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Smoothed Particle Hydrodynamics

numerical method to simulate fluids (liquids, gases, plasmas)
idea: represent fluid by moving particles
first used in astrophysics
increasingly used in CGI for block-buster movies
upcoming technology for next-generation computer games

Figure : 1 Million particles, rendered in Maya, by Frank Zimmer
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7 SPH approximation:
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N∑
j=1

mj
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ρj
Wh(|ri − rj |)
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Want to solve PDEs using SPH ⇒ need spatial derivatives...

Observe that in

AS(r) =
N∑
j=1

mj
Aj

ρj
Wh(|r − rj |)

only the kernel depends on position r .

Gradient:
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Spatial derivatives

SPH Field approximation

Ai =
N∑
j=1

mj
Aj

ρj
Wh(|ri − rj |)

SPH Gradient approximation:

(∇A)i =
N∑
j=1

mj
Aj

ρj
(∇Wh)(|ri − rj |)

ri − rj
|ri − rj |

SPH Laplacian approximation:

(∆A)i =
N∑
j=1

mj
Aj

ρj
(∆Wh)(|ri − rj |)



Practical considerations

Smoothing length h proportional to average particle diameter:

h ∼ 1

〈ρ〉
1
d

, where 〈ρ〉 :=
1

n

N∑
i=1

ρi

Different kernels suitable for different charge densities.

Kernels not C∞ due to performance considerations (Splines!).

Golden rules of SPH (Monaghan):

To find physical interpretation it’s always best to assume
kernel is Gaussian.
Rewrite formulas with mass density inside operators, by
making use of

∇A =
∇(Aψ)

ψ
− A(∇ψ)

ψ

for positive smooth ψ.
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particles are neither created nor destroyed.
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Navier-Stokes equation:

ρ (∂tv + v · ∇v) = ρg −∇p + µ∆v

Consider the total derivate of v(r , t) with respect to time:

d

dt
v(r , t) = (∂tv)(r , t) + [ṙ(t)] · (∇v)(r , t)

It depends on ṙ , where r(t) is a chosen path in space.

Velocity vi of particle moving with the fluid, i.e. ṙi = vi :

d

dt
vi = ∂tvi + vi · ∇vi ,

i.e. Navier-Stokes is just Newton’s second law in disguise.



Equations of motion

Navier-Stokes equation:

ρ
d

dt
v = ρg −∇p + µ∆v

SPH approximation:

ρi
d

dt
vi = ρig − (∇p)i + µ(∆v)i
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µ

ρi
(∆v)i =

µ

ρi

N∑
j=1

mj
vj − vi
ρj

(∆Wh)(|ri − rj |)



Pressure

Still need to compute pressure!



Pressure

Ideal gas law:

p = kB
N

V
T , where

N number of molecules
V volume
T (absolute) temperature
kB Boltzmann constant



Pressure

Ideal gas law:

p = kB
N

V
T

Modelled as
pi = k(ρi − ρeq), where

k constant depending on temperature
ρeq equilibrium density (set to zero for ideal gas)
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Boundary conditions

Modelling of boundary conditions is an active area of research
in SPH: the support of the kernel overlapping with boundaries
leads to all sorts of problems.

Different types of boundaries:
Noslip-condition solid boundaries
Slip-condition solid boundaries
Mixtures of Slip/Noslip
Pressure boundaries
Flux boundaries
Reflective boundaries

Different methods to model boundaries:
Boundary particles
Ghost particles
Virtual forces
Analytical methods

In my implementation: Noslip solid boundaries using ghost
particles.



Advanced topics

Active areas of research in SPH include:

Boundary modelling

Adaptivity

Surface tension

Solid adhesion



Demo

64k particles, interactive frame-rates

Graphics running against DirectX 11 (Windows only)

Simulation running against OpenCL (Windows, Linux,
Android, Supercomputers...)

Surface tension and solid adhesion modelled according to
Akinci, Akinci and Teschner (2013), Freiburg



Thanks for your attention!

Please do not hesitate to ask questions!


