On the global regularity of solutions of the singular *p*-Laplacian system

F. Crispo

Second University of Naples Via Vivaldi 43 81100 Caserta - Italy francesca.crispo@ing.unipi.it

In this talk I am going to present some regularity results for a nonlinear system of *p*-Laplacian type under Dirichlet boundary conditions:

$$\begin{cases} -\nabla \cdot \left[\left(\left. \mu + \left| \nabla u \right| \right)^{p-2} \nabla u \right] = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

The vector fields $u = (u_1(x), \dots, u_N(x))$ and $f = (f_1(x), \dots, f_N(x))$ are defined on a bounded and smooth domain $\Omega \subset \mathbb{R}^n$, $n \geq 3$. Here $\mu \geq 0$ and $p \in (1,2]$. When $\mu = 0$, the system is the well-known singular *p*-Laplacian system. Our interests concern up to the boundary, full regularity of the first derivatives and integrability of the second derivatives of the solutions. We prove $W^{2,q}(\Omega)$ regularity, for any arbitrarily large q. Therefore, by a standard embedding, we get the α - Hölder continuity, up to the boundary, of the gradient of the solution, for any $\alpha < 1$. The results are obtained for p belonging to some interval $[p_0, 2)$, for a suitable lower exponent p_0 . In particular, if Ω is a convex domain, solutions belong to $W^{2,2}(\Omega)$ for any $p \in (1, 2]$.