trivialization, a section is parallel if and only if it is constant in the given trivialization.
Thus parallel sections should be thought of as the analogs of constant sections for nontrivial
bundles.

(87) We will want to prove the following:

Proposition 8. Let π : E → M be a smooth vector bundle with a connection ∇, and
c : [0, 1] → M a smooth curve in the base. Then for every v ∈ π−1(c(0)) there is a
unique smooth curve c̃ : [0, 1] → E with π ◦ c̃ = c, c̃(0) = v and ∇ċs = 0, where s
sends c(t) to c̃(t). Moreover, the map v 7→ c̃(1) defines a linear map of vector spaces
π−1(c(0))→ π−1(c(1)).

(88) In Proposition 8 the condition ∇ċs = 0 makes sense although s is not a section over all
of M because the covariant derivative is only considered in the direction of c, where s is
defined.

The Proposition follows from the existence and uniqueness of the solutions of systems of
linear ordinary differential equations with given initial conditions, together with the linear
dependence of the solutions on the initial values.

Definition 9. The linear map

Pt : Ec(0) −→ Ec(t)

v 7−→ c̃(t)

is called the parallel transport along c. It is an isomorphism of vector spaces.

15 January 2014

(89) As a consequence of Proposition 8 we have:

Corollary 10. Over a curve every vector bundle with connection admits a framing by
parallel sections. Over a one-dimensional base every vector bundle with connection admits
local trivializations by parallel frames.

Here the existence of a parallel frame is over the interval parametrizing the curve. Even
if the endpoint of the curve agrees with the starting point, the same may not be true for the
initial and ending frames. This is why the second statement is only local.

(90) This corollary fails for base spaces which are not one-dimensional, and this leads to geo-
metric interpretations of the curvature. It will turn out that the corollary encodes the fact
that on a one-manifold there is no curvature (as every two-form vanishes identically).

(91) We now prove:

Theorem 11. A vector bundle E → M with connection ∇ admits local frames consisting
of parallel sections if and only if∇ is flat, i. e. F∇ = 0.

(92) One of the consequences of this theorem is:

Corollary 12. A vector bundle E → M admits a flat connection if and only if it has a
system of local trivializations for which all transition maps are constant.
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21 January 2014

(93) Recall that metrics on vector bundles are smoothly varying fiberwise positive-definite
scalar products. Using partitions of unity we proved that every vector bundle admits a
metric.

(94) Once a metric has been chosen, any local frame can be orthonormalized to obtain a smooth
local orthonormal frame.

(95) A connection∇ on a vector bundle E →M is compatible with a metric 〈 , 〉 if and only if

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉

for all pairs of sections s1, s2 ∈ Γ(E). Sometimes a connection compatible with some
metric is called a metric connection.

Lemma 13. A connection ∇ is compatible with a metric 〈 , 〉 if and only if its connection
matrix ω with respect to any local frame that is orthonormal with respect to 〈 , 〉 is skew-
symmetric, i. e. ωij = −ωji for all i and j. In this case the curvature matrix Ω with respect
to a local orthonormal frame is also skew-symmetric: Ωij = −Ωji.

Finally, metric connections always exist. The following is proved by combining the
above lemma with the proof of Theorem 4.

Proposition 14. Every vector bundle E with a metric 〈 , 〉 admits compatible connections.
The space of all compatible connections is an affine space for the space Ω1(SkewEnd(E))
of 1-forms with values in the endomorphisms of E which are skew-symmetric with respect
to 〈 , 〉.

Here an endomorphism A is skew-symmetric with respect to 〈 , 〉 if

〈A(v), w〉 = −〈v,A(w)〉

for all v and w.
(96) As an example we consider vector bundles of small rank equipped with metric connections.

If the rank is = 1, then the skew-symmetry of the connection matrix shows that every
metric connection is flat. As every bundle admits a metric and a compatible connection,
we conclude that all rank one bundles admit flat connections.

22 January 2014

(97) We now discuss metric connections on rank 2 bundles. Here the curvature is determined
by the closed 2-form Ω12 with respect to an orthonormal frame. In the oriented case, this
closed form is the same for all oriented orthonormal frames. Therefore, for an oriented rank
2 bundle E −→ M one defines the Euler class e(E) = − 1

2π
[Ω12] ∈ H2

dR(M). Changing
the orientation of E changes the sign of its Euler class. The Euler class does not depend on
the metric connection∇. In fact, one can show that it does not depend on the metric either,
and is therefore a topological invariant of vector bundles.

(98) If E admits a nowhere vanishing section, then e(E) = 0. In particular the Euler class of a
trivial bundle vanishes.
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(99) If M is an oriented surface, then TM is an oriented rank 2 bundle. One of the significant
properties of the Euler class is that if M has no boundary then

− 1

2π

∫
M

Ω12 = χ(M) = 2− 2g(M)

is the Euler characteristic ofM , where g(M) is the genus of the surface. This is the Gauss–
Bonnet theorem, which we do not prove today.

(100) On a smooth manifold M we now consider connections ∇ on the tangent bundle TM →
M . These are sometimes called affine connections. In this case the variables X and s in
∇Xs are on equal footing, as they are both sections of the tangent bundle. This leads to
possible symmetries which make no sense in the more general setting of arbitrary vector
bundles.

(101) The torsion of a connection∇ on TM is defined by

T (X, Y ) = ∇XY −∇YX − [X, Y ]

for all X, Y ∈ X (M).

Lemma 15. The torsion defines a skew-symmetric map

T : X (M)×X (M) −→ X (M)

that is bilinear over C∞(M).

A connection∇ is called symmetric if it is torsion-free, i. e. if T vanishes identically1.
(102) To explain why torsion-freeness is indeed a symmetry condition, we consider the expres-

sion of the connection in a local coordinate system (x1, . . . , xn) on M . We write ∂i for the
coordinate vector fields ∂

∂xi
, and use the local frame ∂1, . . . , ∂n. Then

∇∂i =
n∑
j=1

ωij ⊗ ∂j ,

and using (7) we obtain

∇∂i∂j =
n∑
k=1

ωijk∂k ,

which is usually written as

∇∂i∂j =
n∑
k=1

Γkij∂k

in classical notation. Therefore, we define the Christoffel symbols of the connection ∇
with respect to the coordinate system (y1, . . . , yn) to be Γkij = ωijk.

Returning to the definition of torsion, we see that

T (∂i, ∂j) =
n∑
k=1

(ωijk − ω
j
ik)∂k =

n∑
k=1

(Γkij − Γkji)∂k .

As the torsion is linear over the smooth functions, we obtain the following:

Lemma 16. An connection∇ on the tangent bundle is torsion-free if and only if Γkij = Γkji
for any local coordinate system.

1Note that requiring the naive symmetry∇XY = ∇Y X for all X and Y leads to a contradiction.
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Thus symmetry of the connection really refers to a symmetry of the Christoffel symbols
expressing this connection in local coordinates.

(103) If E → M is a vector bundle with a connection ∇, then the dual bundle E∗ → M carries
a well-defined dual connection∇∗ characterized by the identity

d〈s, α〉 = 〈∇s, α〉+ 〈s,∇∗α〉
for all s ∈ Γ(E) and α ∈ Γ(E∗). (The brackets here denote the natural pairing between a
bundle and its dual bundle, not a metric.)

In the case of a connection on the tangent bundle, the dual connection∇∗ on T ∗M gives
us the following characterization of torsion-freeness:

Proposition 17. An connection∇ on TM is torsion-free if and only if the exterior deriva-
tive on one-forms is given by the composition

Ω1(M) = Γ(T ∗M)
∇∗
−→ Γ(T ∗M ⊗ T ∗M)

∧−→ Γ(Λ2T ∗M) = Ω2(M) .
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(104) First we prove the above Proposition.
(105) Consider a Riemannian manifold M , that is a smooth manifold with a metric on its tan-

gent bundle. In this case it turns out that there is a unique symmetric connection that is at
the same time compatible with the given metric:

Proposition 18 (Fundamental Lemma of Riemannian Geometry). The tangent bundle of a
Riemannian manifold admits a unique torsion-free connection compatible with the metric.

Proof. Given vector fields X , Y and Z, we can use the two requirements, compatibility
with the metric 〈 , 〉 and torsion-freeness, to conclude that the only possible value for
〈∇XY, Z〉 is

(8) 〈∇XY, Z〉 =
1

2
(〈[X, Y ], Z〉+ 〈[Z,X], Y 〉+ 〈[Z, Y ], X〉+

LX〈Y, Z〉+ LY 〈X,Z〉 − LZ〈X, Y 〉) .
This proves uniqueness. To see existence, we use (8) as a definition. As 〈 , 〉 is non-
degenerate, requiring that the equation hold for all Z uniquely defines ∇XY . We then
check that this∇ is indeed a connection, is metric-compatible, and torsion-free. �

The formula (8) is sometimes called the Koszul formula.
(106) The curvature of a Riemannian manifold (M, 〈 , 〉) is, by definition, the curvature of its

Levi-Civita connection ∇ given by the Fundamental Lemma of Riemannian Geometry.
We write R for the curvature F∇ of ∇, and consider this either as

R : X (M)×X (M)×X (M) −→ X (M)

(X, Y, Z) 7−→ R(X, Y )Z ,

or as

R : X (M)×X (M)×X (M)×X (M) −→ C∞(M)

(X, Y, Z, T ) 7−→ 〈R(X, Y )Z, T 〉 .
13



The notation R(X, Y )Z means that the curvature 2-form is evaluated on X and Y , and the
resulting endomorphism of TM is applied to Z. Both of these incarnations of R are called
the Riemann curvature tensor of (M, 〈 , 〉); it is a tensor because it is function-linear in
all arguments.

(107) The Riemann curvature tensor of a Riemannian manifold (M, 〈 , 〉) is skew-symmetric in
X and Y , and has the following additional symmetries:

Lemma 19. For all X, Y, Z,W ∈ X (M) we have:
(0) R(X, Y )Z = −R(Y,X)Z,
(1) R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0,
(2) 〈R(X, Y )Z,W 〉 = −〈R(X, Y )W,Z〉,
(3) 〈R(X, Y )Z,W 〉 = 〈R(Z,W )X, Y 〉.
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(108) Let X and Y be two linearly independent tangent vectors in TpM . Then the expression

(9) K(X, Y ) =
〈R(X, Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2

only depends in the two-dimensional subspace σ = span{X, Y } ⊂ TpM , and not on the
basisX and Y . This is called the sectional curvature of σ. It is a high-dimensional analog
of the Gaussian curvature of surfaces.

(109) By definition, the sectional curvature is determined by the Riemann tensor. However, the
converse is also true:

Lemma 20. If two Riemannian metrics on M have the same sectional curvatures for all
tangent 2-planes, then their curvature tensors R agree.

The proof is just linear algebra, using Lemma 19 and multiple polarisation, arguing only
with the trilinear map

R : TpM × TpM × TpM −→ TpM

at a point.
(110) The proof the previous Lemma can easily be adapted to prove the following characteriza-

tion of spaces with constant sectional curvature:

Lemma 21. A Riemannian manifold (M, 〈 , 〉) has sectional curvature equal to a fixed
real number K0 ∈ R for all two-planes σ ⊂ TM if and only if the following identity holds
for all X , Y , Z and T ∈ X (M):

〈R(X, Y )Z, T 〉 = −K0(〈X,Z〉〈Y, T 〉 − 〈Y, Z〉〈X,T 〉) .

The proof is again just linear algebra at a single point.
(111) To obtain some concrete calculations of the curvature of a Riemannian manifold, we now

consider the following soecial situation: Mn ⊂ Rn+1 is a smooth submanifold of codi-
mension one in Euclidean space, and the Riemannian metric on M is the one induced by
the standard scalar product on Rn+1. If M is oriented, or we work locally, then there is
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a unique unit normal vector n(p) at every point p ∈ M such that the orientation of TpM
together with n(p) gives the positive orientation of Rn+1. The smooth map

G : M −→ Sn

p 7−→ n(p)

is called the Gauss map of M .

Lemma 22. The tangent spaces TpM and TG(p)S
n are the same subspace of Rn+1. Under

this identification, the derivative DpG is given by

L : TpM −→ TpM

Xp 7−→ (∇̃Xn)(p) ,

where ∇̃ is the Levi-Civita connection on Rn+1 equipped with the constant scalar product.

The map L is called the Weingarten map of the hypersurface M . It is self-adjoint with
respect to the metric on M .

Now for X and Y vector fields on M , we can choose local extensions X̃ and Ỹ on Rn+1

and define
∇XY = π(∇̃X̃ Ỹ ) ,

where π is the orthogonal projection Rn+1 −→ TM with kernel spanned by the unit normal
n. We leave it as an exercise to show that this is in fact the Levi-Civita connection of the
metric on M .

With this relationship between ∇ and ∇̃ in hand, we can compare their curvatures
R(X, Y )Z and R̃(X̃, Ỹ )Z̃. On Rn+1 the directional covariant derivatives commute, which
means that the curvature vanishes. The equation R̃(X̃, Ỹ )Z̃ = 0 can be split into two
equations asserting the vanishing of the component tangent to M , and the vanishing of the
normal component. These two equations give the following:

Proposition 23. For a smooth hypersurface in Euclidean space equipped with the induced
metric we have

R(X, Y )Z = 〈L(Y ), Z〉L(X)− 〈L(X), Z〉L(Y ) (the Gauss equation)
and

∇X(L(Y ))−∇Y (L(X)) = L([X, Y ]) (the Codazzi–Mainardi equation).
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