
PRESENTABILITY BY PRODUCTS FOR SOME CLASSES OF GROUPS

P. DE LA HARPE AND D. KOTSCHICK

ABSTRACT. In various classes of infinite groups, we identify groups that are presentable by prod-
ucts, i.e. groups having finite index subgroups which are quotients of products of two commuting
infinite subgroups. The classes we discuss here include groups of small virtual cohomological di-
mension and irreducible Zariski dense subgroups of appropriate algebraic groups. This leads to
applications to groups of positive deficiency, to fundamental groups of three-manifolds and to Cox-
eter groups.

For finitely generated groups presentable by products we discuss the problem of whether the
factors in a presentation by products may be chosen to be finitely generated.

1. MOTIVATION

For two connected closed oriented manifolds M , N of the same dimension, a natural question is
to ask whether M dominates N , i.e. whether there exists a continuous map M −→ N of non-zero
degree. The interest in the ensuing transitive relation between homotopy types of manifolds goes
back at least to the late 1970’s [MiT–77, Gro–82, CaT–89].

There are several known necessary conditions forM to dominateN , some elementary, and some
not. On the elementary side, if there exists an f : M −→ N of non-zero degree, then f ∗ injects
the rational cohomology ring of N into that of M , in particular the Betti numbers of M are at
least as large as the Betti numbers of N , and f∗ surjects π1(M) onto a finite index subgroup of
π1(N); see [Hop–30], Satz I1 resp. § 6. Non-elementary obstructions to domination often arise
from geometric considerations, for example through the use of harmonic maps [CaT–89], or the
application of asymptotic invariants of manifolds, such as the simplicial volume [Gro–82] or the
minimal volume entropy [BCG–95].

The subject of the present paper is motivated by a particular case of the domination question.
See [Gro–99, Page 304], where Gromov discusses the issue of representing even-degree homology
classes by products of surfaces, and [KoL–09].

Question 1.1. For a given connected closed oriented n-manifold N , does there exist a non-trivial
direct product M = M1 ×M2 of dimension n which dominates N ?

The answer is easy in dimension two: Σg dominates Σh if and only if g ≥ h, where Σg denotes
the closed orientable connected surface of genus g; in particular Σh is dominated by a non-trivial
product (i.e. by the two-torus) if and only if h = 0 or h = 1. An answer is also known in dimension
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three; see [KoN–13]. Simple general answers cannot be expected in higher dimensions, but partial
results are contained in [KoL–09, KoL–13, Neo–14].

Before formulating another answer, it is convenient to introduce two definitions. The first one
originates in [Gro–82, Gro–83].

Definition 1.2. Let N be a closed oriented connected manifold of dimension n. Denote by [N ] ∈
Hn(N,Q) its fundamental class, by Γ its fundamental group, by c : N −→ B Γ the classifying map
of the universal covering, and by cn the induced map on the rational homology groups Hn(−,Q).
The manifold N is said to be rationally essential if cn([N ]) 6= 0 in Hn(B Γ,Q).

The obvious examples of rationally essential manifolds are the aspherical ones, i.e. manifolds
with contractible universal covering. Other examples include manifolds with non-zero simplicial
volume [Gro–82, Corollary B, Section 3.1], manifolds satisfying suitable enlargeability conditions
in the sense of Gromov–Lawson [HKRS–08], and manifolds that have non-zero degree maps onto
rationally essential manifolds, in particular connected sums with a rationally essential summand
[Gro–83, Page 3].

The next definition is from [KoL–09]:

Definition 1.3. Let Γ be an infinite group. A presentation of Γ by a product is a homomorphism
ϕ : Γ1 × Γ2 −→ Γ, where Γ1,Γ2 are two groups, such that ϕ(Γ1 × {1}), ϕ({1} × Γ2) are infinite
and ϕ(Γ1 × Γ2) is of finite index in Γ. The group Γ is presentable by a product if there exists
such a homomorphism.

Clearly, an infinite group Γ is presentable by a product if and only if there exist two commuting
infinite subgroups of Γ whose union generates a subgroup of finite index. Note that the images of
Γ1 and Γ2 need not have trivial intersection, indeed need not be distinct; for example, ϕ : Z×Z −→
Z, (m,n) 7−→ m+ n, shows that an infinite cyclic group is presentable by a product.

Example 1.4. We collect here some basic examples for this notion. Recall that a group Γ is
virtually another group ∆ if it has a finite index subgroup isomorphic to ∆.

(1) A group with an infinite centre is presentable by a product.
(2) Let Γ be an infinite group in which every subgroup of finite index has trivial centre. Then

Γ is presentable by a product if and only if Γ is virtually a direct product of two infinite
groups [KoL–09, Proposition 3.2].

(3) Presentability by products is invariant under passage to finite index subgroups [KoL–09,
Lemma 3.4].

(4) A free product Γ1 ∗ Γ2 of two non-trivial groups is presentable by a product if and only if
both factors are of order two; see [KoL–13, Corollary 9.2].

(5) An infinite Gromov hyperbolic group is not presentable by a product, unless it is elemen-
tary, i.e. unless it has an infinite cyclic subgroup of finite index; see [KoL–09, Theorem
1.5].

(6) Infinite simple groups are not presentable by products.
The references given for (2), (3) and (4) deal with countable groups only, but the arguments carry
over to the general case.

The following result, Theorem 1.4 in [KoL–09], is an attempt to answer Question 1.1 for ratio-
nally essential manifolds.

Theorem 1.5. Let N be a rationally essential closed oriented manifold. If N is dominated by a
non-trivial product M1 ×M2, then its fundamental group π1(N) is presentable by a product.
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The proof of this theorem is essentially a diagram chase using the universal properties of clas-
sifying maps, and it gives a presentation of π1(N) by a product in which the groups Γ1 and Γ2

are (the images of) π1(M1) and π1(M2). In particular, since the Mi are compact manifolds, the Γi
are finitely generated. Therefore, the conclusion of Theorem 1.5 can be strengthend: not only is
π1(N) presentable by a product, it is presentable by a product of finitely generated groups.

Overview. In this paper we discuss presentability by products for several classes of groups, and
we often consider arbitrary groups which need not be finitely generated, and not even countable.
However, because of the (strengthening of the) theorem above, for finitely generated groups pre-
sentable by products it is an interesting question whether the factors in a presentation by a product
can be taken to be finitely generated. We will show in Section 2 that there are indeed examples of
finitely generated groups that are presentable by products, but the factors cannot both be chosen to
be finitely generated (Theorem 2.1).

In Section 3 we introduce the Schreier property for groups, which is motivated by Schreier’s
classical theorem [Sch–27] on finitely generated subgroups of free groups. The main new result
is that one-ended groups with the Schreier property are not presentable by products of finitely
generated groups (Theorem 3.4).

In Section 4 we discuss necessary and sufficient conditions for groups in some classes to be
presentable by products. More precisely, let Γ be a finitely presented infinite group. If Γ is of
virtual cohomological dimension at most 2, it is presentable by a product if and only if it is virtually
either infinite cyclic or isomorphic to a product of free groups Fk × F` with k, ` ≥ 1. If Γ is of
positive deficiency, Γ is presentable by a product if and only if it is virtually either infinite cyclic
or Fk × Z with k ≥ 1 (Theorems 4.2 and 4.5).

In Section 5 we show that Zariski dense subgroups of suitable algebraic groups (over fields of
characteristic 0) are not presentable by products.

Section 6 contains applications to Baumslag-Solitar groups, to fundamental groups of three-
manifolds, and to Coxeter groups.

2. FINITE GENERATION OF THE FACTORS IN PRESENTATIONS BY PRODUCTS

Let Γ1 and Γ2 be subgroups of Γ that commute and generate Γ. Then the intersection Γ1 ∩ Γ2 is
in the centre of Γ. Moreover, the Γi are normal in Γ and we have exact sequences

1 −→ Γ1 −→ Γ −→ Γ2/(Γ1 ∩ Γ2) −→ 1 ,

1 −→ Γ1 ∩ Γ2 −→ Γ2 −→ Γ2/(Γ1 ∩ Γ2) −→ 1 ,

and similarly with the roles of Γ1 and Γ2 reversed.
If we assume Γ to be finitely generated, the first sequence shows that the quotient Γ2/(Γ1 ∩ Γ2)

is finitely generated. Now if, in addition, the intersection Γ1 ∩ Γ2 is finitely generated, then the
second sequence shows that Γ2 is finitely generated. We conclude that if Γ is finitely generated
and has finitely generated centre, then, in every presentation by a product, the two factors Γ1 and
Γ2 are also finitely generated.

If we have a finitely generated Γ whose centre is not finitely generated, but contains an element
of infinite order, then this element generates a central infinite cyclic subgroup Γ1 ⊂ Γ, and we can
take Γ2 = Γ to obtain a presentation of Γ by a product of finitely generated groups. Therefore, the
only finitely generated groups that are candidates for being presentable by products, but never with
finitely generated factors Γi, are groups whose centre is an infinitely generated torsion group.
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Using a construction of Hall [Hal–61] and Abels [Abe–77], we can indeed produce such exam-
ples.

Theorem 2.1. There exists a finitely generated group Γ that is presentable by products, but in every
such presentation at least one of the factors Γi is not finitely generated.

Proof. Let p be a prime number. We denote by A3 the group of matrices of the form1 x z
0 u y
0 0 1

 with x, y, z ∈ Z[1/p], u ∈ Z[1/p]× .

This group is finitely generated [Abe–77, AbB–87]. Its centre consists of the matrices satisfying
u = 1 and x = y = 0. Therefore, the centre is isomorphic to the additive group (Z[1/p],+) via
the map that sends a matrix to its upper-right-hand entry z. In particular, the centre is not finitely
generated.

The infinite cyclic group (Z,+) is embedded in the centre of A3 as the elements for which
z ∈ Z. Define Γ = A3/Z for this central embedding Z ⊂ A3. Then Γ is finitely generated because
A3 is, and the centre of Γ is isomorphic to the additive group Z[1/p]/Z, i.e. an abelian torsion
group that is not finitely generated.

Since Γ has infinite centre C(Γ), it is presentable by the product C(Γ)× Γ.
Next, let Γ1 and Γ2 be a pair of commuting infinite subgroups in Γ for which the multiplication

ϕ : Γ1 × Γ2 −→ Γ has image of finite index in Γ. If the intersection Γi ∩ C(Γ) has finite index
in Γi, then it is infinite. As an infinite subgroup of the abelian torsion group C(Γ) it cannot be
finitely generated, and so Γi is also not finitely generated. Thus, the only possibility for both Γi to
be finitely generated is for Γi ∩ C(Γ) to be of infinite index in Γi for both i = 1 and i = 2. In this
case the images of the Γi in Γ/C(Γ) are both infinite, and of course they commute and generate a
subgroup of finite index, leading to the conclusion that Γ/C(Γ) is presentable by a product. The
proof of the theorem is therefore completed by the next lemma. �

Lemma 2.2. The group Γ/C(Γ) is not presentable by products, where Γ = A3/Z as in the previous
proof.

Proof. This is an application of Proposition 3.2 in [KoL–13], where it was proved that groups
containing infinite acentral subgroups of infinite index are not presentable by products. A subgroup
G of a group H is acentral if, for every g ∈ Gr {1}, the centralizer CH(g) is contained in G.

In the present case, we choose for the subgroup G of Γ/C(Γ) the image of the subgroup of
diagonal matrices in A3. Every g 6= e ∈ G is represented by a matrix of the form1 0 0

0 ±pn 0
0 0 1

 with n ∈ Z \ {0} .

If a matrix in A3 represents an element of the centralizer of g in Γ/C(Γ), then a straightforward
check shows that in that matrix x = y = 0. Therefore, the image of that matrix in Γ/C(Γ) lies in
G. Hence G is an infinite acentral subgroup of infinite index in Γ/C(Γ). �

3. SCHREIER GROUPS

In 1927, Schreier [Sch–27] proved that every finitely generated non-trivial normal subgroup of
a free group has finite index. The result was extended to surface groups of genus at least two by
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Griffiths [Gri–63], to non-trivial free products by Baumslag [Bau–66], and to some free products
with amalgamation by Karrass and Solitar (see [KaS–73] and the references given there). These
results motivate the following definition.

Definition 3.1. A group is a Schreier group, or has the Schreier property, if every finitely gen-
erated normal subgroup is either finite or of finite index.

The following definition appears in [KaS–73]: a group has the finitely generated normal property
if all its non-trivial finitely generated normal subgroups are of finite index. The groups mentioned
above, from papers by Schreier and others, do not have non-trivial finite normal subgroups at all,
and have the finitely generated normal property. But we insist that a Schreier group may have non-
trivial finite normal subgroups. The definition of [KaS–73] was rediscovered in [Cat–03], where
the results of Schreier and Griffiths are reproved, without any reference to the earlier literature.

Before listing some examples of Schreier groups, we record the following.

Lemma 3.2. Let Γ be a group.
(1) Let Γ0 be a subgroup of finite index in Γ. Then Γ0 is a Schreier group if and only if Γ is.
(2) Let F be a finite normal subgroup in Γ. Then Γ/F is a Schreier group if and only if Γ is.

Proof. All implications are straightforward. Let us write the details of part of (2), and leave it
to the reader to check the other implications. We assume that Γ/F has the Schreier property, we
consider a normal finitely generated infinite subgroup N of Γ, and we have to show that the index
of N in Γ is finite.

Inside Γ/F , the quotient N/(F ∩ N) is a subgroup which is normal, finitely generated, and
infinite. Since Γ/F has the Schreier property, N/(F ∩N) is of finite index in Γ/F . It follows that
N is of finite index in Γ. �

Example 3.3. Here are some examples of groups with the Schreier property.
(1) Two-ended groups are virtually infinite cyclic, and therefore have the Schreier property.
(2) Every irreducible lattice Γ in a connected semi-simple Lie group with finite centre and real

rank ≥ 2 has the Schreier property by the Margulis normal subgroup theorem. (There is
a much stronger result in [Mar–91, Chap. 4, Section 4].) Note that the Margulis theorem
implies more: every normal subgroup Γ either is finite or has finite index, and is therefore
finitely generated a posteriori.

(3) Every finitely generated group with positive first `2-Betti number is a Schreier group by a
result of Gaboriau [Gab–02], generalizing the work of Lück [Luc–97]. This class of groups
encompasses the original cases considered by Schreier and Griffiths, and many others, such
as groups with infinitely many ends, groups with deficiency ≥ 2, and non-abelian limit
groups in the sense of Sela.

While the Schreier property arises naturally in other contexts, for example in the study of Kähler
groups, compare [Cat–03, Kot–12], our interest in it here stems from the following result.

Theorem 3.4. A finitely generated group with the Schreier property is presentable by a product of
finitely generated groups if and only if it is virtually infinite cyclic, equivalently, if it is two-ended.

Proof. Clearly every two-ended group is presentable by a product and has the Schreier property,
cf. Example 3.3(1). Conversely, let Γ be a finitely generated group with the Schreier property that
is presentable by a product of finitely generated infinite subgroups Γ1 and Γ2. After replacing Γ by
a finite index subgroup, denoted again by Γ, we may assume that the multiplication Γ1×Γ2 −→ Γ
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is surjective. It follows that the Γi are normal in Γ. Since they are finitely generated, the Schreier
property implies that they are of finite index in Γ. Therefore the intersection Γ1∩Γ2 is also of finite
index in Γ, and since Γ1 ∩ Γ2 is central we conclude that Γ is virtually abelian. We pass to a finite
index abelian subgroup. Since this is infinite, finitely generated, and has the Schreier property, its
rank is one, and so Γ is virtually infinite cyclic. �

In view of Examples 3.3(2) and 3.3(3), Theorem 3.4 is a common generalization of Proposi-
tions 4.1 and 8.1 in [KoL–13]. One point of this generalization is that it is likely that other criteria
will emerge in the future that guarantee the Schreier property, other than the positivity of the first
`2-Betti number. In special cases it is already known that positivity of the rank gradient (in the
sense of Lackenby), or cost strictly larger than 1 (in the sense of Levitt and Gaboriau) imply the
Schreier property; compare with Proposition 13 in [AbN–12].

Several proofs were given in [KoL–13] for the fact that groups with infinitely many ends are not
presentable by products. The new content of Theorem 3.4 is in showing that one-ended groups
with the Schreier property are not presentable by products of finitely generated groups.

4. GROUPS OF COHOMOLOGICAL DIMENSION A MOST TWO

The cohomological dimension cd(Γ) of a group Γ is the maximum (possibly∞) of the integers
n such that Hn(Γ, A) 6= 0 for some Z[Γ]-module A.

Example 4.1. Here are two classes of basic examples:
(1) Surface groups are of cohomological dimension 2. More generally, by Lyndon’s theorem,

torsion-free one-relator groups are of cohomological at most 2; cf. [Bie–81, Theorem 7.7].
(2) Torsion-free fundamental groups of compact three-manifolds with non-empty non-spherical

boundaries are of cohomological dimension at most 2. In particular, groups of non-trivial
knots are of cohomological dimension 2.

The next theorem is a consequence of results of Bieri [Bie–76, Bie–81].

Theorem 4.2. An infinite finitely presented group Γ of virtual cohomological dimension at most
two is presentable by a product if and only if it is either virtually infinite cyclic or virtually Fk×Fl
with k, l ≥ 1.

As usual, Fk denotes a free group on k generators; note that F1 = Z.

Proof. If Γ is of virtual cohomological dimension at most 2 we replace it by a finite index subgroup
that is of actual cohomological dimension at most 2. This does not affect presentability by products
as recalled in Example 1.4.

Our discussion of groups of cohomological dimension 2 is based on the results of Bieri first
published in [Bie–76]. We shall use the more leisurely and polished [Bie–81] as our reference.

Suppose Γ is a non-trivial finitely presented group of cohomological dimension at most 2. Then
Γ is torsion-free. The cohomological dimension is invariant under further passages to subgroups
of finite index by Serre’s theorem, cf. [Bie–81, Theorem 5.11]. Thus we may freely replace Γ by
subgroups of finite index as needed.

Let Γ1, Γ2 ⊂ Γ be commuting infinite subgroups so that the multiplication

ϕ : Γ1 × Γ2 −→ Γ

is surjective. (Here we already tacitly pass to a subgroup of finite index to get surjectivity.)
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If Γ1 ∩ Γ2 is trivial, then ϕ is an isomorphism by [KoL–09, Lemma 3.3]. It follows that both
Γi are finitely presented and of cohomological dimension at most 2. Since both Γi are normal and
of infinite index in Γ, they are free by a result of Bieri [Bie–81, Corollary 8.6]. Thus ϕ−1 is an
isomorphism between Γ and Fk × F` for some k, ` ≥ 1.

If Γ1 ∩ Γ2 is non-trivial, then it is infinite since Γ is torsion-free. Moreover, Γ1 ∩ Γ2 is in the
centre of Γ by [KoL–09, Lemma 3.3]. Thus Γ1 ∩ Γ2 is free abelian of rank one or two. If the rank
is two, then Γ is abelian and itself isomorphic to Z2 by [Bie–81, Corollary 8.9]. If Γ1 ∩ Γ2 = Z,
then another result of Bieri [Bie–81, Corollary 8.7] shows that the quotient of Γ by the central
subgroup Γ1 ∩Γ2 is virtually a finitely generated free group. Passing to a finite index subgroup we
may assume that the quotient is free, and then, passing to a finite index subgroup once more, we
see that the central extension

1 −→ Z −→ Γ −→ Fk −→ 1,

splits.
We have now proved that if a finitely presented group Γ of cohomological dimension ≤ 2 is

presentable by a product, then it is virtually Fk × F` for some k, ` ≥ 0, but not both = 0. If
either k or ` vanishes, then Γ is virtually free. Since it is presentable by a product, it is virtually Z
(see Example 1.4). Thus, our conclusion is that Γ is virtually infinite cyclic, or virtually a product
Fk × F` with both k, ` ≥ 1. Conversely, every group of this form is presentable by products. This
completes the proof of Theorem 4.2. �

We now apply Theorem 4.2 to groups of positive deficiency. The deficiency of a finitely pre-
sented group Γ is the maximum def(Γ) over all presentations of the difference of the number of
generators and the number of relators (this maximum is finite, by [Eps–61, Lemma 1.2]).

Example 4.3. Here are some basic examples:
(1) For non-abelian free groups: def(Fk) = k.
(2) def(Γ) = m− 1 for a group Γ having a presentation with m generators and one non-trivial

relation [Eps–61, Lemma 1.7].
(3) Groups of classical knots have deficiency 1. More generally, def(π1(M))) ≥ 1 for every

oriented connected compact three-manifold M with non-empty non-spherical boundary
[Eps–61, Lemma 2.2].

(4) By (2) above, an orientable surface group of genus g has deficiency 2g− 1. This still holds
for orbifold groups of genus g by [Kot–12, Lemma 2], although these are not one-relator
groups in general.

The deficiency has the following relationship to the first `2-Betti number β1.

Proposition 4.4 ([Hil–97]). For every finitely presented group Γ, we have

(*) def(Γ) ≤ 1 + β1(Γ) .

If equality holds, then the presentation complex of a presentation realizing the deficiency is aspher-
ical.

The inequality (*) has been part of the folklore for a long time, and is a special case of the Morse
inequalities in the `2 setting. For the case of equality we refer to the paper by Hillman [Hil–97].

Theorem 4.5. An infinite finitely presented group Γ of positive deficiency is presentable by a prod-
uct if and only if it is either infinite cyclic or virtually Fk×Z with k ≥ 1. If one of these conditions
holds, then the deficiency of Γ is 1.
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Proof. If Γ is presentable by a product, then β1(Γ) = 0 by [KoL–13, Proposition 4.2]. It follows
that the deficiency is at most 1, and since we assume positive deficiency and presentability by
products, we only have to consider groups Γ of deficiency = 1 with equality in (*). The character-
ization of the equality case by Hillman [Hil–97] tells us that the cohomological dimension of Γ is
at most 2, and so Theorem 4.2 is applicable. Moreover, Γ must be torsion-free.

If Γ is virtually infinite cyclic, then, since it is torsion-free, it is itself infinite cyclic. If Γ is not
virtually infinite cyclic, then by Theorem 4.2 it is virtually Fk × F` with both k, ` ≥ 1. If both
k, ` ≥ 2 then the Morse inequality and the Künneth formula give us

def(Fk × F`) ≤ b1(Fk × F`)− b2(Fk × F`) = k + `− k` ≤ 0

(where br(−) := dim(Hr(−,Q) denotes a Betti number). Thus Γ has a finite index subgroup
of non-positive deficiency. This contradicts def(Γ) = 1, since if Γ has a presentation with a
generators and b relations, then, by the Reidemeister–Schreier process, a subgroup Γ̄ ⊂ Γ of index
d has a presentation with ā = (a− 1)d+ 1 generators and b̄ = bd relations. Therefore

def(Γ̄) ≥ ā− b̄ = (a− b− 1)d+ 1 ≥ 1

because we may take a− b = 1. Thus we conclude that Γ is virtually Fk × Z with k ≥ 1.
Conversely, both Z and every group Γ that is virtually Fk × Z with k ≥ 1 are presentable by

products. Moreover, it is easy to see that Z and Fk × Z with k ≥ 1 are both of deficiency = 1. By
the above argument, every group that is virtually Fk × Z has deficiency at most 1. �

Remark 4.6. As pointed out to us by the anonymous referee, the groups appearing in the con-
clusion of Theorem 4.5, i.e. the groups that are torsion-free and virtually Fk × Z for some k, are
well understood from several points of view; see for example [Kro–90, Lev–15] and the references
given there. They are the so-called unimodular generalized Baumslag-Solitar groups. We will dis-
cuss the special case of Baumslag-Solitar groups (rather than generalized ones) in Subsection 6.A
below.

5. ZARISKI DENSE SUBGROUPS OF ALGEBRAIC GROUPS

When a group Γ is naturally a subgroup of a larger group G, e.g. a Lie group or an algebraic
group of some sort, properties of Γ can often be deduced from properties of G. Theorems 5.3
and 5.8 below are illustrations of this for presentability by products. Before stating them, we need
some preliminaries.

Let k be a field, given as a subfield of an algebraically closed field K. Let gK be a Lie algebra
overK. A k-form of gK is a Lie algebra gk over k given together with an isomorphism gk⊗kK

'−→
gK . A k-Lie algebra is a Lie algebra over K given together with a k-form. Let G be a linear
algebraic k-group. We denote by G(k) the group of k-points of G, and by g its Lie algebra,
viewed as a k-Lie algebra.

Definition 5.1. (1) A connected linear algebraic k-group G is presentable by a product if there
exist two commuting connected closed k-subgroups G1,G2 of G of positive dimensions such that
the multiplication homomorphism µ : G1 ×G2 −→ G, (g1, g2) 7−→ g1g2 is onto.

Note that if G1,G2 are as above, then they are normal subgroups of G, both non-trivial, and
each of them is contained in the centralizer of the other.

(2) A k-Lie algebra g is presentable by a product if there exist two commuting subalgebras
g1, g2 of g of positive dimensions such that the homomorphism g1 × g2 −→ g, (X1, X2) 7−→
X1 +X2 is onto.
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Note that if g1, g2 are as above, then they are non-zero ideals in g, and each one is contained in
the centralizer in g of the other.

From now on, we will systematically assume that the characteristic of the ground field is zero.
This has useful consequences for our purpose:

Theorem 5.2. Let k be a field of characterisitic zero, G a connected linear algebraic k-group, and
g its Lie algebra.

(1) G(k) is infinite if and only if the dimension of G is positive.
(2) If g is not presentable by a product, then G is not presentable by a product.

Proof. For (1), which holds more generally over perfect fields, see e.g. [Spr–09, Corollary 13.3.10].
Note that there are counter-examples in (non-perfect) fields of positive characteristic [Oes–84,
Th. 3.1 of Chap. 6, Page 65].

For (2), we check the contraposition. Assume that there exist G1,G2 and µ as in Definition 5.1.
For j ∈ {1, 2}, denote by gj the Lie algebra of Gj; since Gj is normal in G, it is a Lie ideal in g.
The differential g1 × g2 −→ g of µ at the identity is a presentation of g by a product. �

The following theorem is a variation on [CoH–07, Proposition 3].

Theorem 5.3. Let k be a field of characteristic zero, and G an algebraic k-group of positive
dimension. Assume that G is connected, and is not presentable by a product. Then every Zariski
dense subgroup of G(k) is not presentable by a product.

In the situation of Theorem 5.3, observe that G(k) is Zariski-dense in itself, and therefore is not
presentable by a product as an abstract group.

Since Theorem 5.3 applies to algebraic k-groups of which the Lie algebras are not presentable
by a product, we indicate first some Lie algebras of this kind. If a is an ideal in a Lie algebra g, we
denote by zg(a) its centralizer {Y ∈ g | [Y,X] = 0 ∀X ∈ a}.

Example 5.4. Let k be a field of characteristic 0. Examples of Lie algebras over k which are not
presentable by a product include:

(1) The non-abelian soluble Lie algebra af of dimension 2, with basis {e, g} such that [g, e] =
e, also called the Lie algebra of the “ax+ b group”, or affine group of the line.
Indeed, the only non-zero ideals of af are ke and af itself, and their centralizers in af are
zaf(ke) = ke and zaf(af) = {0}. It follows that there cannot exist two subalgebras of af as
in Definition 5.1.

(2) The 3-dimensional Lie algebra sol, with basis {e, f, g} such that [g, e] = e, [g, f ] = −f ,
[e, f ] = 0, i.e. the Lie algebra of the group Sol(k), consisting of matrices of the forma 0 b

0 a−1 c
0 0 1

 with a ∈ k× and b, c ∈ k.

Indeed, it is easy to check that the complete list of non-zero ideals of sol contains exactly
four items: sol itself, the two-dimensional derived algebra [sol, sol] = ke ⊕ kf (which is
maximal abelian), and the two one-dimensional ideals ke and kf . Their centralizers in sol
are {0} for the first and [sol, sol] for the three others. It follows again that there cannot
exist two subalgebras of sol as in Definition 5.1.

(3) Simple Lie algebras.
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(4) Semi-direct products V r o g, where V is a finite dimensional k-vector space, g a simple
Lie subalgebra of gl(V ) acting irreducibly on V , and r a positive integer; the space V r =
V ⊕ · · · ⊕ V (with r factors) is considered as an abelian Lie algebra on which g acts by the
restriction of the natural diagonal action of gl(V ) on V r.
Indeed, every non-zero ideals of V r o g is either the full Lie algebra, with centre {0}, or a
g-invariant subspace of V r, with centralizer V r. The conclusion follows as in (1) and (2)
above. A particular case of this example appears in Proposition 6.7.

By Theorems 5.2 and 5.3, the previous examples for Lie algebras provide the following exam-
ples for groups.

Example 5.5. The following groups are not presentable by products.

(1) Let G =

(
R× R
0 1

)
be the real affine group, or more precisely the group of real points

of the appropriate algebraic group. Observe that G is centreless, of dimension 2. As an
algebraic group, it is connected, even if, as a real Lie group, its connected component(
R×+ R
0 1

)
is of index two. The group G is not presentable by a product, by Example

5.4(1).
For every n ∈ Z with |n| ≥ 2, the soluble Baumslag-Solitar group BS(1, n) = 〈a, t |

tat−1 = an〉 is isomorphic to a Zariski dense subgroup of G:

BS(1, n) ≈
(
nZ Z[1/n]
0 1

)
⊂
(
R× R
0 1

)
= G.

It follows that BS(1, n) is not presentable by a product. For all Baumslag-Solitar groups
(soluble or not), see Theorem 6.1 below.

(2) Every Zariski dense subgroup in the 3-dimensional solvable Lie group Sol = Sol(R) is
not presentable by a product, by Example 5.4(2). This recovers the case of lattices proved
in Corollary 3.7 of [KoL–13]. Lattices are Zariski dense by a version of the Borel density
theorem proved for example as Corollary 1.2 in [Sha–99].

(3) For every n ≥ 2, the lattices SLn(Z) and Spn(Z) are Zariski dense in SLn(R) and Spn(R)
respectively, and consequently are not presentable by products by Example 5.4(3).

This carries over to every subgroup of SLn(R) containing SLn(Z), such as SLn(Z[1/d]),
for an integer d ≥ 2, or SLn(Z[

√
d]), for a squarefree integer d ≥ 2; and similarly for

subgroups of Spn(R) containing Spn(Z).
The same holds for non-elementary Fuchsian groups, which are Zariski dense in PSL2(R),

and non-elementary Kleinian groups, which are Zariski dense in PSL2(C).
(4) For every n ≥ 2 and r ≥ 1, the group (Zn)roSLn(Z) is Zariski-dense in (Rn)roSLn(R),

and consequently is not presentable by a product by Example 5.4(4). Here SLn(R) acts
naturally on Rn, and diagonally on (Rn)r.

Conclusions similar to those of Theorem 5.3 carry over to some situations where G is an almost
direct product, see Theorem 5.8 below. First we recall some background; see e.g. in [BoT–65],
Items 0.6-0.7 for (1) to (3), and 2.15 for (5) (and therefore (4)).

Background 5.6. Let k be a field of charactersitic 0 and G a linear algebraic k-group. Assume
that G is connected of positive dimension.
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(1) Let G1, . . . ,Gr be closed normal k-subgroups of G. Then G is the almost direct product
of G1, . . . ,Gr if the product map G1 × · · · ×Gr −→ G is surjective with finite kernel.
The group G is a non-trivial almost direct product if this happens for some r-uple of
closed normal k-subgroups of positive dimensions, with r ≥ 2.

(2) The group G is semisimple if it does not contain any non-trivial connected solvable normal
subgroup.

(3) The group G is almost k-simple if every closed normal subgroup of G distinct from G is
finite.

Assume moreover from now on that G is semisimple.
(4) The group G is the almost direct product of its minimal closed connected normal k-

subgroups of positive dimensions. These are called the almost simple factors of G.
(5) More generally, let H be a closed connected normal subgroup of G(k). Let G1, . . . ,Gs

be the almost simple factors of G such that Gi(k) ⊂ H for i = 1, . . . , s. Then H is the
group of k-points of a connected k-subgroup H of G which is the almost direct product of
G1, . . . ,Gs.

The notion of irreducibility is standard for lattices in semisimple connected groups, see e.g.
[Rag–72, 5.20 & 5.21] and [Mar–91, Page 133]. For Zariski dense subgroups of algebraic groups,
it can be extended as follows:

Definition 5.7. Let k be a field of characteristic 0 and G a semisimple connected algebraic k-group
of positive dimension. A Zariski dense subgroup Γ of G(k) is reducible if there exist normal k-
subgroups G1,G2 of G of positive dimensions such that

(1) G1(k)G2(k) = G(k),
(2) G1(k) ∩G2(k) is finite,
(3) the subgroup (Γ ∩G1(k))(Γ ∩G2(k)) is of finite index in Γ;

and Γ is irreducible otherwise.

The next theorem generalizes Proposition 8.1 of [KoL–13].

Theorem 5.8. If k is a field of characteristic zero, and G a semisimple connected algebraic k-
group of positive dimension, then every irreducible Zariski dense subgroup of G(k) is not pre-
sentable by a product.

Lemma 5.9. Let k be a field of chracteristic zero, G a connected algebraic k-group of positive
dimension, and Γ a Zariski dense subgroup of G(k). Let Γ1,Γ2 be two groups and f : Γ1×Γ2 −→
Γ a homomorphism with image of finite index. Denote by G1 the Zariski closure of f(Γ1 × {1}),
by G2 that of f({1}×Γ2), and by G0

1,G
0
2 their connected components; note they are k-subgroups

of G.
Then G0

1, G0
2 are closed normal k-subgroups of G, each one in the centralizer of the other, and

G0
1G

0
2 = G.

Proof. On the one hand, G1G2 is closed in G, as the image of the morphism

µ : G1 ×G2 −→ G, (g1, g2) 7−→ g1g2,

see [Bor–91, 1.4(a) Page 47]. On the other hand,

[G1,G2] = {1},
11



because [
f(Γ1 × {1}), f({1} × Γ2)

]
= [f(Γ1 × {1}), f({1} × Γ2)] = {1},

see [Bor–91, 2.4 Page 59]; in particular, G2 [respectively G1] is in the centralizer in G of G1

[respectively G2].
It follows that G1G2 is a subgroup of G. Since G is connected and f(Γ1×Γ2) is of finite index

in the Zariski-dense subgroup Γ, the image f(Γ1×Γ2) = f(Γ1×{1})f({1}×Γ2) is Zariski-dense
in G. Hence G1G2 = G. Moreover, G1,G2 are normal in G.

In algebraic groups, connected components are characteristic subgroups [Bor–91, 1.4(b) Page
47]. Hence G0

1,G
0
2 are normal subgroups in G. Using again the connectedness of G, we conclude

that G0
1G

0
2 = G. �

For the proofs of Theorems 5.3 and 5.8, we use the same notation, G1, G2, G0
1, G0

2 as in the
proof of Lemma 5.9.

Proof of Theorem 5.3. We prove the contraposition. Suppose there exist a Zariski dense subgroup
Γ of G(k) and a presentation by a product f : Γ1 × Γ2 −→ Γ. This is the situation of the
previous lemma, with moreover f(Γ1×{1}), f({1}×Γ2) infinite, therefore with G0

1,G
0
2 of positive

dimensions. Hence the multiplication G0
1 ×G0

2 −→ G, (g1, g2) 7−→ g1g2 is a presentation by a
product, so that G is presentable by a product in the sense of Definition 5.1. �

Proof of Theorem 5.8. If G is almost k-simple, Theorem 5.8 is covered by Theorem 5.3. We can
therefore assume that there exist an integer t ≥ 2 and almost simple factors H1, . . . ,Ht of G such
that G is the almost direct product of these.

We again prove the contraposition. Let Γ be a Zariski dense subgroup of G and f : Γ1 ×
Γ2 −→ Γ a presentation by a product. Let G0

1, G
0
2 be as in the previous proof. By 5.6, upon

reordering the Hj , we can assume that G0
1 = H1 · · ·Hs and G0

2 = Hs+1 · · ·Ht for some integer
s ∈ {1, . . . , t−1}. The group f(Γ1×{1})∩G0

1(k) is of finite index in f(Γ1×{1}), and similarly
for f({1} × Γ2) ∩G0

2(k) in f({1} × Γ2). Hence (Γ ∩G0
1(k))(Γ ∩G0

2(k)) is of finite index in Γ,
and therefore Γ is reducible. �

Example 5.12 below is covered by Theorem 5.8, but not by Theorem 5.3. We first record some
remarks concerning the notion of irreducibility for Zariski dense subgroups, as defined in 5.7.

Remark 5.10. (1) Let k be a field of characteristic 0 and G a semisimple algebraic k-group of
positive dimension. Let Γ,∆ be two Zariski dense subgroups of G(k) such that ∆ is a subgroup
of finite index in Γ. Then ∆ is irreducible if and only if Γ is irreducible.

(2) Assume that k = R. Let G be a Lie group of which the connected component is semisimple
without compact almost simple factor. Assume moreover thatG is linear, and thatG is the group of
real points of a connected algebraic R-group G. Let Γ be a lattice inG = G(R). Then Γ is Zariski
dense in G, by the Borel density theorem [Bor–60]. The definitions are such that irreducibility of
Γ as a lattice in G in the usual sense [Rag–72] coincides with irreducibility of Γ in G in the sense
of Definition 5.7.

(3) In a connected algebraic group over a local field, a Zariski dense subgroup need not be a
lattice. Consider for example the field R, the algebraic R-group SL2, and a lattice Γg in SL2(R)
which is the fundamental group of an oriented closed surface of genus g ≥ 2; the group of com-
mutators of Γg is Zariski dense in SL2(R), but is not a lattice. For another class of examples,
the real affine group does not have any lattice (because it is a non-unimodular group), but all its
non-abelian subgroups are Zariski dense; see Example 5.5(1).
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We are grateful to Yves de Cornulier, who made us aware of the following lemma.

Lemma 5.11. Let k be a field of characteristic zero, S the group of k-points of a simple connected
algebraic k-group, with centre C(S), and Γ a Zariski-dense subgroup of S.

For every infinite normal subgroup N of Γ, the centralizer CΓ(N) of N in Γ is contained in
C(S). In particular, CΓ(N) is finite.

Proof. Denote by N
0

the connected component of the Zariski closure of N in S. Since N is
infinite, N

0 6= {1}. Since N is normal in Γ, the group N
0

is normal in S, hence it coincides with
S.

Let γ ∈ Γ. If γ commutes with every element of N , it commutes with every element of N .
Hence CΓ(N) ⊂ CΓ

(
N

0
(k)
)

= CΓ(S) ⊂ C(S). �

Example 5.12. Let Γ be an irreducible Zariski-dense subgroup of a semisimple connected alge-
braic k-group of the form G1 ×G2, with G1 and G2 simple. The following example shows (with
k = R) that Γ need not be commensurable to a Zariski-dense subgroup of G1 or of G2.

Let F be a Zariski-dense subgroup of SL2(R) which is non-abelian and free. Choose an epi-
morphism π : F � Z; observe that ker(π) is also Zariski-dense in SL2(R). Consider the direct
product G = SL2(R)× SL2(R) and the fibre product

Γ = {(x, y) ∈ SL2(R)× SL2(R) | π(x) = π(y)}.
Since Γ contains ker(π)×ker(π), it is a Zariski-dense subgroup ofG. Since Γ∩(SL2(R)×{1}) =
ker(π)× {1} and Γ ∩ ({1} × SL2(R)) = {1} × ker(π), and the index of ker(π)× ker(π) in Γ is
infinite, Γ is an irreducible Zarski dense subgroup of G. Hence Theorem 5.8 applies to Γ.

However Γ is not commensurable to any of its two projections on the factors SL2(R), by the
previous lemma. Indeed, Γ has an infinite normal subgroup N := ker(π) × {1}, and CΓ(N)
contains {1} × ker(π), in particular CΓ(N) is infinite.

Note that Γ is a subdirect product of free groups, i.e. is a member of a famous class of examples
studied among others by Bieri and Stallings. See for example Section 4.1 in [BrM–09].

6. A FEW SPECIFIC APPLICATIONS

In this section we apply the criteria for presentability by products developed in the previous
sections to a few classes of examples.

6.A. Baumslag-Solitar groups. Recall that, for two integers m, n ∈ Zr {0}, the corresponding
Baumslag-Solitar group is defined by the presentation

BS(m,n) = 〈s, t | tsmt−1 = sn〉.
This presentation has deficiency 1, and it follows that the group itself has deficiency 1, cf. [Eps–61,
Lemma 1.7].

Theorem 6.1. For m,n ∈ Z r {0}, the group BS(m,n) is presentable by products if and only if
|m| = |n|.
Proof. Since BS(n,m) and BS(m,n) are isomorphic, we may assume without loss of generality
that |m| ≤ |n|.

It is straightforward to check that BS(1, 1) is isomorphic to Z2, and BS(1,−1) is isomorphic
to the fundamental group of a Klein bottle; in particular, these groups have an infinite centre, and
are therefore presentable by products. More cases in which BS(m,n) is presentable by products
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are given by the following well-known proposition, for which we have not been able to find a
convenient reference; compare with [Sou–01, Lemma A.7]. (Proof continues after Lemma 6.3.)

Proposition 6.2. For m,n ∈ Z r {0} with |m| = |n| ≥ 2, the Baumslag-Solitar group BS(m,n)
has a subgroup of index 2|m| isomorphic to the direct product Z× F2|m|−1.

Proof. Since BS(−m,−n) and BS(m,n) are isomorphic, we assume that m ≥ 2, without loss of
generality. We write n = ηm, with η ∈ {1,−1}, and B = BS(m, ηm).

Let T be the subset {t, sts−1, s2ts−2, . . . , sm−1ts−m+1} of B. By the normal form theorem for
HNN-extensions, see e.g. [LyS–77, Section IV.2], the subgroup FI of B generated by T is free on
T , in particular is isomorphic to Fm. Denote by FII the subgroup of FI consisting of products of
an even number of the generators in T and their inverses; the group FII is free of rank 2m− 1.

Let ZS denote the subgroup of B generated by sm. It is an infinite cyclic group, and a normal
subgroup of B. Moreover, elements of ZS commute with elements of FII . Hence the subgroup of
B generated by sm and FII is the direct product ZS × FII . (If η = 1 then ZS is central in B and
the subgroup of B generated by sm and FI is the direct product ZS × FI ; but this does not hold
when η = −1).

Denote by Cm = 〈c | cm = 1〉 the cyclic group of order m, and by D = 〈d | d2 = 1〉 the group
of order 2. Define an epimorphism

π : B −→ Cm ×D by π(s) = (c, 1) and π(t) = (1, d).

It is straightforward that ZS×FII ⊂ ker(π). To end the proof, it suffices to check that ZS×FII =
ker(π).

Let g ∈ B. Using again the normal form theorem for HNN-extensions, we can write

g = sk0tε1sk1tε2sk2 · · · tε`sk`

for some k0 ∈ Z, ` ≥ 0, ε1, . . . , ε` ∈ {1,−1}, k1, . . . , k` ∈ {0, 1, . . . ,m− 1}, and thus also

g = sk0+k1+···+k`
(
s−k1−···−k`tε1sk1+···+k`

) (
s−k2−···−k`tε2sk2+···+k`

)
· · ·
(
s−k`−1−k`tε`−1sk`−1+k`

) (
s−k`tε`sk`

)
.

Since tsm = sηmt, we have

g = sj0
(
sj1ts−j1

)ε1 (sj2ts−j2)ε2 · · · (sj`ts−j`)ε`
for appropriate j0 ∈ Z and j1, . . . , j` ∈ {0, 1, . . . ,m− 1}.

Suppose now that g ∈ ker(π). Then j0 ∈ mZ and ` is even, hence g ∈ ZS × FII . �

We also need the following.

Lemma 6.3. Let Γ be a group that has a subgroup of finite index isomorphic to Fk × Z for some
k ≥ 2. Then Γ has a normal infinite cyclic subgroup.

Proof. Let ∆ be a subgroup of finite index in Γ isomorphic to the product of a free subgroup, on
free generators a1, . . . , ak, and of an infinite cyclic group, on a generator b, say ∆ = F〈a〉 × Zb.
Observe that Zb is the centre of ∆. Set N =

⋂
γ∈Γ γ∆γ−1; it is a normal subgroup of finite index

in Γ, contained in ∆. Let k be the smallest positive integer such that bk ∈ N ; then bk it a generator
of the cyclic group C := N ∩ Zb.

On the one hand, bk is in the centre of N , indeed in that of ∆. On the other hand, any element
in the centre of N commutes with appropriate powers of each of a1, . . . , am, and is therefore in C.
Hence C is the centre of N , and it follows that C is normal in Γ. �
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We can now complete the proof of Theorem 6.1. When |m| < |n|, we have two different
ways to see that BS(m,n) is not presentable by products. In a first argument we distinguish the
cases 1 = |m| < |n| and 1 < |m| < |n|. In the first case BS(m,n) is soluble, and is a Zariski
dense subgroup of the real affine group considered in Example 5.5(1). Thus, it is not presentable
by products by Theorem 5.3. In the second case BS(m,n) is a Powers group by Theorem 3
of [HaP–11], and is therefore not presentable by products by Proposition 5.1 of [KoL–13].

In a second argument we use Theorem 4.5. If BS(m,n) is presentable by products, then it has a
finite index subgroup isomorphic to Fk × Z for some k ≥ 1. If k = 1, i.e. if BS(m,n) is virtually
abelian, then |m| = |n| = 1. If k ≥ 2, then BS(m,n) has a normal infinite cyclic subgroup by
Lemma 6.3, and it follows that |m| = |n| by a result of Moldavanskii [Mol–91, Number 6.A].

Thus, as soon as |m| < |n|, we conclude that BS(m,n) is not presentable by products. This
completes the proof of Theorem 6.1. �

6.B. Three-manifold groups. We now discuss finitely presented fundamental groups of three-
manifolds.

Theorem 6.4. Let Γ be the fundamental group of some connected three-manifold. Assume that Γ
is infinite and finitely presented. Then Γ is presentable by a product if and only if it has a finite
index subgroup with infinite centre, equivalently if it is the fundamental group of a compact Seifert
fibre space, possibly with boundary.

This extends the corresponding statement for closed three-manifold groups proved in [KoN–13,
Theorem 8]. If the boundary of the Seifert fibre space is non-empty, it is a union of two-tori, cf.
[Sco–83, p. 430].

Proof. We refer the reader to Scott’s survey [Sco–83] for facts about Seifert fibre spaces used in
this proof.

Suppose Γ is an infinite finitely presented three-manifold group that is presentable by a product.
By a result of Jaco [Jac–71], finite presentability ensures that Γ = π1(M) for some compact three-
manifold M , possibly with boundary. Passing to an index two subgroup we may assume that M
is orientable. Since manifolds double covered by Seifert fibre spaces are themselves Seifert fibre
spaces, this does not affect the conclusion.

As M is orientable, so is its boundary (if it is not empty). Next, capping off an S2 in the
boundary of M by a three-ball does not change the fundamental group, so we may assume that M
does not have any spherical boundary components.

If M is closed, then the result was proved in [KoN–13, Theorem 8]. We may therefore as-
sume that M is compact with non-empty and non-spherical boundary. Now Epstein [Eps–61,
Lemma 2.2] proved that

def(π1(M)) ≥ 1− χ(M) = 1− 1

2
χ(∂M) .

Since the Euler characteristic of the boundary is non-positive, the deficiency of π1(M) is positive,
so that we can apply Theorem 4.5. We conclude that the deficiency is = 1, and so the boundary of
M consists of tori, and that Γ has a finite index subgroup with infinite centre. This means that M
is Seifert fibred; see [Sco–83, Wal–67].

Conversely, every group having a finite index subgroup with infinite centre is presentable by
products. �
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Remark 6.5. The case of a closed M treated in [KoN–13, Theorem 8] cannot be dealt with by
appealing to Theorem 4.5, since for a closed aspherical three-manifold the fundamental group has
deficiency 0, by another result of Epstein [Eps–61, Lemma 3.1].

Remark 6.6. In the above proof, to show that for non-Seifert manifolds the fundamental group is
not presentable by products, we distinguished between closed manifolds and those with non-empty
boundary. Instead, we could make a different distinction into cases and use different arguments
as follows. First of all, for Sol-manifolds the fundamental group is not presentable by products
by Corollary 3.7 of [KoL–13], reproved here in Example 5.5(2). Second of all, for a compact
three-manifold with infinite fundamental group which is neither a Sol nor a Seifert manifold the
fundamental group has the Powers property by Theorem 3 of [HaP–11], and is therefore not pre-
sentable by products by Proposition 5.1 of [KoL–13].

6.C. Coxeter groups. The result of this section singles out another consequence of Theorem 5.3.
It relies on [BeH–04], and is a variation on results contained in [CoH–07], as well as in [Par–07].

Let (W,S) be a Coxeter system; here, we always assume that the generating set S is finite. We
follow the terminology of [Bou–68]. Denote by

- ` the size of S;
- E the real vector space RS;
- BS the Tits form, which is a symmetric bilinear form on E associated to (W,S);
- ker(BS) the kernel {v ∈ V | BS(v, w) = 0 ∀ w ∈ V } of BS;
- Of(BS) the group of invertible linear transformations g ∈ GL(E) such that BS(gv, gw) =
BS(v, w) for all v, w ∈ E and gv = v for all v ∈ ker(BS);

- of(BS) its Lie algebra;
- σS : W −→ Of(BS) the geometric representation of W , which is known to be faithful

with discrete image (a theorem due to Tits, see § V.4 in [Bou–68]).

Let pB [respectively qB] denote the maximal dimension of a subspace of E to which the restriction
of BS is positive definite [respectively negative definite], and set rB = dim(ker(BS)); observe that
pB + qB + rB = `. We have a semi-direct product of the form

of(BS) ' (RpB+qB)rB o so(pB, qB).

In other terms, of(BS) isomorphic to the Lie algebra of matrices which can be written in bloc form

relatively to the decomposition ` = pB + qB + rB as

r s 0
t u 0
x y 0

 with

(
r s
t u

)
∈ so(pB, qB) i.e.

(
r′ t′

s′ u′

)(
Ip 0
0 −Iq

)
+

(
Ip 0
0 −Iq

)(
r s
t u

)
= 0

(where r′ is the transpose of the matrix of r), and
(
x y

)
∈ (RpB+qB)rB .

The following characterizations (at least the first two) are standard:

(i) W is finite if and only if BS is positive definite, i.e. if qB = rB = 0;
(ii) W is affine, i.e. is infinite and contains a subgroup of finite index isomorphic to Zd with

d ≥ 1, if and only if BS is positive and not definite, i.e. if qB = 0 and rB ≥ 1;
(iii) W contains non-abelian free subgroups if and only if BS is not positive (definite or indefi-

nite).
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The pair (W,S) is irreducible if the Coxeter graph of (W,S) is connected. When this holds, we
have moreover:

(iv) if qB = 0, i.e. if W is affine, then rB = 1, and d = `− 1;
(v) if ` = 2, then W is a dihedral group, either finite (pB = 2) or infinite (pB = 1 = rB);

(vi) if ` = 3, and W is neither finite nor affine, then (pB, qB, rB) = (2, 1, 0);
(vii) if ` ≥ 4, then pB ≥ 3.

(See [Bou–68, Chap. V, § 4], and more precisely no 2 for (iv), no 9 for (iii), and exercice 4 for (vi).
For (vii), see Proposition 7 Page 31 of [Par–89] for ` = 4, and observe that the same inequality for
` ≥ 4 follows.)

Proposition 6.7. Let (W,S) be an irreducible Coxeter system, with S finite and W neither finite
nor affine. The real Lie algebra of(BS) is not presentable by a product.

Proof. We continue with the notation above. The hypothesis on (W,S) imply that pB+qB ≥ 3, and
that (pB, qB) cannot be any of (4, 0), (2, 2), (0, 4). As a consequence, the orthogonal Lie algebra
so(pB, qB) is simple; moroever its action on RpB+qB is irreducible. Hence of(BS) is a Lie algebra
as in Example 5.4(4), and the proposition follows. �

Here is the main result of [BeH–04]:

Proposition 6.8. Let (W,S) be a Coxeter system, with S finite and (W,S) irreducible. Assume
that BS is not positive.

Then the subgroup σS(W ) of Of(BS) is Zariski dense.

Theorem 6.9. Let (W,S) be an irreducible Coxeter system, with S finite and W neither finite nor
affine. Then W is not presentable by a product.

Proof. The two previous propositions and Theorem 5.3 imply that the intersection of σS(W ) with
the connected component of Of(BS) is not presentable by a product. Since this intersection if of
finite index in σS(W ), the group W itselfs not presentable by a product. �

Note that an affine irreducible Coxeter group is presentable by a product, because it has a sub-
group of finite index isomorphic to Zd, for some d ≥ 1.
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[Gro–83] M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), 1–147.
[Gro–99] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, with appendices by M. Katz,

P. Pansu and S. Semmes, based on Structures métriques des variétés Riemanniennes, edited by J. La-
Fontaine and P. Pansu. Birkhäuser, 1999.
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