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Philosophy behind differentiation theorem
Generalise the Fundamental Theorem of Calculus for L1 functions

Recall the classical FTC: if (a, b) is an interval in R, f : (a, b)→ R is continuous and, for
x ∈ (a, b),

F(x) :=

∫ x

a
f(y) dy ,

then for all x ∈ (a, b), F is differentiable at x and

F ′(x) = f(x) .

Now we might consider:

• How can we phrase this for open sets Ω ⊂ Rn, n > 1?
• What if f ∈ L1(a, b), f ∈ L1(Ω) ?
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Differentiation of general integrals
The derivative of an integral is the “limit of averages”

Note that for f : (a, b)→ R continuous and F defined as before, for x ∈ (a, b) we have

F ′(x) = lim
δ→0

1
2δ

∫ x+δ

x−δ
f(y) dy = f(x) .

• Now let Ω be a general open subset in Rn (or Ω = Rn).
• It therefore makes sense to consider, for x ∈ Ω, the quantity

1
|B(x, r)|

∫
B(x,r)

f(y) dy where B(x, r) = {y ∈ Rn : |x − y | < r} .

• Interested in limit of this quantity as r → 0.
• It is easy to show that if f is continuous, then limit is f(x).

Theorem (Lebesgue’s Differentiation Theorem)

Let f ∈ L1(Ω). Then for almost all x ∈ Ω, we have

lim
r↘0

1
|B(x, r)|

∫
B(x,r)

f(y) dy = f(x) .
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The Hardy-Littlewood Maximal Function

• Focus on Ω = Rn (otherwise just let f = 0 outside Ω).
• To prove the Theorem, we need to get estimates on integral averages of balls.
• Hence, for f ∈ L1(Rn), define the Maximal Function Mf of f as

(Mf)(x) := sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)| dy .

Theorem (A “weak-type” inequality)

Let f ∈ L1(Rn). For any t > 0 we have∣∣∣{x ∈ Rn : (Mf)(x) > t}
∣∣∣ ≤ 3n

t

∫
Rn
|f(y)| dy .
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Proof of the estimate
A covering lemma

Lemma (Vitali)

Let E ⊂ Rn be the union of a finite number of balls B(xi , ri), i = 1, 2 . . . k . Then there exists
a subset I ⊂ {1, . . . k } such that the balls B(xi , ri) with i ∈ I are pairwise disjoint, and

E ⊂
⋃
i∈I

B(xi , 3ri) .

• Let At := {x ∈ Rn : (Mf)(x) > t}. Can show this is a Borel set.
• By definition of Mf , for every x ∈ At there is a ball B(x, rx) with

1
|B(x, rx)|

∫
B(x,rx )

|f(y)| dy > t

 ⇒ |B(x, rx)| < t−1
∫

B(x,rx )
|f |


• Let K ⊂ At be compact.
• Then {B(x, rx)}x∈At is a cover of K . So there exists a finite subcover.
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Proof of the estimate

• By the Covering Lemma, there is a disjoint finite subfamily {B(xi , ri)}
k
i=1 such that

K ⊂
k⋃

i=1

B(xi , 3ri) .

• Hence we have

|K | ≤ 3n
k∑

i=1

|B(xi , ri)| ≤
3n

t

k∑
i=1

∫
B(xi ,ri )

|f(y)| dy ≤
3n

t

∫
Rn
|f(y)| dy .

• Lebesgue Measure is “inner regular” i.e. for any Borel set E,

|E | = sup{ |K | : K ⊂ E and K compact} .

• Hence get upper bound for At .
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Proof of Lebesgue’s Differentiation Theorem

• We want to show for almost all x ∈ Rn,

lim sup
r↘0

?
B(x,r)

|f(y) − f(x)| dy = 0 .

• Take a continuous function g ∈ L1(Ω). Then add and subtract g(y) − g(x) and use the
triangle inequality to get

sup
r↘0

?
B(x,r)

|f − f(x)| ≤ sup
r↘0

?
B(x,r)

|g − g(x)|+ sup
r↘0

?
B(x,r)

|(f − g) − (f(x) − g(x))|

≤ sup
r>0

?
B(x,r)

|f(y) − g(y)| − |f(x) − g(x)| dy

≤ M(|f − g|)(x) + |f(x) − g(x)|

• Now fix ε > 0. Then

lim sup
r↘0

?
B(x,r)

|f − f(x)| > ε ⇒ M(|f − g|)(x) > ε
2 OR |f(x) − g(x)| > ε

2 .
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Proof of Lebesgue’s Differentiation Theorem

∣∣∣{x : |f(x) − g(x)| > ε
2 }

∣∣∣ ≤ 2
ε

∫
Rn
|f(x) − g(x)| dx (Tshebyshev)∣∣∣{x : M(|f − g|)(x) > ε

2 }
∣∣∣ ≤ 2 · 3n

ε

∫
Rn
|f(x) − g(x)| dx (Theorem)

So ∣∣∣∣∣∣
{

x : lim sup
r↘0

?
B(x,r)

|f(y) − f(x)| dy > ε
}∣∣∣∣∣∣ ≤ C

ε

∫
Rn
|f − g|

• This holds for all continuous g ∈ L1(Rn). But these are dense in L1(Rn), so, for fixed ε,
can make RHS arbitrarily small.

• So for all m ∈ N, taking ε = 1/m,∣∣∣∣∣∣
{

x : lim sup
r↘0

?
B(x,r)

|f(y) − f(x)| dy > 1/m
}∣∣∣∣∣∣ = 0
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Proof of Lebesgue’s Differentiation Theorem

• Call such sets Em. Then |Em | = 0 ∀m.
• Now note ∣∣∣∣∣∣

{
x : lim sup

r↘0

?
B(x,r)

|f(y) − f(x)| dy > 0
}∣∣∣∣∣∣ =

∣∣∣∣∣∣ ⋃
m∈N

Em

∣∣∣∣∣∣ = 0 .

• Hence

lim sup
r↘0

?
B(x,r)

|f(y) − f(x)| dy = 0 .

for almost all x.
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Generalisations of this Theorem

• Result (and proof) also holds if we replace Lebesgue measure with any locally finite
Borel (“Radon”) measure µ on Rn.

• If µ, ν Radon measures on Rn, we can consider the derivative of ν with respect to µ
as the function

dν
dµ

(x) := lim
r↘0

ν(B(x, r))

µ(B(x, r))
.

Theorem (Besicovich Differentiation Theorem)

dν
dµ

(x) exists in [0,∞] µ and ν almost everywhere. If we let

S :=
{
x ∈ Rn :

dν
dµ

(x) = ∞
}

,

then µ(S) = 0 and for all Borel sets E,

ν(E) =

∫
E

dν
dµ

(x) dµ(x) + ν(E ∩ S) .
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Concluding remarks

• Maximal Functions have very useful applications in many branches of Mathematics
(e.g. PDE Theory, Calculus of Variations, Harmonic Analysis...)

• There are many more interesting things that can be said about them. e.g. if f ∈ Lp for
1 < p ≤ ∞, then Mf ∈ Lp too.

• Moreover, it is also often useful to be able to exploit pointwise properties of integrable
functions.

• Lebesgue’s Differentiation Theorem is a powerful result in this context.
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End of presentation
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