

Basiselemente

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Triangulierung und FEM

Jonathan Bischoff

LMU München

Zillertal am 26.-29.06.2014

Jonathan Bischoff

Triangulierung und FEM

- Poisson-Gleichung
- Ritz-Galerkin Verfahren
- Finite Elemente
- Globale und Lokale Basiselemente

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Galerkin Verfah

Finite Eler

Basiselemente 000

Jonathan Bischoff

Triangulierung und FEM

Die Poisson-Gleichung

Sei $\Omega \subset \mathbb{R}^n$ ein Gebiet mit glattem Rand $\partial \Omega = 0$ und $f \in L^2(\Omega)$. Gesucht ist die Lösung für $u : \overline{\Omega} \to \mathbb{R}$, wobei $\overline{\Omega} = \Omega \cup \partial \Omega$, so dass gilt:

- $-\bigtriangleup u = f$ in Ω
- u = 0 auf $\partial \Omega$

Was heißt das?

- f als Kraft, u ein Membran oder allg. Bauteil
- f als Wärmequelle, u als Verteilung der Temperatur im Bauteil

Lösung über das Energiefunktional

Wenn man von einem eingespannten Membran ausgeht, folgt:

•
$$J(u)_{\text{spann}} = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx$$

•
$$J(u)_{\text{pot}} = -\int_{\Omega} f(x)u(x)dx$$

$$\Rightarrow J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} f(x)u(x)dx = \frac{1}{2} \|\nabla\|^2 - \langle f, u \rangle$$

Durch minimieren des Funktionals kann eine Lösung für die Poisson-Gleichung über dem Raum $H_0^1(G)$ gefunden werden.

Schwache Lösung

 $\frac{d}{d\varepsilon}J(u+\varphi\varepsilon)|_{\varepsilon=0}=0$ Einsetzen in das Funktional $J(u)_{\text{pot}} \rightarrow \frac{d}{d\varepsilon} \int_{\Omega} f(x)(u(x) + \varepsilon \varphi(x)) dx = \int_{\Omega} f(x)\varphi(x) dx$ und $J(u)_{\text{spann}} \frac{d}{d\varepsilon} \int_{\Omega} |\nabla(u + \varepsilon \varphi)|^2 dx = 2 \int_{\Omega} \nabla(u + \varepsilon \varphi) \nabla \varphi$ $\overrightarrow{\varepsilon \to 0} \int_{\Omega} \nabla u \nabla \varphi dx \Rightarrow \int_{\Omega} \nabla u \nabla \varphi dx - \int_{\Omega} f \varphi dx$

Jonathan Bischoff

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Ritz-Galerkin Verfahren

Das Ritz-Galerkin Verfahren betrachtet nur endlich dimensionale Unterräume. Somit sucht man für $V_h \subset H_0^1(G)$ mit dim $(V_h) < \infty$ ein $u_h \in V_h$ für alle Testfunktionen $\varphi \in V_h$:

$$\int_{\Omega} \nabla u_h \nabla \varphi \, dx = \int_{\Omega} f \varphi \, dx$$

Mit u_h erhofft man sich eine gute Approximation von u zu bekommen.

Orthogonalität

Im Folgenden ist $\langle u, v \rangle = \int uvdx$ das Skalarpodukt, dann gilt für $u \in H^1_0(\bar{\Omega})$ und $u_h, w \in V_h$

$$\langle \nabla(u - u_h), \nabla w \rangle = \langle \nabla u, \nabla w \rangle - \langle \nabla u_h, \nabla w \rangle$$
$$= \int_{\Omega} \nabla u \nabla w dx - \int_{\Omega} \nabla u_h \nabla w dx$$
$$= \int_{\Omega} f w dx - \int_{\Omega} f w dx = 0$$

In diesem Sinne steht der Fehler orthogonal zum Unterraum V_h .

< ロ > < 同 > < 回 > < 回 > < □ > <

Céa's Lemma

$$||\nabla(u-u_h)|| = \min_{w \in V_h} ||\nabla(u-w)|| =: dist(u, V_h)$$

Damit hängt der Fehler von der Größe des endlichen Unterraums $V_h\subset H^1_0(\Omega)$ ab.

3

Bildung eines Gleichungssystems Sei nun $\{b_1, \ldots, b_m\}$ eine Basis von V_h :

$$\forall \varphi \in V_h :< \nabla u_h, \nabla \varphi >= \int_{\Omega} f \varphi dx$$

$$\Leftrightarrow$$

$$\forall 1 \le j \le m :< \nabla u_h, \nabla b_j >= \int_{\Omega} f b_j dx$$

Somit bekommt man ein Gleichungssystem mit $m \times m$ Gleichungen

$$u_h(x) = \sum_{i=1}^m u_{h,i} b_i(x)$$

 $\rightarrow \sum_{i=1}^m u_{h,i} < \nabla b_i, \nabla b_j >= \int_{\Omega} f b_j dx$

Jonathan Bischoff

Triangulierung und FEM

< ∃ →

Gleichungssystem

Beim Galerkinverfahren erhalten wir also ein Gleichungssystem der Form:

Ax = y $x := \begin{pmatrix} u_{h,1} \\ \vdots \\ u_{h,m} \end{pmatrix}, y := \begin{pmatrix} < f, b_1 > \\ \vdots \\ < f, b_m > \end{pmatrix}$ $A := \begin{pmatrix} < \nabla b_1, \nabla b_1 > \dots & < \nabla b_m, \nabla b_1 > \\ \vdots & \vdots \\ < \nabla b_1, \nabla b_m > \dots & < \nabla b_m, \nabla b_m > \end{pmatrix}$

Jonathan Bischoff

11/18

< ロ > (同 > (回 > (回 >)) 目

Finite Elemente

Nun muss eine geeignete Basis für V_h gefunden werden.

- Die Basis sollte aus möglichst einfache Basisfunktionen bestehen
- A dünn besetzt, d.h. $\langle \nabla b_i, \nabla b_j \rangle = 0$ für möglichst viele i,j.
- A nennt man Steifigkeitsmatrix.

Das Gebiet Ω wird dabei in kleine Teilgebiete $\{\omega_1 \dots \omega_n\}$ unterteilt.

< ロ > (同 > (回 > (回 >)) 目

Triangulierung

- Die Triangulierung von Ω muss konform sein
- Sie muss das ganze Gebiet $\bar{\Omega}$ überdecken $\bar{\Omega} = \bigcup_{k=1}^{n} \bar{\omega_k}$

Triangulierung und FEM

E.

Basiselemente

Globale vs. lokale Basisfunktionen

Jonathan Bischoff

Triangulierung und FEM

15/18

Basiselemente

Einfluss lokaler Basisfunktionen auf die Steifigkeitsmatrix

Global (d.h. auf dem ganzen Gebiet) definierte Basisfunktionen führen immer auf voll besetzte Matrizen.

Einfluss lokaler Basisfunktionen auf die Steifigkeitsmatrix

Lineare lokale Basis (Hutfunktionen) führt auf eine tridiagonale Matrix

Quadratische lokale Basis führt auf eine pentadiagonale Matrix

Quellen

- G. Dziuk: Theorie und Numerik Partieller Differentialgleichungen; 2010 Walter de Gruyter GmbH
- W. Arendt, K. Urban: Partielle Differenzialgleichungen Eine Einführung in analytische und numerische Methoden; 2010 Spektrum Akademischer Verlag
- R. Tomasi: Numerik der Poissongleichung http://www.mathematik.unimuenchen.de/ diening/ws13/huette/vortraege/tomasi.pdf (Aufgerufen 24.06.2014)