Topologie und Differentialrechnung mehrerer Variablen ${\bf Pr\"{a}senzaufgaben} \ 7$

Aufgabe 1:

Wir betrachten die Funktionen

- (a) $f:[0,2]\to\mathbb{R}, x\mapsto \frac{1}{3}(4-x^2)$ und
- (b) $g: [3,5] \to \mathbb{R}, x \mapsto \arctan(x) + 3.$

Untersuchen Sie jeweils, ob

- (a) die Funktionen Kontraktionen darstellen,
- (b) die Inklusion $f([0,2]) \subseteq [0,2]$ bzw. $g([3,5]) \subseteq [3,5]$ besteht,
- (c) der Banach'sche Fixpunktsatz anwendbar ist und
- (d) die Funktionen Fixpunkte auf ihrem Definitionsbereich haben.

Aufgabe 2:

Die Funktion $T: C^0([-1,1],\mathbb{R}) \to C^0([-1,1],\mathbb{R})$ sei für $f \in C^0([-1,1],\mathbb{R})$ durch

$$(Tf)(x) := \frac{1}{3} \int_{-1}^{x} f(s) ds, \qquad x \in [-1, 1],$$

gegeben. Zeigen Sie, dass f = 0 die einzige Lösung der Gleichung Tf = f ist.

Aufgabe 3:

Betrachte die Abbildung $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) := \log(1 + e^x).$$

Zeigen Sie: f erfüllt für alle $x, y \in \mathbb{R}$ mit $x \neq y$ die Ungleichung

$$|f(x) - f(y)| < |x - y|,$$

aber f besitzt keinen Fixpunkt.

Aufgabe 4:

Sei (X,d) ein kompakter metrischer Raum und sei $T:X\to X$ eine Abbildung, welche für alle $x,y\in X$ mit $x\neq y$ die Ungleichung

$$d(T(x), T(y)) < d(x, y)$$

erfüllt. Beweisen Sie, dass T genau einen Fixpunkt besitzt. Hinweis: Betrachten Sie die Funktion $f: X \to [0, \infty), f(x) := d(x, T(x))$.