

Preliminar

The generic proble 00000

On some useful notions

Lipschitz Truncation

F.X. Gmeineder

LMU Munich

23th June 2012

<ロ> <同> <同> < 回> < 回>

Consider the *p*-Laplacian problem:

$$-\operatorname{div}(|\mathbf{Dv}|^{p-2}\mathbf{Dv}) = \mathbf{F} \text{ in } \Omega \subset \mathbb{R}^N$$

 ${\bm v}=0 \ \ \text{on} \ \partial \Omega$

where Ω has Lipschitz boundary, p > 1, Dv (symmetrized gradient). **Remark:** Key assumption: $p > 1 \longrightarrow$ Reflexivity of $W_0^{1,p}(\Omega)^N$! Let \mathcal{X} a

suitable class of functions/distributions and $\varphi \in \mathcal{X}$.

Let
$$\{\mathbf{v}^n\} \subset \mathcal{X}$$
 be a sequence s.t.
(i)

$$\int_{\Omega} |\mathbf{D}\mathbf{v}^n|^{p-2} \mathbf{D}\mathbf{v}^n \cdot \mathbf{D}\varphi \, dx = \langle \mathbf{F}^n, \varphi \rangle$$
(ii)

$$\sup_n \int_{\Omega} |\mathbf{D}\mathbf{v}^n|^p \, dx < \infty$$

$$\longrightarrow \mathbf{v}^n \rightharpoonup \mathbf{v} \text{ weakly in } W_0^{1,p}(\Omega)^N$$
(iii)
 $\langle \mathbf{F}^n, \varphi \rangle \longrightarrow \langle \mathbf{F}, \varphi \rangle$

for all suitable $\varphi \in \mathcal{X}$

Let
$$\{\mathbf{v}^n\} \subset \mathcal{X}$$
 be a sequence s.t.
(i)

$$\int_{\Omega} |\mathbf{D}\mathbf{v}^n|^{p-2}\mathbf{D}\mathbf{v}^n \cdot \mathbf{D}\varphi \, dx = \langle \mathbf{F}^n, \varphi \rangle$$
(ii)

$$\sup_n \int_{\Omega} |\mathbf{D}\mathbf{v}^n|^p \, dx < \infty$$

$$\longrightarrow \mathbf{v}^n \rightarrow \mathbf{v} \text{ weakly in } W_0^{1,p}(\Omega)^N$$
(iii)
 $\langle \mathbf{F}^n, \varphi \rangle \longrightarrow \langle \mathbf{F}, \varphi \rangle$

for all suitable $\varphi \in \mathcal{X}$

Let
$$\{\mathbf{v}^n\} \subset \mathcal{X}$$
 be a sequence s.t.
(i)

$$\int_{\Omega} |\mathbf{D}\mathbf{v}^n|^{p-2}\mathbf{D}\mathbf{v}^n \cdot \mathbf{D}\varphi \, dx = \langle \mathbf{F}^n, \varphi \rangle$$
(ii)

$$\sup_n \int_{\Omega} |\mathbf{D}\mathbf{v}^n|^p \, dx < \infty$$

$$\longrightarrow \mathbf{v}^n \rightarrow \mathbf{v} \text{ weakly in } W_0^{1,p}(\Omega)^N$$
(iii)
 $\langle \mathbf{F}^n, \varphi \rangle \longrightarrow \langle \mathbf{F}, \varphi \rangle$

for all suitable $\varphi \in \mathcal{X}$

Assume in the above situation \mathbf{v} is also a weak solution to the *p*-Laplacian system. Then this system is said to satisfy the *weak stability property*.

- How to reach weak stability?
- Strict monotonicity of $T(X) \equiv |X|^{p-2}X$ and

$$\limsup_{n\to\infty} (T(D\mathbf{v}^n) - T(D\mathbf{v})) \cdot D(v^n - v) \, dx = 0$$

imply $D\mathbf{v}^n \to D\mathbf{v}$ a.e. in Ω .

• Vitali's convergence theorem \Rightarrow pass to the limit in the nonlinear term

Assume in the above situation \mathbf{v} is also a weak solution to the *p*-Laplacian system. Then this system is said to satisfy the *weak stability property*.

- How to reach weak stability?
- Strict monotonicity of $T(X) \equiv |X|^{p-2}X$ and

$$\limsup_{n\to\infty} (T(D\mathbf{v}^n) - T(D\mathbf{v})) \cdot D(v^n - v) \, dx = 0$$

imply $D\mathbf{v}^n \to D\mathbf{v}$ a.e. in Ω .

• Vitali's convergence theorem \Rightarrow pass to the limit in the nonlinear term

Assume in the above situation \mathbf{v} is also a weak solution to the *p*-Laplacian system. Then this system is said to satisfy the *weak stability property*.

- How to reach weak stability?
- Strict monotonicity of $T(X) \equiv |X|^{p-2}X$ and

$$\limsup_{n\to\infty} (T(D\mathbf{v}^n) - T(D\mathbf{v})) \cdot D(v^n - v) \, dx = 0$$

imply $D\mathbf{v}^n \to D\mathbf{v}$ a.e. in Ω .

• Vitali's convergence theorem \Rightarrow pass to the limit in the nonlinear term

Assume in the above situation \mathbf{v} is also a weak solution to the *p*-Laplacian system. Then this system is said to satisfy the *weak stability property*.

- How to reach weak stability?
- Strict monotonicity of $T(X) \equiv |X|^{p-2}X$ and

$$\limsup_{n\to\infty} (T(D\mathbf{v}^n) - T(D\mathbf{v})) \cdot D(v^n - v) \, dx = 0$$

imply $D\mathbf{v}^n \to D\mathbf{v}$ a.e. in Ω .

• Vitali's convergence theorem \Rightarrow pass to the limit in the nonlinear term

<ロ> <同> <同> < 同> < 同> < 回> <

The simple case

$$F_n, F \in (W_0^{1,p}(\Omega)^d)^*$$
 such that $F_n \to F$ strongly. Take $\varphi \equiv \mathbf{v} - \mathbf{v}^n$ and obtain

$$\int_{\Omega} (T(D\mathbf{v}^n) - T(D\mathbf{v})) (D(\mathbf{v}^n - \mathbf{v})) dx = \langle F^n, \mathbf{v}^n - \mathbf{v} \rangle - \int_{\Omega} T(D\mathbf{v}) \cdot D(\mathbf{v}^n - \mathbf{v}) dx$$

(日) (종) (종) (종) (종)

The difficult case

Assume $F^n = \operatorname{div}(G^n)$ with $G^n \to G$ strongly in $L^1(\Omega)^{d \times d}$. $\mathbf{u}^n = \mathbf{v} - \mathbf{v}^n$

 $\longrightarrow \langle \mathsf{div}(G^n), \mathbf{u}^n \rangle$, $-\langle G, \nabla \mathbf{u}^n \rangle$ have no clear meaning.

IDEA: Replace \mathbf{u}^n by its *Lipschitz truncation*. Then uniform smallness of the integrand on sets where the Lipschitz truncation is not equal to \mathbf{u}^n lead to

$$\limsup_{n \to \infty} ((T(D\mathbf{v}^n) - T(D\mathbf{v})) \cdot D(v^n - v))^{\theta} dx = 0$$
for some $\theta \in (0, 1]$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

The maximal function and Lipschitz spaces

Let 1 .

$$M: L^{1}(\Omega) \ni f \mapsto (Mf)(x) \equiv \sup_{r > 0: B(x,r) \subset \Omega} \oint_{B(x,r)} f d\mathcal{L}^{n}$$

is called the maximal function of $f \in L^1(\Omega)$.

- Example: Assume $f : \mathbb{R}^N \to \mathbb{R}$ harmonic. Then (Mf)(x) = f(x). This is, any harmonic function is a fixed point of M.
- Note: If 1 p</sup>(ℝ^N) → L^p(ℝ^N) → by Hardy-Littlewood-Inequality

The maximal function and Lipschitz spaces

Let 1 .

$$M: L^{1}(\Omega) \ni f \mapsto (Mf)(x) \equiv \sup_{r > 0: B(x,r) \subset \Omega} \oint_{B(x,r)} f d\mathcal{L}^{n}$$

is called the maximal function of $f \in L^1(\Omega)$.

- Example: Assume $f : \mathbb{R}^N \to \mathbb{R}$ harmonic. Then (Mf)(x) = f(x). This is, any harmonic function is a fixed point of M.
- Note: If 1 p</sup>(ℝ^N) → L^p(ℝ^N) → by Hardy-Littlewood-Inequality

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆

The maximal function and Lipschitz spaces

Let 1 .

$$M: L^{1}(\Omega) \ni f \mapsto (Mf)(x) \equiv \sup_{r > 0: B(x,r) \subset \Omega} \oint_{B(x,r)} f d\mathcal{L}^{n}$$

is called the maximal function of $f \in L^1(\Omega)$.

- Example: Assume $f : \mathbb{R}^N \to \mathbb{R}$ harmonic. Then (Mf)(x) = f(x). This is, any harmonic function is a fixed point of M.
- Note: If 1 p</sup>(ℝ^N) → L^p(ℝ^N) → by Hardy-Littlewood-Inequality

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A_1 -property

Let $\Omega \subset \mathbb{R}^N$ be bounded. It fulfills a $A_1 \ge 1$ property iff there exists $A_1 \ge 1$ such that for all $x \in \Omega$

$$|B_{2dist(x,\Omega^{C})}(x)| \leq A_{1} \cdot |B_{2dist(x,\Omega^{C})}(x) \cap \Omega^{C}|$$

holds true.

・ロト ・四ト ・ヨト ・ヨト

Lipschitz functions and extensions

• $W^{1,\infty}(\Omega) = \operatorname{Lip}(\Omega)$

Theorem

(Lipschitz extension) Assume $\Omega \subset \mathbb{R}^N$ and let $f : \Omega \to \mathbb{R}^M$ be Lipschitz. Then there exists a Lipschitz function $\overline{f} : \mathbb{R}^N \to \mathbb{R}^M$ such that

$$\overline{f}|_{\Omega} = f$$

 $Lip(\overline{f}) \leq \sqrt{M}Lip(f)$

Lipschitz Truncation

Theorem (Acerbi, Fusco 1988)

Let $\Omega \subset \mathbb{R}^N$ have the A_1 -property, $A \geq 1$. Let $\mathbf{v} \in W_0^{1,1}(\Omega)^N$. Then for every $\theta, \lambda >$ exist truncations $\mathbf{v}_{\theta,\lambda} \in W_0^{1,\infty}(\Omega)^N$ such that

• $||\mathbf{v}_{\theta,\lambda}||_{\infty} \leq \theta$

•
$$||\nabla \mathbf{v}_{\theta,\lambda}||_{\infty} \leq c_1 A_1 \lambda$$

where c_1 only depends on the dimension N. Moreover, up to a nullset it holds

$$\{\mathbf{v}_{\theta,\lambda}\neq\mathbf{v}\}\subset\Omega\cap(\{M\mathbf{v}>\theta\}\cup\{M(\mathbf{v})>\lambda\})$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Diening, Malek, Steinhauer 2006)

Let $1 and <math>\Omega \subset \mathbb{R}^d$ be a bounded domain which has the A_1 -property. Let $\{\mathbf{u}^n\} \subset W_0^{1,p}(\Omega)^d$ such that

 $\mathbf{u}^n
ightarrow 0$ in $W_0^{1,p}(\Omega)^d$

Set

$$\mathfrak{K} \equiv \sup_{n \in \mathbb{N}} ||\mathbf{u}^n||_{W^{1,p}(\mathbb{R}^N)} < \infty \& \gamma \equiv ||\mathbf{u}^n||_{L^p(\mathbb{R}^N)}$$

Let $\theta_n > 0$ such that $\theta_n \to 0$ as $n \to \infty$ and

$$rac{\gamma_n}{\theta_n}
ightarrow 0, \ n
ightarrow \infty$$

Set $\mu_j = 2^{2^j}$.

Lipschitz Truncation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Then: There exists a sequence $\{\lambda_n\} \subset \mathbb{R}$, $\lambda_{n,j} > 0$ such that $\mu_j \leq \lambda_{n,j} \leq \mu_{j+1}$ and a sequence $\{\mathbf{u}^{n,j}\} \subset W_0^{1,\infty}(\Omega)^d$ such that

$$||\mathbf{u}^{n,j}||_{\infty} \le \theta_n \to 0$$

$$||\nabla \mathbf{u}^{n,j}||_{\infty} \leq c\lambda_{n,j} \leq c\mu_{j+1}$$

and up to some nullset

$$\left\{\mathbf{u}^{n,j}\neq\mathbf{u}^{n}\right\}\subset\Omega\cap\left(\left\{M\mathbf{u}^{n}>\theta\right\}\cup\left\{M\nabla\mathbf{u}^{n,j}>2\lambda_{n,j}\right\}\right)$$

and for all
$$j \in \mathbb{N}$$
 as $n \to \infty$:

$$\begin{split} \mathbf{u}^{n,j} &\to 0 \text{ strongly in } L^s(\Omega)^d \, \forall s \in [1,\infty] \\ \mathbf{u}^{n,j} &\rightharpoonup 0 \text{ weakly in } W_0^{1,s}(\Omega)^d \, \forall s \in [1,\infty) \\ &\nabla \mathbf{u}^{n,j} \rightharpoonup^* \text{ *-weakly in } L^\infty(\Omega)^d \end{split}$$

 and

$$||\nabla \mathbf{u}^{n,j} \chi_{\mathbf{u}^{n,j} \neq \mathbf{u}^n}||_{L^p(\Omega)} \le c \frac{\gamma_n}{\theta_n} \mu_{j+1} + \mathfrak{K} c 2^{-j/p}$$

Solution to the problem

- $\{\mathbf{u}^n\}$ fulfills the assumptions of the Lipschitz truncation theorem
- The sequence $\{\mathbf{u}^{n,j}\} \subset W^{1,\infty}_0(\Omega)^d$ are admissible test functions.
- Thus,

$$\int_{\Omega} (T(D\mathbf{v}^n) - T(D\mathbf{v})) \cdot (Du^{n,j}) \, dx = \\ - \int_{\Omega} ((G^n - G) + G + T(D\mathbf{v})) \cdot D\mathbf{u}^{n,j} \, dx$$

• But: $G^n \to G$ strongly in $L^1(\Omega)^{d \times d}$ and $Du^{n,j} \rightharpoonup^* 0$ in $L^\infty(\Omega)^d$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >