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Abstract We determine which three-manifolds are dominated by products. The result is
that a closed, oriented, connected three-manifold is dominated by a product if and only if
it is finitely covered either by a product or by a connected sum of copies of S2 × S1. This
characterization can also be formulated in terms of Thurston geometries, or in terms of purely
algebraic properties of the fundamental group. We also determine which three-manifolds are
dominated by non-trivial circle bundles, and which three-manifold groups are presentable by
products.

Mathematics Subject Classification (2000) 57M05 · 57M12 · 57M50

1 Introduction

The study of non-zero degree maps between closed, oriented manifolds has become very
active over the last few decades [2,7,14]. The existence of a non-zero degree map, M −→ N ,
defines a transitive relation on the set of homotopy types of closed, oriented manifolds.
Whenever such a map exists we say that M dominates N and write M ≥ N . In this case
M is at least as complicated as N . For example, the induced maps in rational homology are
surjective, thus, in particular, the Betti numbers of N are bounded from above by those of M .
Also, M ≥ N implies that the fundamental group of M surjects onto a finite index subgroup
of the fundamental group of N .
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22 D. Kotschick, C. Neofytidis

In dimension two, the domination relation coincides with the ordering given by the genus,
but in higher dimensions it fails to be an ordering. We illustrate this by the following two exam-
ples in dimension three. The examples have obvious generalizations to higher dimensions.

Example 1 The two three-manifolds M = S3 and N = RP3 satisfy M ≥ N and N ≥ M ,
but fail to be homotopy equivalent.

Example 2 Let M be a hyperbolic homology three-sphere, and N = S1 × S2. Then N has
larger first Betti number than M , and so M ! N . We also have N ! M since the fundamental
group of N is infinite cyclic, and so cannot surject onto the fundamental group of a closed
negatively curved manifold, for example by Preissmann’s theorem. Thus M and N are not
comparable under the domination relation.

In this paper, we study domination by products for three-manifolds. This is motivated by
the work of Löh and the first author in [14,15], where strong restrictions were found for cer-
tain manifolds with large universal coverings to be dominated by products. In fact, the results
of those papers show that three-manifolds dominated by products cannot have hyperbolic or
Sol3-geometry, and must often be prime. However, in this paper we will not use those earlier
results, but follow a more direct approach. This is possible since in dimension three the only
product manifolds are those with a circle factor, and this gives much stronger constraints than
the consideration of arbitrary products. The main result we prove here is the following:

Theorem 1 A closed, oriented, connected three-manifold N is dominated by a product!×S1

if and only if

(1) either N is finitely covered by a product F × S1, for some aspherical surface F, or
(2) N is finitely covered by a connected sum #n(S2 × S1).

As usual, the empty connected sum corresponding to n = 0 is S3.
The proof of Theorem 1 falls naturally into two parts. On the one hand, we have to prove

that all three-manifolds not listed in the statement of the theorem cannot be dominated by
products. On the other hand, we have to prove that the manifolds listed in the theorem are
indeed dominated by products. This is obvious for manifolds finitely covered by products,
but it is not obvious for the connected sums occurring in the second statement. Here the proof
proceeds by constructing certain maps of non-zero degrees as branched coverings. This con-
struction, which also has a high-dimensional generalization, is of independent interest.

Previously, many non-trivial results have been proved about the domination relation in
dimension three using a variety of tools different from the ones we use here, such as Thurston’s
geometries, Gromov’s simplicial volume, and the Seifert volume. A survey of the state of
the art at the beginning of the last decade is given in [25]. For more recent results, especially
related to the issue of finiteness of sets of mapping degrees between three-manifolds, see
for example [4] and the papers quoted there. Our proofs here are independent of this earlier
work, and in fact clarify certain claims made there, cf. Sect. 7.3 below.

It is not immediately obvious to what extent Theorem 1 really depends on the assump-
tion that the domains of our dominant maps are products, and one could try to replace
these products by fibered three-manifolds. For this purpose surface bundles over the circle
are not interesting, since every three-manifold is dominated by such a bundle by a result of
Sakuma [20]. However, considering non-trivial circle bundles over surfaces we obtain a result
parallel to Theorem 1:
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On three-manifolds dominated by circle bundles 23

Theorem 2 A closed, oriented, connected three-manifold N is dominated by a non-trivial
circle bundle over a surface if and only if
(1) either N is finitely covered by a non-trivial circle bundle over some aspherical surface,

or
(2) N is finitely covered by a connected sum #n(S2 × S1).

In Sect. 2 we discuss the notion of rational essentialness in the case of three-manifolds.
While this is not logically necessary for the proofs of our main results, we find it convenient,
following [14], to use this concept as an organizing principle. In Sect. 3, respectively Sect. 4,
we then prove Theorems 1 and 2 for rationally essential, respectively inessential, three-mani-
folds. In Sect. 5 we reformulate these theorems in terms of Thurston geometries and in purely
algebraic terms. Finally, in Sect. 6 we determine the three-manifold groups presentable by
products, and in Sect. 7 we make some further remarks. These last two sections contain two
new characterizations of (aspherical) Seifert manifolds.

2 Rational essentialness for three-manifolds

The obstructions for domination by products found in [14] are applicable to rationally essen-
tial manifolds in the sense of the following definition going back to Gromov [7]:

Definition 1 A closed, oriented, connected n-manifold N is called rationally essential if

Hn(cN )([N ]) %= 0 ∈ Hn(Bπ1(N ); Q),

where cN : N −→ Bπ1(N ) classifies the universal covering of N .

For three-manifolds, this definition can be interpreted in terms of the Kneser–Milnor prime
decomposition [16]. Recall that this says that a closed oriented connected three-manifold N
has an essentially unique prime decomposition N = N1# · · · #Nk under the connected sum
operation. Each prime summand Ni is either aspherical, is S1 × S2, or has finite fundamental
group. We now have the following:

Theorem 3 For a closed oriented connected three-manifold N the following conditions are
equivalent:

(QESS) N is rationally essential,
(ASPH) N has an aspherical summand Ni in its prime decomposition,
(NFREE) N is not finitely covered by a connected sum #n(S2 × S1),
(ENL) N is compactly enlargeable,
(NPSC) N does not admit a metric of positive scalar curvature.

The last two items are not relevant to the main results of this paper, so we will only discuss
them briefly.

Proof A connected sum is rationally essential if and only if at least one of the summands is.
Since S1 × S2 and manifolds with finite fundamental group are not rationally essential, this
proves the equivalence of (QESS) and (ASPH).

It is obvious that (ASPH) implies (NFREE). For the converse assume that N contains no
aspherical summands in its prime decomposition, i.e. that N has the form

N = (S2 × S1)# · · · #(S2 × S1)︸ ︷︷ ︸
l

# (S3/Ql+1)# · · · #(S3/Qk)︸ ︷︷ ︸
k−l

,
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24 D. Kotschick, C. Neofytidis

where the empty connected sum (k = 0) denotes the 3-sphere S3. The summands S2 × S1

have infinite cyclic fundamental groups and the summands S3/Qi have finite fundamental
groups Qi , l + 1 ≤ i ≤ k. Thus, the fundamental group of N is the free product

π1(N ) = Fl ∗ Ql+1 ∗ · · · ∗ Qk,

where Fl is a free group on l generators. We project this free product to the direct product of
the Q j to obtain the following exact sequence:

1 −→ ker(ϕ) −→ π1(N ) = Fl ∗ Ql+1 ∗ · · · ∗ Qk
ϕ−→ Ql+1 × · · · × Qk −→ 1. (1)

By the Kurosh subgroup theorem, ker(ϕ) is a free group Fn . Since it has finite index in
π1(N ), we see that N has a finite covering whose fundamental group is free. By Kneser’s
prime decomposition theorem and Grushko’s theorem, we deduce that this covering is a
connected sum of n copies of S2 × S1. This means that N is finitely covered by a connected
sum #n(S2 × S1), where n is the number of generators of the free group ker(ϕ) in the exact
sequence (1).

To see that (ASPH) implies (ENL) it is enough to show that any aspherical three-manifold
N is compactly enlargeable. This was proved by Gromov and Lawson [8, Theorem 6.1] under
the assumptions that π1(N ) is residually finite and contains an infinite surface group. It is
now known that all three-manifold groups are residually finite [11]. (This reference treats
only manifolds satisfying Thurston’s geometrisation conjecture, which has now been verified
by Perelman [13,18,19]). Furthermore, if π1(N ) contains no infinite surface group, then N is
atoroidal, and so is hyperbolic by Perelman’s work [13,18,19]. Since hyperbolic manifolds
are compactly enlargeable by [8, Prop. 3.3], we conclude that (ASPH) implies (ENL).

Gromov and Lawson [8, Theorem 3.7] proved that (ENL) implies (NPSC) (recall that all
oriented three-manifolds are spin).

Finally, (NPSC) implies (ASPH) because S1 × S2 has positive scalar curvature, and so
do all three-manifolds with finite fundamental group by Perelman’s proof of the Poincaré
conjecture [17–19]. A connected sum of manifolds with positive scalar curvature also has
positive scalar curvature by the construction of Gromov and Lawson; cf. [8, Theorem 5.4].

Remark 1 It was proved by Hanke and Schick [9] that (ENL) implies (QESS) in all dimen-
sions. The converse is not true in dimensions ≥4 by a recent result of Brunnbauer and
Hanke [1].

3 Rationally essential targets

In view of Theorem 3, the proofs of Theorems 1 and 2 split into two cases, depending on
whether N contains an aspherical summand Ni in its prime decomposition, or not. In this
section we deal with the case where an aspherical summand does appear.

The first part of Theorem 1 corresponds to the following statement:

Proposition 1 A rationally essential closed oriented three-manifold N is dominated by a
product if and only if it is finitely covered by a product F × S1, with F an aspherical surface.

Proof A manifold finitely covered by a product is of course dominated by that product.
For the converse assume that a product ! × S1 of a closed, oriented, connected surface

! with the circle dominates a closed, oriented, connected rationally essential three-manifold
N and let f : ! × S1 −→ N be a map of non-zero degree. Then ! × S1 must be rationally
essential, and so ! is of positive genus.
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On three-manifolds dominated by circle bundles 25

By replacing N by a finite covering if necessary, we may assume that f is π1-surjec-
tive. Let N = N1# · · · #Nk be the Kneser–Milnor prime decomposition of N . Each prime
summand Ni is either aspherical, is S1 × S2, or has finite fundamental group; cf. [16]. By
Theorem 3 the rational essentialness of N is equivalent to the existence of an aspherical
summand Ni . Composing f with the degree one map N −→ Ni collapsing the connected
summands other than Ni , we obtain a dominant map ! × S1 −→ Ni between aspherical
three-manifolds. This cannot factor through !, implying that π1( f ) must be non-trivial on
the central Z-subgroup generated by the S1 factor. But then π1( f )(Z) is a non-trivial central
subgroup in π1(N ), and so this group is freely indecomposable. Thus we may assume that
N itself is prime and aspherical, for we can either appeal to Perelman’s proof of the Poincaré
conjecture [17–19] to conclude N = Ni , or we can argue that the assumption ! × S1 ≥ N
depends only on the homotopy type of N , which does not change if we replace a manifold
by its connected sum with a homotopy sphere.

We have shown that N is aspherical, and that its fundamental group has infinite center.
If N is Haken, then it follows from a result of Waldhausen [23] that N is Seifert fibered.
In fact, even without the Haken condition, N must be Seifert fibered, by the proof of the
Seifert fiber space conjecture (stated in [22, p. 484] and proved by Casson and Jungreis [3]
and Gabai [6]). Therefore, after lifting f to a suitable covering space, we may assume that
N is a circle bundle over an aspherical surface. It remains to show that the Euler number of
this circle bundle is zero. We will prove this in the following lemma, thereby completing the
proof of Proposition 1.

Lemma 1 Let π : N −→ F be an oriented circle bundle with non-zero Euler number over
a closed aspherical surface. Then every continuous map f : ! × S1 −→ N has degree zero.

Proof Since N is aspherical, we may assume that ! has positive genus. From the discussion
above we may assume that π1( f )(S1) is an element of infinite order in the center of π1(N ).

Since on a Seifert manifold elements of the center of the fundamental group are, up to
taking multiples, fibers of Seifert fibrations, cf. [12, p. 92/93] and [22], we may assume
that π1( f )(S1) is a multiple of the homotopy class of the fiber in N (the fibration of N is
unique, cf. [22, Thm. 3.8]). Thus the composition π ◦ f kills the homotopy class of the
S1-factor in ! × S1. Since F is aspherical, this implies that π ◦ f is homotopic to a map
that factors through the projection π1 : ! × S1 −→ !. By the homotopy lifting property of
π : N −→ F , the homotopy of π ◦ f can be lifted to a homotopy of f , so we may assume
that π ◦ f = f̄ ◦ π1 for some continuous map f̄ : ! −→ F .

Since π : N −→ F has non-zero Euler number, π induces the zero map on H2(N , Q),
and the fundamental class of F is not in the image. As π1 is surjective on H2, the equation
π ◦ f = f̄ ◦ π1 shows that deg( f̄ ) = 0. Now consider the pullback of N under f̄ :

f̄ ∗N = {(p, x) ∈ ! × N | f̄ (p) = π(x)}.

The map f : ! × S1 −→ N factors through f̄ ∗N as follows:

f : ! × S1 −→ f̄ ∗N
π2−→ N

(p, θ) *−→ (p, f (p, θ)) *−→ f (p, θ).

For any pullback of an oriented bundle, the degree of the map between total spaces is the
same as the degree of the map of base spaces under which the bundle is pulled back. In our
situation this says that the degree of π2 : f̄ ∗N −→ N equals the degree of f̄ , which vanishes.
Thus f factors through a degree zero map, and we finally have deg( f ) = 0.
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26 D. Kotschick, C. Neofytidis

The next proposition covers the first part of Theorem 2.

Proposition 2 A rationally essential closed oriented three-manifold N is dominated by a
non-trivial circle bundle over a surface if and only if it is finitely covered by a non-trivial
circle bundle over some aspherical surface.

Proof Let f : M −→ N be a map of non-zero degree, with M a non-trivial circle bundle
over a surface !g of genus g. After replacing N by a suitable covering, we may assume that
f is π1-surjective. Since N is assumed to be rationally essential, π1(M) must be infinite, and
so g > 0. This means that M is aspherical and we have a non-trivial central extension

1 −→ Z −→ π1(M) −→ π1(!g) −→ 1.

The prime decomposition of N contains an aspherical summand Ni by Theorem 3. Com-
posing f with the degree one map N −→ Ni collapsing the connected summands other
than Ni , we obtain a dominant map M −→ Ni between aspherical three-manifolds. This
cannot factor through !g , implying that π1( f ) must be non-trivial on the central Z-subgroup
generated by the circle fibers in M . But then π1( f )(Z) is a non-trivial central subgroup in
π1(N ), and so N is prime and therefore irreducible and aspherical itself. As in the proof of
Proposition 1 we conclude that N is Seifert fibered.

After replacing M and N by suitable coverings, we may assume that N is also a circle
bundle. It remains to prove that it has non-trivial Euler class. Now π1( f ) sends the element of
π1(M) represented by the circle fibers in M to a non-trivial element of the center of π1(N ).
This group is torsion-free, so this non-trivial element has infinite order. Some multiple of it is
the fiber of a Seifert fibration of N , cf. [12, p. 92/93]. As mentioned before, we may assume
that this Seifert fibration is a circle bundle. Since the fiber in M has finite order in homology
because the Euler class of M was non-zero, it follows that the circle fiber in N , being, up
to taking multiples, the image under H1( f ) of the circle fiber in M , also has finite order in
homology, and so the Euler class of N must be non-zero.

4 Rationally inessential targets

In this section we prove Theorems 1 and 2 in the case of rationally inessential manifolds,
i. e. those with no aspherical summand in their prime decomposition. The proof is construc-
tive, exhibiting certain dominant maps as branched coverings.

The second part of Theorem 1 corresponds to the following statement:

Proposition 3 Every rationally inessential three-manifold is dominated by a product.

Since we have shown in the proof of Theorem 3 that rationally inessential three-manifolds
are finitely covered by connected sums of copies of S1 ×S2, it suffices to prove the following:

Proposition 4 Let !n be a closed, oriented surface of genus n. For every n the manifold
!n × S1 is a π1-surjective branched double covering of #n(S2 × S1).

Proof The 2-torus T 2 is a branched double covering of S2 with four branch points. We denote
this branched covering, which is the quotient map for an involution on T 2, by P : T 2 −→ S2

(see Fig. 1). The letter P stands either for “pillowcase”, or for the Weierstrass p-function.
We multiply P by the identity map on S1 to obtain a branched double covering

P × idS1 : T 2 × S1 −→ S2 × S1. (2)
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On three-manifolds dominated by circle bundles 27

Fig. 1 The branched covering P : T 2 −→ S2

Fig. 2 The preimage of D2, with two branched points, is an annulus in T 2

This is the case n = 1 in the claim.
Now let D2 be a 2-ball in S2 that contains exactly two branch points of P in its interior, as

shown in Fig. 2, and let I be an interval in S1. The product D2 × I is a 3-ball D3 in S2 × S1.
The preimage of this ball under P × idS1 is

(P × idS1)−1(D2 × I ) = A × I,

where A is an annulus in T 2 (see Fig. 2). We remove this D3 from S2 × S1 and its preimage
from T 2 × S1 to obtain a branched double covering

(T 2 × S1) \ (A × I ) −→ (S2 × S1) \ (D2 × I ), (3)

where (T 2 × S1)\ (A × I ) = (T 2 \ D2)× S1. Taking the double of (3) we obtain a branched
double covering

!2 × S1 −→ (S2 × S1)#(S2 × S1), (4)

which is π1-surjective by construction. This gives the case n = 2 in the claim.
Finally note that, for arbitrary n, the connected sum #n(S2 × S1) is an (n − 1)-sheeted

unramified covering of (S2 × S1)#(S2 × S1). Taking the fiber product with (4), we obtain the
desired π1-surjective branched double covering of #n(S2 × S1) by !n × S1. This completes
the proof.

Proposition 4 together with Proposition 1 completes the proof of Theorem 1. For
Theorem 2 we need the following:

Proposition 5 Every rationally inessential three-manifold is dominated by a non-trivial cir-
cle bundle over a surface.

This, together with Proposition 2, completes the proof of Theorem 2. Since every rationally
inessential three-manifold is finitely covered by some #n(S2 ×S1) by the proof of Theorem 3,
Proposition 5 is a consequence of the following statement.

Proposition 6 For every n the connected sum #n(S2 × S1) admits a π1-surjective branched
double covering by a non-trivial circle bundle over a surface.
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28 D. Kotschick, C. Neofytidis

Proof For n = 0, the empty connected sum is, by convention, the three-sphere S3, which,
via the Hopf fibration, is a non-trivial circle bundle over S2. Pulling back the Hopf fibration
under a branched double cover S2 −→ S2, we obtain the desired double branched cover
of S3.

For n = 1 we prove that the total space M of the circle bundle with Euler number = 1
over T 2 is a π1-surjective branched double covering of S2 × S1. Start by considering M as
the mapping torus of the linear torus diffeomorphism given by the matrix

ϕ =
(

1 1
0 1

)
,

and recall that the double branched cover P : T 2 −→ S2 in Fig. 1 is the quotient map for the
involution

ι =
(−1 0

0 −1

)
.

Since ι commutes with ϕ, it induces a fiber-preserving involution, also denoted ι, of the
mapping torus M = M(ϕ). The quotient M/ι is the mapping torus of the diffeomorphism
of T 2/ι = S2 induced by ϕ. This diffeomorphism is orientation-preserving, and so M/ι =
S2 × S1. The projection PM : M −→ M/ι = S2 × S1 given by the quotient map for ι is the
desired π1-surjective double branched cover. On every fiber it coincides with P .

To deal with the case n > 1, we revert to thinking of M as a circle bundle over T 2, and
we fiber sum n copies of this circle bundle to obtain a circle bundle with Euler number = n
over !n . We can perform this fiber sum in such a way that the branched double covering
maps PM on the different summands fit together to give the desired π1-surjective branched
double covering of #n(S2 × S1). Recall that the circles of the circle fibration of M over T 2

are contained in the fibers of the mapping torus projection π : M = M(ϕ) −→ S1. Pick one
such fiber, and thicken it to an annulus A contained in a fiber of π whose image under P
is a disk in S2 containing precisely two branch points of P , as shown in Fig. 2. A fibered
neighbourhood of our circle fiber in M is the product of A with an interval in S1, and the
image under PM of this fibered neighbourhood in S2 × S1 is a three-ball D3. Now we can
perform the connected sum of two copies of S2 × S1 along this D3, and simultaneously fiber
sum two copies of M by removing the fibered neighbourhood and gluing the boundary tori in
a fiber-preserving way that matches up the branch loci. This completes the proof for n = 2,
and the general case follows by iterating the construction.

5 Geometric and algebraic reformulations

We now reformulate Theorems 1 and 2 and their proofs to obtain equivalent formulations
in terms of Thurston geometries and in terms of purely algebraic properties of fundamental
groups.

The following is the geometric reformulation of Theorem 1.

Theorem 4 A closed, oriented, connected three-manifold N is dominated by a product!×S1

if and only if

(1) either N possesses one of the geometries R3 or H2 × R, or
(2) N is a connected sum of manifolds possessing the geometries S2 × R or S3.

Proof Let N be a closed oriented three-manifold dominated by a product ! × S1. If the
prime decomposition of N contains an aspherical summand, then we have seen in the proof
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On three-manifolds dominated by circle bundles 29

of Theorem 1 that N itself is aspherical, and is finitely covered by a product F × S1, with F
of positive genus. In addition, N is Seifert fibered since its finite covering F × S1 is, cf. [21].
Moreover, N carries the same Thurston geometry as this covering, namely the R3 geometry
if F has genus one, or the H2 × R geometry if the genus of F is at least 2. Conversely, every
manifold with one of these geometries is indeed finitely covered, and, therefore, dominated
by a product F × S1, cf. [22].

If the prime decomposition of N does not contain an aspherical summand, then each prime
summand is either S1 × S2, with geometry S2 × R, or has finite fundamental group, and
thus carries the S3 geometry by the work of Perelman [17–19]. For all connected sums with
only these summands we have proved in the proof of Theorem 1 that they are dominated by
products.

Finally, we give an algebraic formulation, in terms of properties of the fundamental group
of the target.

Theorem 5 A closed, oriented, connected three-manifold N is dominated by a product!×S1

if and only if

(1) either π1(N ) is virtually π1(F) × Z, for some aspherical surface F, or
(2) π1(N ) is virtually free.

Proof If N is a closed oriented three-manifold dominated by a product ! × S1, and the
prime decomposition of N contains an aspherical summand, then we have seen in the proof
of Theorem 1 that π1(N ) is virtually π1(F) × Z. Conversely, if N has a finite covering N̄
with fundamental group π1(F) × Z, then this covering is prime as its fundamental group is
freely indecomposable. Since F is not S2, it follows that N̄ is irreducible and aspherical [16].
Thus N̄ is homotopy equivalent to F × S1, proving that N is dominated by a product.

If the prime decomposition of N does not contain an aspherical summand, then we have
seen that π1(N ) is virtually free. Conversely, if N has virtually free fundamental group,
then it is finitely covered by a three-manifold with free fundamental group. Kneser’s prime
decomposition theorem and Grushko’s theorem imply that this covering must be a connected
sum of copies of S2 × S1, where the number of summands is the number of generators of its
fundamental group.

The analogous reformulations can also be carried out for Theorem 2. The geometric for-
mulation is:

Theorem 6 A closed, oriented, connected three-manifold N is dominated by a non-trivial
circle bundle over a surface if and only if

(1) either N possesses one of the geometries Nil3 or S̃L2(R), or
(2) N is a connected sum of manifolds possessing the geometries S2 × R or S3.

Proof We only have to prove the equivalence between the first cases of this theorem and of
Theorem 2. In one direction, if N has one of the geometries Nil3 or S̃L2(R), then it is finitely
covered by a non-trivial circle bundle over an aspherical surface [22]. Conversely, if N is
finitely covered by a non-trivial circle bundle over an aspherical surface, then it is a Seifert
manifold carrying the same Thurston geometry as this finite covering [21].

The algebraic version of Theorem 2 reads as follows.

Theorem 7 A closed, oriented, connected three-manifold N is dominated by a non-trivial
circle bundle over a surface if and only if
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30 D. Kotschick, C. Neofytidis

(1) either π1(N ) has a finite index subgroup & which fits into a central extension

1 −→ Z −→ & −→ π1(F) −→ 1

with non-zero Euler class for some aspherical surface F, or
(2) π1(N ) is virtually free.

Proof Again we only have to prove the equivalence between the first cases of this theorem
and of Theorem 2. In one direction, if N is finitely covered by a non-trivial circle bundle over
an aspherical surface, then its fundamental group has a finite index subgroup admitting the
required central extension. Conversely, if π1(N ) has a finite index subgroup & fitting into
such a central extension, then the corresponding finite covering has to be prime, irreducible
and aspherical, and is therefore homotopy equivalent to the total space of the corresponding
circle bundle over F .

6 Three-manifold groups presentable by products

As an algebraic counterpart of our topological results about domination by products for
three-manifolds we now want to determine which fundamental groups of three-manifolds
are presentable by products. First we recall the definition:

Definition 2 [14] An infinite group & is presentable by a product if there is a homomorphism
ϕ : &1 × &2 −→ & onto a subgroup of finite index, such that both factors &i have infinite
image ϕ(&i ) ⊂ &.

Without loss of generality one can replace each &i by its image in & under the restriction
of ϕ, so that one can assume the factors &i to be subgroups of & and ϕ to be multiplication
in &. It is obvious that a group with infinite center C(&) is presentable by a product—just
take &1 = C(&) and &2 = &.

The property of (not) being presentable by a product is preserved under passage to finite
index subgroups. This property was introduced in [14] and further studied in [15] because,
according to [14], it is a property that the fundamental groups of rationally essential manifolds
dominated by products must have.

Theorem 8 For a closed three-manifold M with infinite fundamental group the following
three properties are equivalent:

(1) π1(M) is presentable by a product,
(2) π1(M) has a finite index subgroup with infinite center,
(3) M is a Seifert manifold.

Proof It is clear that (3) implies (2). The converse is the celebrated Seifert fiber space con-
jecture, the final cases of which were resolved by Casson and Jungreis [3] and by Gabai [6].

As noted above, it is also clear that (2) implies (1) for any group. We now prove the
converse for three-manifold groups.

By [15, Cor. 9.2] the only non-trivial free product that is presentable by a product is
Z2 ∗ Z2, which is virtually Z and so satisfies (2). Thus, we may assume that π1(M) is freely
indecomposable, and M is prime. If π1(M) is not virtually Z, then M is irreducible and
aspherical by the sphere theorem, cf. [16]. In particular, π1(M) is torsion-free.

By [14, Prop. 3.2], a torsion-free group & which is presentable by a product has one of
the following properties:
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• either & has a finite index subgroup with infinite center, or
• some finite index subgroup splits as a direct product of infinite groups.

Applying this to our π1(M), we have to see that the second alternative in fact implies the
first. It is a theorem of Epstein [5] that if the fundamental group of a closed three-manifold
splits as a direct product of infinite groups, then one of the factors has to be infinite cyclic.
But then this factor is central in the whole group.

7 Final remarks

7.1

The main result of [14] was that for rationally essential manifolds, in any dimension, domina-
tion by a product implies that the fundamental group is presentable by a product. Theorem 1
shows that the converse is not true already in dimension three: Seifert manifolds carrying one
of the geometries Nil3 or S̃L2(R) are aspherical and have fundamental groups presentable
by products, but are not dominated by products (these are the only counterexamples to the
converse in dimension three).

The geometry S̃L2(R) has another interesting feature relevant to our discussion: S̃L2(R)

is quasi-isometric to H2 ×R, cf. [10, IV.48]. Compact manifolds with the latter geometry are
finitely covered by products, whereas those with the former geometry are not even dominated
by products, although the fundamental groups are presentable by products in both cases. It
was noted in [15, Thm. 10.2] that presentability by products is not a quasi-isometry invariant
property of finitely generated groups. This, together with the contrast between manifolds with
the geometries S̃L2(R) and H2 × R, shows that domination by products cannot be detected
by coarse methods, neither at the level of groups nor at the level of universal coverings of
aspherical manifolds.

7.2

One of the standard characterizations of closed Seifert manifolds is through the property of
being finitely covered by circle bundles. In the rationally essential case this can be weakened
by replacing finite coverings by arbitrary dominant maps:

Corollary 1 For a rationally essential closed oriented connected three-manifold the follow-
ing are equivalent:

(1) it is Seifert fibered,
(2) it is finitely covered by a circle bundle,
(3) it is dominated by a circle bundle.

Proof It is clear that each of these conditions implies the next one. However, (3) implies (2)
by Propositions 1 and 2, and (2) implies (1) by Scott’s result in [21].

7.3

Our discussion in Sect. 3 shows that there are no maps of non-zero degree between trivial
and nontrivial circle bundles over aspherical surfaces. This statement already appeared in
the work of Wang 20 years ago, see [24, Theorem 2]. However, the proof given there is hard
to follow. In particular, there is no argument there for the case covered by our Lemma 1.
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At the corresponding place in the proof, compare [24, p. 153], in particular equation (III),
Wang seems to argue that a group that is presentable by a product must itself be a product,
which is of course false. The fundamental groups of Seifert manifolds with non-zero Euler
number are presentable by products, but are not virtually products.
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