Evolutionary PDE's in perfectly plastic fluid theory Dominic Breit and Joachim Naumann

The equation of motion for an incompressible perfectly plastic fluid on a bounded domain $\Omega \subset \mathbb{R}^d$, d = 2, 3, during the time interval (0, T) reads as

$$-\partial_t u + \operatorname{div} \sigma = \nabla \pi - f$$
 on $Q := \Omega \times (0, T).$

Here $u: Q \to \mathbb{R}^d$ is the velocity field, $\pi: Q \to \mathbb{R}$ the pressure, $\sigma: Q \to \mathbb{R}^{d \times d}$ denotes the stress deviator and $f: Q \to \mathbb{R}^d$ an external system of volume forces. Between σ and the symmetric gradient $\varepsilon(u)$ of the velocity field we have the following relation (constitutive law) which was introduced by von Mises in 1913 (g is the yield value)

$$\varepsilon(u) = 0 \quad \Rightarrow \quad |\sigma| \le g, \quad \varepsilon(u) \ne 0 \quad \Rightarrow \quad \sigma = \frac{g}{|\varepsilon(u)|}\varepsilon(u).$$

We show the existence of a weak solution

$$(u, \sigma) \in L^1(0, T; BD_{div}(\Omega)) \times L^{\infty}(Q, \mathbb{R}^{d \times d})$$

to the equation above where the constitutive law has to be understand in a measure theoretical fashion. The space $BD(\Omega)$ denotes the class of L^1 -functions whose distributional symmetric gradient generates a bounded Radon measure.