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1. Introduction. We study the time discretization of a homogeneous, incom-
pressible fluid with shear-dependent viscosity, governed by the following system of
partial differential equations

ρut − div S(Du) + ρ [∇u]u + ∇π = ρ f in I × Ω,

div u = 0 in I × Ω,

u(0) = u0 in Ω,

(NSp)

where the vector field u = (u1, u2, u3) is the velocity, S is the extra stress tensor,
the scalar π is the kinematic pressure, the vector f = (f1, f2, f3) is the external body
force, ρ the constant density, and u0 is the initial velocity. Here we used the notation
([∇u]u)i =

∑3
j=1 uj∂jui, i = 1, 2, 3, for the convective term. In the following we

divide the equation (NSp) by the constant density ρ and relabel S/ρ and π/ρ again
as S and π, respectively. Thus we consider from now on (NSp) always with the
convention that ρ = 1. The term Du := 1

2 (∇u + ∇u⊤) denotes the symmetric part
of the gradient ∇u. Throughout the paper we shall assume that Ω = (0, 2π)3 ⊂ R

3

and we endow the problem with space periodic boundary conditions. The latter
assumption simplifies the problem, but allows us to concentrate on the difficulties
that arise from the structure of the extra stress tensor. As usual I = [0, T ] denotes
some non-vanishing time interval.

Standard examples of power-law extra stress tensors for p ∈ (1,∞) are

S(Du) = µ (δ + |Du|2)
p−2
2 Du or S(Du) = µ (δ + |Du|)p−2Du, (1.1)

where µ > 0 and δ ≥ 0 are given constants. These models belong to the class of
power-law ansatz to model certain non-Newtonian behavior of fluid flows, and they
are frequently used in engineering literature. A classical reference (with a detailed
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discussion of power-law models including also early models) is the book by Bird,
Armstrong, and Hassager [8]. We also refer to Málek, Rajagopal, and Růžička [22]
and Málek and Rajagopal [21] for a discussion of such models. Let us mention that
most real fluids that can be modeled by a constitutive law of type (1.1) are shear
thinning, which corresponds to a “small” shear exponent p, i.e., p ∈ (1, 2]. However
there are also shear thickening fluids, which have a shear exponent p ≥ 2. Moreover,
the case p = 3 is very interesting also for the modeling of turbulent flows and known
in applied literature as the Smagorinsky model [27].

The mathematical analysis of the problem (NSp), (1.1) started with the work of
Ladyžhenskaya [16], [17] proving existence of global weak solutions. After the papers
by Nečas et. al. [20], [5], improving the existence theory for global weak solutions, the
problem has been studied intensively and various existence and regularity properties
have been proved in the last years. We refer the reader to [19], [21], [14], and [7] for
a detailed discussion of the relevant results.

We shall study properties of numerical schemes for the case of shear thinning
fluids, i.e., p ∈ (1, 2]. In this paper we shall consider the time discretization, since for
parabolic problems it is one of the basic steps for the numerical analysis. In particular,
we study the following Euler scheme for (NSp):

Algorithm (Euler semi-implicit) Let be given a time step size k := T/M > 0 with
the corresponding net IM := {tm}M

m=0, tm := mT/M , and let u0 = u0. For m ≥ 1
and um−1 given from the previous time step, compute the iterate um as follows:

dtu
m − div S(Dum) + [∇um]um−1 + ∇πm = f(tm) in Ω,

div um = 0 in Ω,
(NSk

p)

endowed with periodic boundary conditions, where

dtu
m :=

um − um−1

k
. (1.2)

It is important to observe that the convective term is treated semi-implicitly (this
allows to prove uniqueness), while the more peculiar non-linear extra stress tensor is
treated implicitly.

We shall prove an optimal O(k2) error estimate by collecting and improving sev-
eral results obtained in the last decade. Hence, we think it is worth to briefly introduce
the problem and to make a small survey of the previously known results. The bench-
mark result is clearly that for the heat equation: If em := u(tm) − um denotes the
difference between the continuous solution evaluated at t = tm (m = 0, . . . ,M) and
the discrete one at the step m, it is possible to show (see Thomée [28] and Quarteroni
and Valli [24]) that there exists a constant c independent of the time step size k such
that

max
0≤m≤M

‖em‖2
L2(Ω) + k

M∑

m=0

‖∇em‖2
L2(Ω) ≤ c k2.

The counterpart of this result for strong solutions of the Navier-Stokes equations
(Newtonian fluid, i.e., system (NSp) with p = 2) can be found, e.g., in chapter 5 of
Girault and Raviart [15].

Existence of discrete-time approximations and their convergence to the solutions
to the continuous problem have been addressed for (NSp) starting from Prohl and
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Růžička [23] (cf. [3] for a parabolic problem with p-structure). They considered the
fully-implicit Euler scheme, where the convective term is discretized by [∇um]um.
Their main convergence result reads as follows: if the time step k is small enough and

p ∈
(

3+
√

29
5 , 2

]
≃ (1.677, 2], then

max
0≤m≤M

‖em‖2
L2(Ω) + k

M∑

m=0

‖Dem‖2
Lp(Ω) ≤ c k2α(p),

with α(p) = 5p−6
2p < 1.

This approach has been later refined in the sense that the admissible range of
p became larger and the convergence rate was improved. Recently, the value of ad-

missible p has been enlarged to p ∈
(

11+
√

21
10 , 2

]
≃ (1.558, 2] with convergence rate

O(k
5p−6

2(p−1) ) (cf. Diening, Prohl, and Růžička [11], [25]). In all these results the con-
vergence rate is determined by regularity of the second-order time derivative of the
continuous solution u, which is sub-optimal.

An optimal convergence result has been recently obtained for systems with p-
structure without both pressure and convective term by Diening, Ebmeyer, and

Růžička [9]. Moreover, sub-optimal O(k
5p−6

2(p−1) ) convergence for the semi-implicit Eu-
ler scheme has been recently proved in the extended range p ∈ (3/2, 2] by Diening,
Prohl, and Růžička [12], together with existence of strong discrete solutions.

In this paper we improve the above results. In particular, we prove the optimal
O(k2) convergence for p ∈ (3/2, 2] for the scheme (NSk

p). Moreover, by using the
results in [7] we are also able to deal with the degenerate case δ = 0 and to show
stability for δ ∈ (0, δ0].

We treat the problem in an appropriate functional setting, since for problems with
p-structure, it is important to observe that l∞(IM ;L2(Ω))∩ lp(IM ;W 1,p(Ω)) may not
be the “best” space to measure the error. An approach with a quasi-norm, depending
on the solution itself seems more natural (cf. Barrett and Liu [4, 18]). We will use an
equivalent setting inspired by the regularity theory of degenerate problems (cf. [1]).
For that we introduce

F(B) = (δ + |Bsym|) p−2
2 Bsym ∀B ∈ R

3×3, (1.3)

and measure the error using this quantity (cf. Theorem 1.1). The proofs of this
paper make strong use of the techniques introduced in the papers [12], [9], [7]. In
addition, i) we add a more precise way of dealing with the convective term, based on
suitable properties of averaging operators inspired by investigations of ”Large Eddy
Simulation” models (cf. [6]) and ii) we show the stability of the numerical scheme
with respect to δ > 0. This allows us to deal also with the degenerate case δ = 0.
The main result of this paper is the following.

Theorem 1.1. Let S satisfy Assumption 1 with p ∈
(

3
2 , 2] and δ ∈ [0, δ0], where

δ0 > 0. Let f ∈ C(I;W 1,2(Ω)) ∩ W 1,2(I;L2(Ω)), where I = [0, T ], for some T > 0,
and let u0 ∈ W 2,2

div (Ω) with div S(Du0) ∈ L2(Ω) be given. Let u be the corresponding
strong solution of the (continuous) problem (NSp) satisfying

‖ut‖L∞(I;L2(Ω)) + ‖F(Du)‖W 1,2(I×Ω) + ‖F(Du)‖
L

2
5p−6
2−p (I;W 1,2(Ω))

≤ c , (1.4)

with a constant c = c(δ0, p, C0, ‖f‖, ‖u0‖, T,Ω). Let um be the unique solution of the
(discrete) problem (NSk

p) corresponding to the same data. Then, there exists a time
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step size k > 0 such that for k ∈ (0, k) the following estimates holds true

max
0≤m≤M

‖Dem‖2
L2(Ω) + k

M∑

m=0

‖F(Du(tm)) − F(Dum)‖2
L2(Ω) ≤ c k2, (1.5)

where k and the constant c depend only on δ0, p, C0, ‖f‖, ‖u0‖, T , and Ω. In particular,
they are independent of δ ∈ [0, δ0].

Remark 1.2.
(i) Note that in the above theorem the solutions of the continuous problem u

and of the discrete problem um as well as the quantities S and F depend on
δ. For a lighter notation we have suppressed this dependence. With a few
exception this comment applies to the whole paper.

(ii) Under the regularity assumptions on the data in Theorem 1.1 it is shown in
[7] (cf. Theorem 2.6 below) that at least locally in time there exists a strong
solution of the problem (NSp) with the required regularity. Under the same
assumption it is shown in [7] (cf. Lemma 3.1 below) that there exists a unique
solution of the problem (NSk

p). Note, that the error estimate (1.5) holds on
the whole interval I.

(iii) Using ideas from [7] and [12] one can show that the discrete solutions um

have essentially the same regularity properties as the continuous solution u
(cf. Theorem 4.1).

Plan of the paper. In section 2 we recall some features of the extra stress tensor
with p-structure and give precise definitions of the various norms and semi-norms
we shall use. Moreover, we recall the existence theorem for strong solutions of the
continuous problem. In section 3 we prove the error estimate in Theorem 1.1 using a
suitable Gronwall-like argument and a retarded-time-averaging to treat the continuous
equation. All estimates will be uniform in δ ∈ [0, δ0]. Finally, in section 4 we prove
the existence of strong solutions for the discrete problem.

2. Generalities on fluids modeled by systems with p-structure. In this
section we introduce the notation used in the paper and define the class of extra stress
tensors we shall consider and recall its most relevant properties.

2.1. Notation. We shall use the customary Lebesgue spaces Lp(Ω) and Sobolev
spaces W k,p(Ω) and we do not distinguish between scalar, vector, or tensor function
spaces. We shall denote by ‖ · ‖p the norm in Lp(Ω) and by ‖ · ‖k,p the norm in

W k,p(Ω). In this paper we are considering the space-periodic case, i.e., Ω = (0, 2π)3

and each function f we consider will satisfy f(x + 2π ei) = f(x), i = 1, 2, 3, where
{e1, e2, e3} is the canonical basis of R

3. Often we will also require that the functions
have vanishing mean value, i.e.,

∫
Ω

f(x) dx = 0. This is a standard request in order
to have Poincaré’s inequality. We define V as the space of vector-valued functions on
Ω that are smooth, divergence-free, and periodic with zero mean value and set

W 1,p
div (Ω) :=

{
closure of V in W 1,p(Ω)

}
.

Since we deal with a time dependent problem, we shall make use of the spaces
Lp(I;X), 1 ≤ p ≤ ∞, where (X, ‖ . ‖X) is a Banach space. The subscript ”t” de-
notes differentiation with respect to time. We write f ≃ g if there exist positive
constants c0 and c1 such that

c0f ≤ g ≤ c1f.
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To deal with discrete problems we shall use the discrete spaces lp(IM ;X), where
IM := {tm}M

m=0 is a net with tm := mT/M . These spaces are the discrete counterparts
of Lp(I;X) and they consists of X-valued sequences {am}M

m=0, endowed with the norm

‖am‖lp(IM ;X) :=






(
k

M∑

m=0

‖am‖p
X

)1/p

if 1 ≤ p < ∞

max
0≤m≤M

‖am‖X if p = ∞.

We also use the notation Im := (tm−1, tm) for m = 1, . . . ,M .
As a general rule in the sequel we shall use the symbol “c” to denote generic

constants (possibly different from line to line), which depend only on the data of the
problem, but neither on the time step size k, nor on δ ∈ [0, δ0].

2.2. General properties of the extra stress tensor. Let us now discuss the
structure of the extra stress tensor S and motivate our assumptions for it. Due to the
principle of objectivity the extra stress tensor S depends on the velocity gradient ∇u
only through its symmetric part Du := 1

2

(
∇u+∇u⊤). Therefore we assume that the

extra stress tensor S : R
3×3 → R

3×3
sym, where R

3×3
sym :=

{
A ∈ R

3×3
∣∣A = A⊤} satisfies

S(A) = S
(
Asym

)
and S(0) = 0, where Asym := 1

2

(
A + A⊤).

Often the extra stress tensor S is derived from a potential, i.e., there exists a
sufficiently smooth convex function Φ : R

≥0 → R
≥0, which satisfies Φ(0) = Φ′(0) = 0,

such that for all A ∈ R
3×3 \ {0} and i, j = 1, 2, 3 it holds that∗

Sij(A) = ∂ij

(
Φ(|Asym|)

)
= Φ′(|Asym|

) Asym
ij

|Asym| . (2.1)

In many relevant cases the potential Φ possesses p-structure, or more precisely (p, δ)-
structure. This means that there exist p ∈ (1,∞) , δ ∈ [0,∞), and constants ν0, ν1 > 0
such that for all t ∈ R

≥0 holds

ν0(δ + t)p−2 ≤ Φ′′(t) ≤ ν1(δ + t)p−2 . (2.2)

In this situation one can show (cf. [10, Lemma 6.3], [26, Lemma 6.7, Section 8]) that
there are constants ν2, ν3 > 0, which depend only on ν0, ν1, and p, such that for all
A,C ∈ R

3×3 with Asym 6= 0 and i, j, k, l = 1, 2, 3 holds

3∑

i,j,k,l=1

∂klSij(A)CijCkl ≥ ν2

(
δ + |Asym|

)p−2|Csym|2 ,

∣∣∂klSij(A)
∣∣ ≤ ν3

(
δ + |Asym|

)p−2
.

(2.3)

These two relations are the basis of our main assumption on the extra stress tensor.
Assumption 1 (extra stress tensor). We assume that the extra stress tensor

S : R
3×3 → R

3×3
sym belongs to C1(R3×3, R3×3

sym) ∩ C2(R3×3 \ {0}, R3×3
sym) and satisfies

S(A) = S
(
Asym

)
and S(0) = 0. Moreover, we assume that S has (p, δ)-structure,

i.e., there exist p ∈ (1,∞), δ ∈ [0,∞), and constants C0, C1 > 0 such that

3∑

i,j,k,l=1

∂klSij(A)CijCkl ≥ C0

(
δ + |Asym|

)p−2|Csym|2 , (2.4a)

∣∣∂klSij(A)
∣∣ ≤ C1

(
δ + |Asym|

)p−2
(2.4b)

∗ For functions g : R
3×3 → R we use the notation ∂klg(A) :=

∂g(A)
∂Akl

.
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is satisfied for all A,C ∈ R
3×3 with Asym 6= 0 and for all i, j, k, l = 1, 2, 3.

Closely related to the extra stress tensor S with p-structure is the function
F : R

3×3 → R
3×3
sym defined through

F(A) :=
(
δ + |Asym|

) p−2
2 Asym , (2.5)

where δ ∈ [0,∞) is the same as in (2.2) and (2.3). If the dependence on δ is of
relevance we write Fδ(A). Moreover, there is a close relation to Orlicz spaces and
N-functions (cf. [26], [7] for a detailed description.)

Remark 2.1. If not stated otherwise we will use the convention that in formulas
relating the quantities S and F the value of δ is the same in each of the quantities
and it is suppressed for shortage of notation.

In the situation of Assumption 1 one can prove the following crucial lemma, which
shows the equivalence of several quantities occurring naturally in the analysis of the
system (NSp), showing also the strict connection between S and F (cf. [9, Lemma
2.1], [10, Lemma 2.3], [26, Lemma 6.16, Section 6].)

Lemma 2.2. Let S satisfy Assumption 1 with p ∈ (1,∞) and δ ∈ [0,∞) and let
F be defined by (2.5). Then for all A, B ∈ R

3×3 there holds

(S(A) − S(B)) · (A − B) ≃ |Asym − Bsym|2(δ + |Bsym| + |Asym|)p−2

≃ |F(A) − F(B)|2
(2.6)

|S(A) − S(B)| ≃ |Asym − Bsym|(δ + |Bsym| + |Asym|)p−2, (2.7)

where the constants depend only on C0, C1, and p. In particular, the constants are
independent of δ.

Since in the following we shall insert into S and F only symmetric tensors, we can
drop in the above formula the superscript “sym” and restrict the admitted tensors to
symmetric ones.

Lemma 2.2 also clarifies the connection with the quasinorm ‖C‖(B) introduced
by Barrett and Liu [2] through

‖C‖(B):=

(∫

Ω

(δ + |B(x)| + |C(x)|)p−2|C(x)|2 dx

)1/2

,

where B, C : Ω → R
3×3.

From Lemma 2.2 and the definition of quasi-norm ‖C‖(B) follows immediately:
Lemma 2.3. Let S satisfy Assumption 1 with p ∈ (1,∞) and δ ∈ [0,∞) and let

F be defined by (2.5). Then

‖Dv − Dw‖2
(Dw) ≃

∫

Ω

(S(Dv) − S(Dw)) · (Dv − Dw) dx

≃ ‖F(Dv) − F(Dw)‖2
L2(Ω), ∀v, w ∈ W 1,p(Ω),

where the constants depend only on C0, C1, and p. In particular, the constants are
independent of δ.

The following lemma is a version of Young’s inequality and will be used frequently
in the sequel.
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Lemma 2.4 (Quasi-norm trick). Let S satisfy Assumption 1 with p ∈ (1,∞) and
δ ∈ [0,∞) and let F be defined by (2.5). Then for each ε > 0 there exists cε(p) > 0,
such that for all A, B, C ∈ R

3×3
sym there holds

(
S(A) − S(B)

)
·
(
A − C

)

≤ ε
(
S(A) − S(B)

)
·
(
A − B

)
+ cε

(
S(A) − S(C)

)
·
(
A − C

)

and equivalently

(
S(A) − S(B)

)
·
(
A − C

)
≤ ε

∣∣F(A) − F(B)
∣∣2 + cε

∣∣F(A) − F(C)
∣∣2 .

Proof. Cf. [3, Lemma 2.2], [7, Lemma 3.5].

Especially, for v,w1,w2 ∈ W 1,p(Ω) we easily deduce from Lemma 2.4 the follow-
ing useful inequality.

∫

Ω

(S(Dv) − S(Dw1)) · (Dv − Dw2) dx

≤ ε ‖F(Dv) − F(Dw1)‖2
2 + cε ‖F(Dv) − F(Dw2)‖2

2.

(2.8)

We also recall the following result, taken from [13, Lemma 8], [7, Lemma 4.1].
Lemma 2.5. Let S satisfy Assumption 1 with p ∈ (1, 2] and δ ∈ (0,∞), and let

F be defined by (2.5). Then, for sufficiently smooth u, v and q ∈ [1, 2] holds

‖D(u − v)‖2
q ≤ c ‖F(Du) − F(Dv)‖2

2

∥∥(δ + |Du| + |Dv|)2−p
∥∥

q

2−q

,

where the constant c depends only on C0, C1, and p. Moreover, q
2−q = ∞ for q = 2.

For p ∈ (1, 2], δ ∈ [0,∞), r ∈ [1,∞], and δ + ‖Du‖r + ‖Dv‖r > 0 we can formulate
this result also as follows

∫

Ω

(S(Du) − S(Dv)) · D(u − v) dx

≥ c ‖Du − Dv‖2
2r

2−p+r
(δ + ‖Du‖r + ‖Du − Dv‖r)

p−2.

2.3. Existence of strong solutions. Let us recall the main existence theorem
of [7].

Theorem 2.6. Let S satisfy Assumption 1 with p ∈
(

7
5 , 2] and δ ∈ [0, δ0] where

δ0 > 0. Assume that f ∈ L∞(I;W 1,2(Ω))∩W 1,2(I;L2(Ω)), where I = [0, T ], and u0 ∈
W 2,2

div (Ω), div S(Du0) ∈ L2(Ω). Then there exists a time T ′ = T ′(δ0, p, C0, f ,u0, T,Ω),
with 0 < T ′ ≤ T , such that the system (NSp) has a strong solution u belonging to

Lp(I ′;W 1,p
div (Ω)), I ′ = [0, T ′], satisfying for a.e. t ∈ I ′ and for all ϕ ∈ W 1,p

div (Ω)

∫

Ω

ut(t) · ϕ + S(Du(t)) · Dϕ + [∇u(t)]u(t) · ϕ dx =

∫

Ω

f(t) · ϕ dx, (2.9)

and

‖ut‖L∞(I′;L2(Ω))+‖F(Du)‖W 1,2(I′×Ω) + ‖F(Du)‖
L

2
5p−6
2−p (I′;W 1,2(Ω))

≤ c0 , (2.10)
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with c = c(δ0, p, C0, ‖f‖, ‖u0‖, T,Ω). In particular, we have

u ∈ L
p(5p−6)

2−p (I ′;W 2, 3p

p+1 (Ω)) ∩ C(I ′;W 1,r(Ω)) 1 ≤ r < 6(p − 1) (2.11a)

ut ∈ L∞(I ′;L2(Ω)) ∩ L
p(5p−6)

(3p−2)(p−1) (I ′;W 1, 3p

p+1 (Ω)) , (2.11b)

with the corresponding norms of u and ut bounded by constants c = c(δ0, p, C0, ‖f‖,
‖u0‖, T,Ω, r) and c = c(δ0, p, C0, ‖f‖, ‖u0‖, T,Ω), respectively.

Due to (2.11a) and p > 7
5 we have u ∈ C(I;W 1, 12

5 (Ω)) and the solution u is

unique within this class C(I;W 1, 12
5 (Ω)).

Remark 2.7. For δ > 0 there exists a pressure π satisfying

∇π ∈ L
2(5p−6)

2−p (I ′;L2(Ω)) (2.12)

and the second time derivative satisfies

utt ∈ L2(I ′;
(
W 1,2

div (Ω)
)∗

) , (2.13)

with both norms bounded by a constant c = c(δ, p, C0, C1, ‖f‖, ‖u0‖, T,Ω), which may
explode as δ → 0+.

Remark 2.8. By parabolic interpolation it follows from (2.11b) that

ut ∈ L
11p−12
3(p−1) (I ′ × Ω). (2.14)

Note that this regularity is one of the reasons that leads to the restriction p ∈ ( 3
2 , 2]

in Theorem 1.1.

3. Proof of Theorem 1.1. In this section we prove our optimal convergence
result. This requires a few auxiliary results. We begin with the existence result for
solutions to the discrete problem (NSk

p), which is proved in [7, Theorem 6.3].

Lemma 3.1. Let S satisfy Assumption 1 with p ∈
(

3
2 , 2] and δ ∈ [0, δ0], where

δ0 > 0. Let f ∈ C(I;W 1,2(Ω)), where I = [0, T ], for some T > 0, and u0 ∈ W 2,2
div (Ω) be

given. Then, there exists a unique strong solution um of the problem (NSk
p) satisfying

the weak formulation

∫

Ω

dtu
m · ϕ + S(Dum) · Dϕ + [∇um]um−1 · ϕ dx =

∫

Ω

f(tm) · ϕ dx (3.1)

for all ϕ ∈ W 1,p
div (Ω) with

max
0≤m≤M

‖um‖2
2 + k

M∑

m=0

‖Dum‖p
p ≤ c, (3.2)

‖F(Dum)‖W 1,2(Ω) ≤ c(k), (3.3)

where the constants also depend on δ0, p, C0, C1, ‖f‖, ‖u0‖, T , and Ω.

3.1. A generalized discrete Gronwall’s lemma. We now prove a generalized
discrete Gronwall’s lemma, which follows the same lines as [12, Lemma 2.15]. Here
we denote the degeneracy parameter by λ ∈ [0,Λ] instead of δ ∈ [0, δ0] as in the other
sections. Of course, λ and Λ are related to δ and δ0, respectively (cf. (3.15)). The main
new point (which requires some additional care) is that we check that all constants are
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“weakly” dependent on λ. With weakly dependence we mean that all constants are
uniformly bounded if λ belongs to [0,Λ], for some Λ > 0. In particular, we can keep
under control the various constants in the interesting case that λ is asymptotically
small. The upper bound Λ for λ will be later derived from a-priori estimates on strong
solutions and will depend on the data of the problem. The constant M below will be
later the number of time steps with time step size k, such that kM = T .

Lemma 3.2. Let p ∈ (1, 2] and let {am}m, {bm}m, {rm}m, and {sm}m be non-
negative sequences with a0 = b0 = 0 such that

∃ c > 0 : k

M∑

m=0

r2
m ≤ c k2 and k

M∑

m=0

s2
m ≤ c k2. (3.4)

Further, let there exist constants γ1, γ2, γ3 > 0, and some θ ∈ (0, 1) such that for all
λ ∈ [0,Λ] the following two inequalities are satisfied for all k ∈ (0, k0) and all m ≥ 1:†

dta
2
m + γ1(λ + bm)p−2b2

m ≤ bmrm + γ2bm−1bm + s2
m, (3.5)

dta
2
m + γ1(λ + bm)p−2b2

m ≤ bmrm + γ3bm−1b
1−θ
m aθ

m + s2
m. (3.6)

Then, there exists k ∈ (0, k0] and constants γ4, γ5 > 0 such that for all k ∈ (0, k)

max
0≤m≤M

bm ≤ 1 (3.7)

max
0≤m≤M

a2
m + γ1(Λ + 1)p−2k

M∑

m=0

b2
m ≤ γ4k

2 exp(2γ5 kM). (3.8)

The explicit expressions for k, γ4, and γ5 will be given throughout the proof (cf. (3.11),
(3.12), (3.10)).

Proof. The proof of this result is very similar to that of [12, Lemma 2.15], but here
we need to take more care to trace the precise behavior of all constants with respect
to λ. The proof proceeds by induction on N ≤ M . The starting step holds true,
since if N = 0, then (3.7)-(3.8) are both trivially satisfied. To continue the inductive
procedure we need to show that by assuming (3.7)-(3.8) for all 0 ≤ m ≤ N − 1, we
can conclude (3.7)-(3.8) also at the next step m = N . We start showing (3.7), i.e.,
that bN ≤ 1. If bN ≤ 1 there is nothing to prove. Consequently, let us suppose per
absurdum that bN > 1. We multiply (3.5) by k and we sum over m, for m = 1, . . . , N .
It follows that:‡

a2
N + γ1k

N∑

m=1

(λ + bm)p−2b2
m ≤ k

N∑

m=1

bm(rm + γ2bm−1)

√
γ1(λ + bm)

p−2
2

√
γ1(λ + bm)

p−2
2

+ k

N∑

m=1

s2
m

≤ γ1

2
k

N∑

m=1

(λ + bm)p−2b2
m +

1

γ1
k

N∑

m=1

(λ + bm)2−p(r2
m + γ2

2b2
m−1) + k

N∑

m=0

s2
m.

We absorb the first term on the right-hand side in the left-hand side. Concerning the
second term, we observe that since p ≤ 2, and 0 ≤ bm ≤ 1 < bN for m = 1, . . . , N − 1
it follows that

(λ + bm)2−p ≤ (λ + bN )2−p ≤ (λ + bN )2(2−p), (3.9)

†Here we use the convention that for bm = λ = 0 we set (λ + bm)p−2b2m = 0. This is consistent
with the notation we introduced in Lemma 2.5

‡Note that the manipulation in the first sum on the right-hand side is done only for bm 6= 0.
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regardless of the value of λ ≥ 0. We have now the following inequality

a2
N +

γ1

2
k

N∑

m=1

(λ + bm)p−2b2
m ≤ (λ + bN )2−p

γ1
k

N∑

m=1

(r2
m + γ2

2b2
m−1) + k

N∑

m=0

s2
m.

Neglecting all terms on the left-hand side, except the one with m = N , dividing both
sides by γ1

2 k(λ + bN )p−2 6= 0, and using again (3.9) we get

b2
N ≤ 2(λ + bN )2(2−p)

kγ2
1

k
N∑

m=1

(r2
m + γ2

2b2
m−1) +

2(λ + bN )2(2−p)

kγ1
k

N∑

m=0

s2
m.

By using now (3.4) and the estimate (3.8) (valid by assumption for 0 ≤ m ≤ N − 1)
we get

b2
N ≤ k (λ + bN )2(2−p)

[
2

γ2
1

[
c +

γ2
2γ4

γ1(1 + Λ)p−2
exp(2γ5k N)

]
+

2

γ1
c

]
.

We divide both sides by (λ + bN )2(2−p) 6= 0 and use the inequality, valid for all λ ≥ 0
and all x ≥ 1

x2(p−1)

(λ + 1)2(2−p)
≤ x2

(λ + x)2(2−p)

with x = bN . Next, we multiply both sides by (1 + Λ)2(2−p) and we finally get

1 < b
2(p−1)
N ≤ k (1 + Λ)2(2−p)

[
2c

γ2
1

+
2γ2

2γ4

γ3
1(1 + Λ)p−2

exp(2γ5k N) +
2c

γ1

]
.

This gives a contradiction, provided that

0 < k < k1 :=

[
(1 + Λ)2(2−p)

(
2c

γ2
1

+
2γ2

2γ4

γ3
1(1 + Λ)p−2

exp(2γ5k N) +
2c

γ1

)]−1

.

This proves that bN ≤ 1. Note that the value of k1 depends only on kN ≤ kM .

We pass now to prove the second part of the result, namely estimate (3.8) for
m = N . Observe that, if 0 < bm ≤ 1 and 1 < p ≤ 2, then

(1 + Λ)p−2 ≤ (1 + λ)p−2 ≤ (bm + λ)p−2 ∀λ ∈ [0,Λ],

which is used to bound the second term on the left-hand side of (3.6) from below. We
use several times Young’s inequality to estimate the terms on the right-hand side of
(3.6) for bm > 0 by

bmrm ≤ γ1(1 + Λ)p−2

6
b2
m +

3

2γ1(1 + Λ)p−2
r2
m,

γ3bm−1b
1−θ
m aθ

m ≤ γ1(1 + Λ)p−2

6
b2
m−1 +

γ1(1 + Λ)p−2

6
b2
m + γ5a

2
m

with -for the sake of completeness-

γ5 =
θ

2
γ

2/θ
3 (1 − θ)

1−θ
θ

(
3(1 + Λ)2−p

γ1

) 2−θ
θ

. (3.10)
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After these manipulations we multiply inequality (3.6) by k, sum over m, and absorb
in the left-hand side the terms with bm and bm−1. This yields

a2
N +

γ1(1 + Λ)p−2

2
k

N∑

m=1

b2
m ≤ k

N∑

m=1

3r2
m

2γ1(1 + Λ)p−2
+ k

N∑

m=1

s2
m + γ5k

N∑

m=1

a2
m.

If we define k2 as k2 := (2 γ5)
−1, then for all

0 < k < k := min{k1, k2} (3.11)

we can absorb kγ5a
2
N (the last term of the sum γ5k

∑M
m=0a

2
m) in the left-hand side,

to obtain

a2
N + γ1(1 + Λ)p−2k

N∑

m=1

b2
m ≤ k

N∑

m=1

3r2
m

γ1(1 + Λ)p−2
+ 2k

N∑

m=1

s2
m + 2 γ5k

N−1∑

m=1

a2
m.

Now we can apply the “standard” discrete Gronwall’s lemma to deduce

a2
N + γ1(1 + Λ)p−2k

N∑

m=1

b2
m ≤

(
3(1 + Λ)2−p

γ1
k

N∑

m=1

r2
m + 2k

N∑

m=1

s2
m

)
exp(2 γ5 k N)

≤ c k2

(
3(1 + Λ)2−p

γ1
+ 2

)
exp(2 γ5 k N),

hence the assertion follows with

γ4 := c

(
3(1 + Λ)2−p

γ1
+ 2

)
. (3.12)

This finishes the proof of the lemma.

Lemma 3.2 is one of the main building blocks of the proof of Theorem 1.1. The
strategy to prove the optimal O(k2)-error estimate for the Euler scheme (NSk

p) is
to study a proper error equation: We use the tool employed in [9] and average the
equations over the net IM , but additional new ideas will be needed in order to fit the
resulting discrete estimates with the hypotheses of Lemma 3.2.

Definition 3.3 (Retarded-time-averaging). Let be given a net IM on [0, T ] and
a function v ∈ L1(ΩT ), with ΩT = (0, T )×Ω. We define {vm}M

m=0, the sequence that
is the retarded-time-averaging of v, as follows:

v0(x) := v(x, 0) and vm(x) :=
1

k

∫ tm

tm−1

v(σ, x) dσ =

∫
–
Im

v(σ, x) dσ, m ≥ 1.

This kind of time-averaging seems crucial to obtain the optimal estimates and its
employment has been suggested by well-known techniques of Large Eddy Simulation
for turbulent flows (cf. Berselli, Iliescu, and Layton [6]), together with previous results
in [9].

By averaging (NSp) over Im we obtain the following discrete system (in weak
form):

∫

Ω

dtu(tm) · ϕ dx +

∫

Ω

S(Du)
m · Dϕ dx +

∫

Ω

[∇u]u
m

ϕ dx =

∫

Ω

f
m · ϕ dx
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for each vector-valued function ϕ ∈ W 1,p
div (Ω). Taking the difference with (3.1) we

obtain the error equation
∫

Ω

dte
m · ϕ dx +

∫

Ω

(
S(Du)

m − S(Dum)
)
· Dϕ dx

+

∫

Ω

(
[∇u]u

m − [∇um]um−1
)
· ϕ dx =

∫

Ω

(
f
m − f(tm)

)
· ϕ dx,

for all ϕ ∈ W 1,p
div (Ω). We use as test function em and perform suitable integration by

parts. The first resulting term in the left-hand side is treated by recalling that
∫

Ω

dte
m · em dx =

1

2
dt‖em‖2

2 +
k

2
‖dte

m‖2
2.

The term with p-structure is treated as follows:
∫

Ω

(
S(Du)

m − S(Dum
)
) · Dem dx

=

∫
–
Im

∫

Ω

(
S(Du(σ)) − S(Du(tm))

)
· (Du(tm) − Dum) dxdσ

+

∫

Ω

(
S(Du(tm)) − S(Dum)

)
· (Du(tm) − Dum) dx.

The second term from the right-hand side is estimated from below by using (2.6).
The integrand of the first term from the right-hand side is estimated by using the
quasi-norm trick of Lemma 2.4 (cf. (2.8)) as follows: for any ε > 0 there exists cε > 0
such that

(
S(Du(σ)) − S(Du(tm))

)
· (Du(tm) − Dum)

≤ ε|F(Du(tm)) − F(Dum)|2 + cε|F(Du(tm)) − F(Du(σ)|2.

By Lemma 2.4 there exist constants c, C > 0 (independent of δ) such that
∫

Ω

(
S(Du)

m − S(Dum)
)
· (Du(tm) − Dum) dx

≥ c ‖F(Du(tm)) − F(Dum)‖2
2 − C

∫
–
Im

‖F(Du(tm)) − F(Du(σ))‖2
2 dσ.

Next we consider the convective term. We need to estimate the following expression:
∫

Ω

[∇u]u
m · em − [∇um]um−1 · em dx.

By integrating by parts, adding and subtracting [∇em]um−1 · u(tm), and since um

and um−1 are divergence-free we get

−
∫
–
Im

∫

Ω

[∇em]u(σ) · u(σ) dx dσ +

∫
–
Im

∫

Ω

[∇em]um−1 · u(tm) dx dσ.

Then, in the first integral we add and subtract [∇em]u(σ) · u(tm), in the second
integral we add and subtract [∇em]u(tm−1) · u(tm), and we use some integration by
parts to finally arrive at

∫

Ω

[∇u]u
m · em − [∇um]um−1 · em dx = αm + βm + κm,
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where

αm :=

∫
–
Im

∫

Ω

[∇em]u(σ) · (u(tm) − u(σ)) dx dσ,

βm :=

∫
–
Im

∫

Ω

[∇em]
(
u(tm−1) − u(σ)

)
· u(tm) dx dσ,

κm :=

∫

Ω

[∇em]em−1 · u(tm) dx.

(3.13)

By collecting all previous results we finally get the following discrete inequality:

dt‖em‖2
2 + ‖F(Du(tm)) − F(Dum)‖2

2

≤ c

∫
–
Im

‖F(Du(tm)) − F(Du(σ))‖2
2 dσ+

+ c

(∫

Ω

|fm − f(tm)| |em| dx + |αm| + |βm| + |κm|
)

.

(3.14)

We fit the left-hand side of this inequality in such a way that we can apply Lemma 3.2.
First, we observe that from Lemma 2.5, with r = p it follows that

(δ + ‖Du(tm)‖p + ‖Dem‖p)
p−2‖Dem‖2

p ≤ c ‖F(Du(tm)) − F(Dum)‖2
2.

By Theorem 2.6 we have

max
0≤m≤M

‖Du(tm)‖p ≤ sup
0≤t≤T

‖Du(t)‖p ≤ c,

with c = c(δ0, p, C0, ‖f‖, ‖u0‖, T,Ω). Consequently, we have

0 ≤ λ := δ + max
0≤m≤M

‖Du(tm)‖p ≤ δ0 + sup
0≤t≤T

‖Du(t)‖p =: Λ. (3.15)

So Λ depends on δ0, p, C0, ‖f‖, ‖u0‖, T , and Ω. Using this we obtain from (3.14) for
m ≥ 1:

dt‖em‖2
2 + (λ + ‖Dem‖p)

p−2‖Dem‖2
p

≤ c

∫
–
Im

‖F(Du(tm)) − F(Du(σ))‖2
2 dσ

+ c

(∫

Ω

|fm − f(tm)| |em| dx + |αm| + |βm| + |κm|
)

.

(3.16)

¿From the structure of this inequality it is clear that we will use later Lemma 3.2 with
am = ‖em‖2 and bm = ‖Dem‖p. Therefore, we are going to estimate the right-hand
side in a way suitable for Lemma 3.2.

We start by recalling a result from [9, Lemma 4.6].
Lemma 3.4. Let u be such that (F(Du))t ∈ L2(ΩT ). Then

M∑

m=1

∫

Im

‖F(Du(tm)) − F(Du(t))‖2
2 dt ≤ k2‖

(
F(Du)

)
t
‖2

L2(ΩT ).

In order to estimate the second term of the right-hand side of (3.16) we prove a
result similar to the classical Poincaré’s inequality.
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Proposition 3.5. Let be given v ∈ L2(0, T ;Lq(Ω)), with vt ∈ Lq(ΩT ) for some
q ≥ 2. Then,

k
M∑

m=0

‖v(tm) − vm‖2
q ≤ T 1− 2

q k2‖vt‖2
Lq(ΩT ).

Proof. Since vt ∈ Lq(ΩT ), then v ∈ C(0, T ;Lq(Ω)) and v(tm) is well-defined. The
proof of Proposition 3.5 follows by direct computation (recall that v0(x) = v(x, 0)):

k

M∑

m=0

‖v(tm) − vm‖2
q = k

M∑

m=1

[∫

Ω

∣∣∣∣
∫
–
Im

v(x, tm) − v(x, σ) dσ

∣∣∣∣
q

dx

] 2
q

≤ k
M∑

m=1

[∫

Ω

(∫
–
Im

∫

Im

|vt(x, τ)| dτ dσ

)q

dx

] 2
q

.

Since |Im| = tm − tm−1 = k, by applying Hölder’s inequality it follows that

k
M∑

m=0

‖v(tm) − vm‖2
q ≤ k

M∑

m=1

[∫

Ω

(∫

Im

|vt(x, τ)| dτ

)q

dx

] 2
q

≤ k
M∑

m=1

[∫

Ω

kq−1

∫

Im

|vt(x, τ)|q dτ dx

] 2
q

≤ k1+2− 2
q

M∑

m=1

[∫

Ω

∫

Im

|vt(x, τ)|q dτ dx

] 2
q

≤ k1+2− 2
q

[
M∑

m=1

∫

Im

∫

Ω

|vt(x, τ)|q dx dτ

] 2
q
[

M∑

m=1

1

]1− 2
q

≤ T 1− 2
q k2‖vt‖2

Lq(ΩT ),

(3.17)

where we used M = T/k.

By applying Proposition 3.5 with q = 2 to the function f ∈ W 1,2(I;L2) and by
using the Sobolev embedding W 1,p(Ω) →֒ L2(Ω) (valid for p ≥ 6/5) in combination
with Korn’s inequality, we have the following result.

Lemma 3.6. Let f ∈ W 1,2(I;L2) and p ≥ 6/5, then
∣∣∣∣
∫

Ω

(f
m − f(tm)) · em dx

∣∣∣∣ ≤ c‖fm − f(tm)‖2‖Dem‖p,

where c = c(Ω, p) and

k
M∑

m=0

‖fm − f(tm)‖2
2 ≤ k2 ‖ft‖2

L2(ΩT ).

Let us now consider the terms αm, βm, and κm defined in (3.13). We start with
κm, since it is simpler to treat.

Lemma 3.7. There exist θ = θ(p) ∈ (0, 1] such that

|κm| ≤
{

c ‖∇u‖C(I;L3(Ω)) ‖Dem−1‖p‖Dem‖1−θ
p ‖em‖θ

2

c ‖∇u‖C(I;L3(Ω)) ‖Dem‖p‖Dem−1‖p.
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with c = c(Ω, p).
Proof. For p > 3/2 it follows by integration by parts and standard arguments

|κm| =

∣∣∣∣
∫

Ω

[∇u(tm)]em−1 · em dx

∣∣∣∣

≤ ‖∇u(tm)‖3 ‖em‖ p

p−1
‖em−1‖ 3p

3−p

≤ c ‖∇u(tm)‖3‖em‖ p

p−1
‖Dem−1‖p.

Next, by using the convex interpolation L
p

p−1 = [L
3p

3−p , L2]θ with θ = 4(2p−3)
5p−6 , which

holds true for p ∈ ( 3
2 , 2], the Sobolev embedding W 1,p(Ω) →֒ L

3p

3−p (Ω), and Korn’s
inequality we get the first inequality. Now, the Sobolev embedding W 1,p(Ω) →֒ L2(Ω)
(which holds true for p ≥ 6

5 ) implies the second inequality.

Remark 3.8. The interpolation in the previous lemma between L2 and L
3p

3−p is
one of the reasons that the range of p is restricted to p > 3

2 . Indeed, by Theorem 2.6,
(2.11a), we have ∇u ∈ C(I;L3(Ω)) as long as p > 3

2 .
The terms αm and βm can be bounded by using the information on the time

derivative ut and a Poincaré’s-type inequality similar to Proposition 3.5. We have the
following result.

Lemma 3.9. Let u ∈ C(ΩT ) be such that ut ∈ Lp′

(ΩT ). Then

|αm| + |βm| ≤ ρm ‖Dem‖p,

with

k

M∑

m=0

ρ2
m ≤ c T

2−p

p k2 ‖u‖2
L∞(ΩT )‖ut‖2

Lp′ (ΩT ),

where ρm := c′ ‖u‖L∞(ΩT )‖−
∫

Im
u(τ) − u(tm) dτ‖

p′
, c′ = c′(Ω), and c = (2c′)2.

Proof. Let us prove the estimate for αm. The other term βm can be treated
in the same way. By using Fubini-Tonelli’s theorem, Hölder’s inequality, and Korn’s
inequality we obtain

|αm| =

∣∣∣∣
∫
–
Im

∫

Ω

[
∇
(
u(x, tm) − um(x)

)]
u(x, τ) ·

(
u(x, τ) − u(tm)(x)

)
dx dτ

∣∣∣∣

≤ ‖u‖L∞(ΩT )

∫

Ω

|∇em|
∣∣∣∣
∫
–
Im

u(τ) − u(tm) dτ

∣∣∣∣ dx

≤ c′ ‖u‖L∞(ΩT )

∥∥∥∥
∫
–
Im

u(τ) − u(tm) dτ

∥∥∥∥
p′

‖Dem‖p.

We have, for q = p′

ρ2
m ≤ c ‖u‖2

L∞(ΩT )

(∫

Ω

∣∣∣∣
∫
–
Im

(u(x, τ) − u(x, tm)) dτ

∣∣∣∣
p′

dx

) 2
p′

≤ c ‖u‖2
L∞(ΩT )

(∫

Ω

∣∣∣∣
∫
–
Im

∫

Im

ut(x, s) ds dτ

∣∣∣∣
p′

dx

) 2
p′

≤ c ‖u‖2
L∞(ΩT )

(∫

Ω

∣∣∣∣
∫

Im

|ut(x, τ)| dτ

∣∣∣∣
p′

dx

) 2
p′

.
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With the same arguments as in (3.17) and summation over Im we obtain

k
M∑

m=0

ρ2
m ≤ c T

2−p

p k2 ‖u‖2
L∞(ΩT )‖ut‖2

Lp′ (ΩT ).

This ends the proof.
We have now at disposal all the tools needed to prove the optimal error estimate,

that is the main result of this paper.
Proof of Theorem 1.1. We will prove the result by an application of Lemma 3.2

to (3.16) with:

am = ‖em‖2, bm = ‖Dem‖p, rm = ρm + c ‖fm − f(tm)‖2,

s2
m = c

∫
–
Im

‖F(Du(tm)) − F(Du(t))‖2
2 dt,

γ1 = 1, γ2 = γ3 = c ‖∇u‖L∞(I;L3(Ω)),

λ = δ + max
0≤m≤M

‖Du(tm)‖p, Λ = δ0 + sup
0≤t≤T

‖Du(t)‖p,

with c independent of δ. From Lemma 3.6, Lemma 3.9, the hypotheses on f , the
regularity (2.11) of the strong solution u, and (2.14) (since 11p−12

3(p−1) > p′ for p > 3
2 ), it

follows that

k
M∑

m=0

rm ≤ c k2.

Next, from Lemma 3.4 and the regularity property (2.10) of strong solutions it also
holds that

k

M∑

m=0

sm ≤ c k2,

In the last two inequalities c depends on δ0, p, C0, ‖f‖, ‖u0‖, T , and Ω. Hence, from
Lemma 3.2 it follows that for k ∈ (0, k) (cf. (3.11))

max
0≤m≤M

‖em‖2
2 + (1 + Λ)p−2k

M∑

m=0

‖Dem‖2
p ≤ γ4k

2 exp(2γ5T )

max
0≤m≤M

‖Dem‖p ≤ 1.

By using this estimate and coming back to (3.14) all terms in the right-hand side can
be easily bounded by c k2. It finally follows that

max
0≤m≤M

‖em‖2
2 + k

M∑

m=0

‖F(Du(tm)) − F(Dum)‖2
2 ≤ c k2,

with c depending on δ0, p, C0, ‖f‖, ‖u0‖, T , and Ω. This ends the proof of the
theorem.

Remark 3.10. The previous result holds also if we replace f(tm) by f
m

in the
scheme (NSk

p).
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4. Regularity properties of discrete solutions. In this section we show ad-
ditional regularity properties of the discrete solutions. In Lemma 3.1 we proved ex-
istence of strong solutions to the discrete system (NSk

p), but the estimate (3.3) was
depending on k. The main goal here is to show uniform estimates with respect to the
time step. Note that the result in the case δ = 1 has been previously proved in [12].

Theorem 4.1. Let S satisfy Assumption 1 with p ∈
(

3
2 , 2] and δ ∈ [0, δ0], where

δ0 > 0. Let f ∈ C(I;W 1,2(Ω)), where I = [0, T ], for some T > 0, and u0 ∈ W 2,2
div (Ω)

be given. Then, there exists k̂ ∈ (0, k ] with k̂ = k̂(δ0, p, C0, ‖f‖, ‖u0‖, T,Ω) such that

for k ∈ (0, k̂) the discrete solution um satisfies

max
0≤m≤M

‖dtu
m‖2

2+k

M∑

m=0

(
‖∇F(Dum)‖

2(5p−6)
2−p

2 + ‖dtF(Dum)‖2
2

)
≤ c. (4.1)

with a constant c = c(δ, p, C0, ‖f‖, ‖u0‖, T,Ω). In particular, Proposition 4.3 implies
the following estimates in terms of usual Sobolev spaces: for each 1 ≤ r < 6(p − 1)

um ∈ l
p(5p−6)

2−p (IM ;W 2, 3p

p+1 (Ω)) ∩ l∞(IM ;W 1,r(Ω)), (4.2a)

dtu
m ∈ l

p(5p−6)
(3p−2)(p−1) (IM ;W 1, 3p

p+1 (Ω)) ∩ l∞(IM ;L2(Ω)), (4.2b)

and the corresponding norms are bounded in terms of δ0, p, C0, ‖f‖, ‖u0‖, T , and
Ω. Moreover, the norm in l∞(IM ;W 1,r(Ω)) depends also on r. We also observe that

∇πm ∈ l
2(5p−6)

2−p (IM ;L2(Ω)) but the norm is bounded by a constant depending on δ, p,
C0, C1, ‖f‖, ‖u0‖, T , and Ω, which may explode as δ → 0+.

The proof of this result is based on delicate interplay of: a) induction, b) some
discrete inequalities, c) the error estimate of the previous section. This is technically
due to the fact that a single Gronwall argument seems not enough in order to prove
uniform estimates.

Remark 4.2. In [12] the extra regularity of strong solutions has been used to
improve the rate of convergence, but the result was still sub-optimal. In contrast to
this, in Theorem 1.1 of the previous section we obtained the optimal O(k2)-result
directly

Interest for strong discrete solutions is also motivated by the fact (see Prohl
and Růžička [23]) that they are required to get good error estimates for the space
discretization.

Before starting, we recall some useful inequalities. A relevant point checked in [7,
Lemma 4.2], is that the constants are independent of δ > 0.

Lemma 4.3. Let p ∈ (1, 2] and δ > 0. For all sufficiently smooth functions v
defined on ΩT , with vanishing mean value over Ω, there holds for s ∈ [1,∞)

‖v‖p

W
2,

3p
p+1 (Ω)

≤ c
(
‖∇F(Dv)‖2

2 + δp
)
,

‖∇v‖2
6s

6−3p+s
+ ‖∇2v‖2

2s
2−p+s

≤ c ‖∇F(Dv)‖2
2

(
δ + ‖∇v‖s

)2−p
,

‖vt‖p

W
1,

3p
p+1 (Ω)

≤ c ‖(F(Dv))t‖p
2

(
‖∇F(Dv)‖2

2 + δp
) 2−p

2 ,

≤ c
(
‖∇F(Dv)‖2

2 + ‖(F(Dv))t‖2
2 + δp

)
,

‖vt‖2
6s

6−3p+s
+ ‖∇vt‖2

2s
2−p+s

≤ c ‖(F(Dv))t‖2
2

(
δ + ‖∇v‖s

)2−p
,
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with constants depending only on Ω, p, and s and independent of δ > 0.

When dealing with time discrete equations the natural quantity which arises
taking the discrete time derivative and testing with dtu is ‖dtF(um)‖2

2. By using
Lemma 2.2 we get

|dtF(Dum)|2 ≃ dtS(Dum) · dtDum ≃
(
δ + |Dum| + |Dum−1|

)p−2|D(dtu
m)|2.

We now show related inequalities suitable to deal with time discrete problems. By us-
ing the same techniques as in [7], it is easy to check that also the following inequalities
hold true for discrete functions.

Proposition 4.4. Let p ∈ (1, 2] and δ > 0. For all sufficiently smooth functions
{vm}m (defined on the net IM ), with vanishing mean value over Ω, there holds for
s ∈ [1,∞)

‖vm‖p

W
2,

3p
p+1 (Ω)

≤ c
(
‖∇F(Dvm)‖2

2 + δp
)
, (4.3a)

‖∇vm‖2
6s

6−3p+s
+ ‖∇2vm‖2

2s
2−p+s

≤ c ‖∇F(Dvm)‖2
2

(
δ + ‖∇vm‖s

)2−p
, (4.3b)

‖dtv
m‖p

W
1,

3p
p+1 (Ω)

≤ c ‖dtF(Dum)‖p
2

(
‖∇F(Dvm)‖2

2 + δp
) 2−p

2 (4.3c)

≤ c
(
‖∇F(Dvm)‖2

2 + ‖dtF(Dvm)‖2
2 + δp

)
, (4.3d)

‖dtv
m‖2

6s
6−3p+s

+ ‖∇dtv
m‖2

2s
2−p+s

≤ c ‖dtF(Dum)‖2
2

(
δ + ‖∇vm‖s

)2−p
, (4.3e)

with constants depending only on Ω, p, and s and independent of δ > 0. Moreover,
for 1 ≤ r < 6(p − 1) there exist a constant, depending on p, Ω, and r such that

‖∇vm‖p
r ≤ c

(
δp + k

M∑

m=0

(
‖∇F(Dvm)‖

2(5p−6)
2−p

2 + ‖dtF(Dvm)‖2
2

))
. (4.4)

Proof. The inequalities follow as in Lemma 4.3. In particular, the main point is
to check again that the results in [12, Lemma 2.4] are independent of δ > 0.

Proof of Theorem 4.1. The proof is mainly based on the fact that Theorem 1.1
implies (for a suitable choice of k, independent of δ ∈ [0, δ0]) that ‖Dem‖p ≤ 1. This
observation, together with the fact that ‖Du(t)‖r, 1 ≤ r < 6(p − 1), is bounded
implies then a uniform bound for ‖Dum‖p. From this result it is possible to deduce
all the uniform estimates claimed in the theorem. We only sketch the main steps of
the proof and all missing details can be easily fixed by using the same arguments as
[12, Theorem 6.3].

The case δ > 0. We have u a strong solutions of the continuous problem in [0, T ]
and consequently (cf. Theorem 2.6) there exists c̃1 = c̃1(δ0, p, C0, f ,u0, T,Ω, r) such
that

max
0≤m≤M

‖Du(tm)‖p + max
0≤m≤M

‖Du(tm)‖r ≤ c̃1, (4.5)

with 7
5 < p < 3 < r < 6(p − 1). Clearly we may suppose c̃1 ≥ 1.

¿From Theorem 1.1, it follows that max
0≤m≤M

‖Dem‖p ≤ 1 for all k ∈ (0, k), This,

together with c̃1 ≥ 1, and (4.5) implies

max
0≤m≤M

‖Dum‖p ≤ 2 c̃1.
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Then, an induction argument will show that {um}m satisfies the following estimates:

max
0≤m≤M

‖Dum‖2
2 + k

M∑

m=0

‖∇F(Dum)‖2
2 ≤ c̃2 = c̃2(c̃1), (4.6a)

max
1≤m≤M

‖dtu
m‖2

2 + k

M∑

m=0

‖dtF(Dum)‖2
2 ≤ c̃3 = c̃3(c̃1), (4.6b)

k

M∑

m=0

‖∇F(Dum)‖
2(5p−6)

2−p
2 ≤ c̃4 = c̃4(c̃1), (4.6c)

max
0≤m≤M

‖Dum‖r ≤ c̃5 = c̃5(c̃1), (4.6d)

max
0≤m≤M

‖Du(tm) − Dum‖q ≤ c̃1, (4.6e)

max
0≤m≤M

‖Dum‖q ≤ 2 c̃1. (4.6f)

The main steps are the same as in [12, Section 4], even if we put again some care to
trace the behavior of the constants in terms of δ. Moreover, all calculations we perform
are justified since by Lemma 3.1 (cf. (3.3)) we know that ‖∇F(Dum)‖2 is finite (even
if at that stage it may badly depend on k). The proof proceeds by induction on
0 ≤ N ≤ M . The starting step holds true, since if N = 0, all estimates (4.6) hold
true. To continue the inductive procedure we need to show that by assuming (4.6)
for all 0 ≤ m ≤ N − 1, we can conclude (4.6) also at the next step m = N .

We start by proving (4.6a). By using −∆um as test function, integration by
parts, Korn’s inequality, using (4.6f) at step N − 1, and interpolation we get

dt‖Dum‖2
2 + ‖∇F(Dum)‖2

2 ≤ c (‖f‖2
W 1,2 + ‖∇um−1‖3‖∇um‖2

3)

≤ c (‖f‖W 1,2 + c(c̃1, ε)‖∇um‖2
2 + ε‖∇um‖2

3p

3−p

)

≤ c (‖f‖W 1,2 + c(c̃1, ε)‖∇um‖2
2 + ε‖∇2um‖2

p).

By using (4.3) (with s = p) we get

dt‖Dum‖2
2 + ‖∇F(Dum)‖2

2 ≤ c(c̃1, ε)
(
‖f‖2

W 1,2 + ‖∇um‖2
2

)

+ ε ‖∇F(Dum)‖2
2 (δ + 2c̃1)

2−p

and by choosing ε small enough we can absorb the term with ‖∇F(Dum)‖2 in the
left-hand side and use Gronwall to deduce that there exists§ k3 ∈ (0, k] with k3(c̃1)
and c̃2 = c̃2(c̃1) such that for all k ∈ (0, k3)

max
0≤m≤N

‖Dum‖2
2 + k

N∑

m=0

‖∇F(Dum)‖2
2 ≤ c̃2.

To prove (4.6b), we take the discrete time derivative and use dtu
m as test function.

§The positive number k is the time step obtained in Theorem 1.1.
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With standard calculations one gives meaning to u−1 and obtains (cf. [12, p. 1186])

‖dtu
N‖2

2 + k

N∑

m=0

‖dtF(Dum)‖2
2 ≤ c(‖f‖, ‖u0‖)

+ k

N∑

m=0

c(c̃1)
(
‖dtu

m−1‖2

2 + ‖dtu
m‖2

2

)
.

Now, Gronwall’s inequality implies the existence of k4 ∈ (0, k3] with k4(c̃1) and of
c̃3 = c̃3(c̃1) such that (4.6b) holds, provided that k ∈ (0, k4).

The proof of (4.6c) is obtained by using again −∆um as test function, but keeping
it on the right-hand side. Proceeding as in [11] we get

‖∇F(Dum)‖2
2 ≤ c(‖f‖, ‖u0‖) + c(c̃1)‖∇um‖2

2 +

∣∣∣∣
∫

dtu
m∆um dx

∣∣∣∣

≤ c(‖f‖, ‖u0‖) + c(c̃1) + ‖dtu
m‖ 3p

2p−1
‖∇2um‖ 3p

p+1
.

By using again interpolation and Proposition 4.3 we get (after some calculations)

k

N∑

m=0

‖∇F(Dum)‖
2(5p−6)

2−p
2 ≤ c(c̃1)

(
δp + k

N∑

m=0

‖dtF(Dum)‖2
2

)
≤ c̃4(c̃1),

where in the last step we used (4.6b). The next inequality

max
0≤m≤N

‖Dum‖r ≤ c̃5 = c̃5(c̃1)

is a direct consequence of the previous inequalities and of (4.3). Next, from (4.5) and
(4.6d) we get

max
0≤m≤N

‖Du(tm) − Dum‖r ≤ c(c̃1, r), (4.7)

since 1 ≤ r < 6(p − 1). Moreover, from the error estimate we know that

max
0≤m≤M

‖Du(tm) − Dum‖p ≤ c k2.

Then, by using interpolation it follows that there exists k̂ ∈ (0, k4], depending on the
data of the problem such that

max
0≤m≤N

‖Du(tm) − Dum‖q ≤ c̃1,

for 3
2 < p < q < r < 6(p − 1) and for all k ∈ (0, k̂). Finally, by using again (4.5),

estimate (4.6f) (with M replaced by N) follows for all k ∈ (0, k̂). This ends the proof
of Theorem 4.1 in the case δ ∈ (0, δ0].

Moreover, we showed that all estimates are uniform in δ ∈ (0, δ0].

The case δ = 0. We prove the regularity results for discrete solutions in the
degenerate case by approximating the degenerate extra stress tensor with a non-
degenerate one. If S is a degenerate extra stress tensor with (p, δ)-structure satisfying
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Assumption 1 with δ = 0 and if {ηε}ε>0, is a classical family of a mollifiers, then the
extra stress tensor S ε defined through

S ε(B) := (ηε ∗ S)(B) − (ηε ∗ S)(0) ∀B ∈ R
d×d
sym , (4.8)

is non-degenerate, satisfies Assumption 1 with δ = ε, and converges to S as ε → 0+.
Details can be found in [7, Section 3.1].

We now consider a family of approximate numerical schemes: Let u0
ε = u0 and

for m ≥ 1 and um−1
ε given from the previous time step, compute the iterate um

ε as
follows:

dtu
m
ε − div S ε(Dum

ε ) + [∇um
ε ]um−1

ε + ∇πm
ε = f(tm) in Ω,

div um
ε = 0 in Ω.

(4.9)

By the previous results um
ε can be bounded independently of ε ∈ (0, δ0] as follows

um
ε ∈ l

p(5p−6)
2−p (IM ;W 2, 3p

p+1 (Ω)) ∩ l∞(IM ;W 1,r(Ω)),

dtu
m
ε ∈ l

p(5p−6)
(3p−2)(p−1) (IM ;W 1, 3p

p+1 (Ω)) ∩ l∞(IM ;L2(Ω))

and

k

M∑

m=0

(
‖∇Fε(Dum

ε )‖
2(5p−6)

2−p

2 + ‖dtF
ε(Dum

ε )‖2
2

)
≤ c.

Now the limit procedure can be handled exactly as in [7, Section 5] and this shows
that

um := lim
ε→0+

um
ε

is a strong solution of the (degenerate) limit problem. Finally um inherits from um
ε

all the regularity properties stated above, by lower semi continuity of the norm.
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