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Abstract

Certain rheological behavior of non-Newtonian fluids in engineering
sciences is often modeled by a power law ansatz with p ∈ (1, 2]. In the
present paper the local in time existence of strong solutions is studied. The
main result includes also the degenerate case (δ = 0) of the extra stress
tensor and thus improves previous results of [L. Diening and M. Růžička,
J. Math. Fluid Mech., 7 (2005), pp. 413-450].
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1 Introduction

We study the existence of strong solutions for the system describing the motion
of a homogeneous, incompressible fluid with shear dependent viscosity, which
reads

ρut − div S(Du) + ρ [∇u]u + ∇π = ρ f in I × Ω,

div u = 0 in I × Ω,

u(0) = u0 in Ω,

(NSp)

where the vector field u = (u1, u2, u3) is the velocity, S is the extra stress tensor,
the scalar π is the kinematic pressure, the vector f = (f1, f2, f3) is the external
body force, ρ the constant density, and u0 is the initial velocity. Here we used
the notation ([∇u]u)i =

∑3
j=1 uj∂jui, i = 1, 2, 3, for the convective term. We

divide the equation (NSp) by the constant density ρ and relabel S/ρ and π/ρ
again as S and π, respectively. Thus we consider from now on (NSp) always
with the convention that ρ = 1. The term Du := 1

2 (∇u + ∇u⊤) denotes the
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symmetric part of the gradient ∇u. The problem (NSp) will be considered in
Ω = (0, 2π)3 ⊂ R

3 and we endow the problem with space periodic boundary
conditions. The latter assumption simplifies the problem, but allows us to
concentrate on the difficulties which arise from the structure of the extra stress
tensor. As usual I = [0, T ] denotes some non-vanishing time interval.

Standard examples of power-law stress tensors for p ∈ (1,∞) are

S(Du) = µ (δ + |Du|
2
)

p−2
2 Du or S(Du) = µ (δ + |Du|)p−2Du, (1.1)

where µ > 0 and δ ≥ 0 are given constants. These models belong to the class
of power-law ansatz to model certain non-Newtonian behavior of fluid flows,
and they are frequently used in engineering literature. A classical reference
(with a detailed discussion of power-law models including also early models)
is the book by Bird, Armstrong, and Hassager [12]. We also refer to Málek,
Rajagopal, and Růžička [39] and Málek and Rajagopal [38] for a discussion of
such models. Let us mention that most real fluids that can be modeled by
a constitutive law of type (1.1) are shear thinning fluids, which corresponds
to a “small” shear exponent p, i.e., p ∈ (1, 2]. However there are also shear
thickening fluids, which have a shear exponent p ∈ [2,∞). Moreover, the case
p = 3 is very interesting also for the modeling of turbulent flows and known in
applied literature as the Smagorinsky model [48]. The mathematical analysis
of the problem (NSp), (1.1) started with the work of Ladyžhenskaya [32], [33],
[34]. After the papers by Nečas et. al. [36], [9] the problem has been studied
intensively and various existence and regularity properties have been proved in
the last years. The literature on this subject is very large and we focus on the
papers that are mostly connected with the results we are going to prove. In
particular, for the steady problem, there are several results proving existence of
weak solutions [23], [17], interior regularity [1], [24] and very recently regularity
up-to-the boundary for the Dirichlet problem [44], [47], [7], [8], [10]. Concerning
the time-evolution Dirichlet problem in a three–dimensional domain we have
recent advances on the existence of weak solutions in [49] for p > 8

5 and in [22]
for p > 6

5 . For this paper the most relevant results of (local in time) existence
of strong solutions in a three–dimensional cube with space periodic boundary
conditions are those in [20], for p ∈

(
7
5 , 2]. There are many other papers dealing

with ”strong solutions” for time-dependent problems and we refer for instance
to [35], [38], [2], [3], [13], [25], [28], [29], [30], [37], [39], [43], [44], [45]. Note that
in [13] the existence of local in time strong solutions for the Dirichlet problem is
proved for p ≥ 1. However, this result depends crucially on the fact that δ > 0
and breaks down for δ = 0.

Our aim is to prove (local in time) existence of strong solutions in the case of
shear thinning fluids, i.e., in the case p ∈ (1, 2] and to extend the results in [20]
to the degenerate case δ = 0. Our interest in the existence of regular solutions
in the time evolution problem is also motivated by the fact that error estimates
needed for the analysis of numerical methods require improved smoothness. In
this respect weak solutions are not enough to obtain suitable estimates. We
note that results of existence proved here are employed in [11] to improve error
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estimates for Euler schemes previously studied in [41], [18], [19], [14].
We also note that the stability of the numerical results for asymptotically

small δ in (1.1) is a problem of certain relevance. This was the hint to try
to understand whether the degenerate case δ = 0 (which corresponds to a p-
Laplacian, but with a divergence-free constraint and the pressure) can be treated
in the same way. From the physical point of view the fact that the viscosity
can grow without limits is debatable, but from the pure mathematical point of
view, it is interesting that the limit case can be covered by an approximation
technique.

In particular, in our main result Theorem 5.1 we focus on the “stability” of
existence results in terms of δ → 0+. Our main task is showing local existence
of strong solutions, independently of the value of δ ∈ (0, δ0]. As by product,
we shall also show that the (degenerate) limit problem has locally a smooth
solution, which shares several good properties of smoothness with the solution
of the non-degenerate problem. The main tools are precise a priori estimates,
the notion of shifted N-functions, and a suitable approximation procedure to
treat the degenerate problem.

Outline of the paper. The paper is organized as follows: In the section 2 we
fix the notation, we introduce our assumptions on the extra stress tensor, and
we recall basic properties of related Orlicz functions. In section 3 we collect
some features of the extra stress tensor and related quantities which naturally
occur in the investigation of the problem (NSp). These results are valid for all
p ∈ (1,∞). Then, in section 4 we restrict ourselves to the case p ∈ (1, 2] and
prove several estimates (specific of the shear thinning case) necessary for the
main theorem. In section 5 we prove the main result, namely the existence of
local in time strong solutions for the problem (NSp) for p ∈

(
7
5 , 2] and δ ≥ 0

(cf. Theorem 5.1). Thus we extend previous results to the degenerate case.
Finally, in section 6 we study steady problems.

2 Notations and assumptions on the extra stress

tensor S

Let us first introduce the notation which will be used in the sequel. We shall
use the customary Lebesgue spaces Lp(Ω) and Sobolev spaces W k,p(Ω) and we
do not distinguish between scalar, vector, or tensor function spaces. We shall
denote by ‖ . ‖p the norm in Lp(Ω) and by ‖ . ‖k,p the norm in W k,p(Ω). In this

paper we are considering the space periodic case∗, i.e., Ω = (0, 2π)d, d ≥ 2, and
each function f we consider will satisfy f(x+ 2π ei) = f(x), i = 1, . . . , d, where
{e1, . . . , ed} is the canonical basis of R

d. Often we will also require that the
functions have vanishing mean value, i.e.,

∫
Ω
f(x) dx = 0. This is a standard

request in order to have Poincaré’s inequality. We define V as the space of vector-
valued functions on Ω that are smooth, divergence-free, and space periodic with

∗However, all results in sections 2, 3 and 4 also hold for sufficiently smooth domains Ω ⊂ R
d.

3

March 30, 2008, 18:32



zero mean value and set

W 1,p
div (Ω) :=

{
closure of V in W 1,p(Ω)

}
.

Since we deal with a time dependent problem, we shall make use of the spaces
Lp(I;X), 1 ≤ p ≤ ∞, where (X, ‖ . ‖X) is a Banach space. The subscript ”t”
denotes differentiation with respect to time. We write f ≃ g if there exist
positive constants c0 and c1 such that

c0f ≤ g ≤ c1f.

Let us now discuss the structure of the extra stress tensor S and motivate
our assumptions for it. Due to the principle of objectivity the extra stress tensor
S depends on the velocity gradient ∇u only through its symmetric part Du :=
1
2

(
∇u + ∇u⊤

)
. Therefore we assume that the extra stress tensor S : R

d×d →

R
d×d
sym , where R

d×d
sym :=

{
A ∈ R

d×d
∣∣A = A⊤

}
satisfies S(A) = S

(
Asym

)
and

S(0) = 0, where Asym := 1
2

(
A + A⊤

)
.

Often S is derived from a potential, i.e., there exists a convex function
Φ: R

≥0 → R
≥0 which belongs to C1(R≥0)∩C2(R>0) and which satisfies Φ(0) =

Φ′(0) = 0, such that for all A ∈ R
d×d \ {0} and i, j = 1, . . . , d it holds that†

Sij(A) = ∂ij

(
Φ(|Asym|)

)
= Φ′

(
|Asym|

) Asym
ij

|Asym|
. (2.1)

This assumption is too restrictive and we are able to cover a wider class of stress
tensors, as we shall see in the next subsection.

2.1 On N-functions and shear dependent fluids

In this section we recall some basic properties of N-functions and state some
results which will be useful in the sequel. In particular, this abstract approach
turns out to be very fruitful to treat problems with shear dependent viscosity
in ad hoc function spaces, see e.g., recent results in [15], [21], [16]. In addition,
note that the introduction of quasi-norms in the study of degenerate problems
dates back to [4], [5].

In many cases relevant classes of stress tensors are those derived from a
potential Φ with p-structure, or more precisely with (p, δ)-structure. This means
that there exist p ∈ (1,∞) , δ ∈ [0,∞), and constants ν0, ν1 > 0 such that for
all t ∈ R

≥0 holds

ν0(δ + t)p−2 ≤ Φ′′(t) ≤ ν1(δ + t)p−2 . (2.2)

From (2.2) and [27, Lemma 8.3] (cf. [14, Lemma 6.2], [46, Section 6]) one easily
deduces that uniformly in t ≥ 0

Φ′(t) ≃ Φ′′(t) t , (2.3a)

Φ(t) ≃ Φ′(t) t , (2.3b)

† For functions g : R
d×d → R we use the notation ∂klg(A) :=

∂g(A)
∂Akl

.
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where the constants in (2.3) depend only on ν0, ν1, and p. Note, that if S is
derived from a potential we have for all A ∈ R

d×d\{0} and all i, j, k, l = 1, . . . , d

∂klSij(A) =
Φ′(|Asym|)

|Asym|

(
δsym
ij,kl −

Asym
ij Asym

kl

|Asym|2

)
+ Φ′′(|Asym|)

Asym
ij Asym

kl

|Asym|2
,

where δsym
ij,kl := 1

2 (δikδjl + δilδjk). Using this one can conclude as in [15, Lemma
6.3], [46, Lemma 6.7, Section 8] that there are constants ν2, ν3 > 0, which
depend only on ν0, ν1 and p, such that for all A,C ∈ R

d×d with Asym 6= 0 and
i, j, k, l = 1, . . . , d hold

d∑

i,j,k,l=1

∂klSij(A)CijCkl ≥ ν2
(
δ + |Asym|

)p−2
|Csym|2 ,

∣∣∂klSij(A)
∣∣ ≤ ν3

(
δ + |Asym|

)p−2
.

(2.4)

These two relations concerning growth and coercivity will be the main abstract
hypotheses we shall need on S, see Assumption 1.

Closely related to the extra stress tensor S with p-structure is the function
F : R

d×d → R
d×d
sym defined through

F(A) :=
(
δ + |Asym|

) p−2
2 Asym , (2.5)

where δ ≥ 0 is the same as in (2.2) and (2.4). If the dependence on δ is of
relevance we write Fδ(A). Moreover, there is a close relation to Orlicz spaces
and N-functions (cf. [31], [40], [42], [46] for a detailed description.)

Remark 2.6. If not otherwise stated we will use the convention that in formulas
relating the quantities S and F the value of δ is the same in each of the quantities
and it is suppressed for shortage of notation.

Definition 2.7 (N-function). A function φ : R
≥0 → R

≥0 is called an N-function
(where N stands for “nice”) if φ is continuous, convex, strictly positive for t > 0,
and such that

lim
t→0+

φ(t)

t
= 0 lim

t→∞

φ(t)

t
= ∞.

Note that φ being convex has a right-derivative φ′ which is right-continuous.
The complementary function φ∗ defined by

φ∗(t) :=

∫ t

0

(φ′)−1(s) ds :=

∫ t

0

sup{u ∈ R
≥0|φ′(u) ≤ s} ds,

is again an N-function. We have the following versions of Young’s inequality.

Lemma 2.8 (Young’s type inequalities). For all t, u ≥ 0 there holds

tu ≤ φ(t) + φ∗(u).
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In addition, the following inequality for derivatives is valid: for each δ > 0 there
exists cδ > 0, which only depends on ν0, ν1, and p, such that for all t, u ≥ 0
there holds

t φ′(u) + φ′(t)u ≤ δ φ(t) + cδ φ(u). (2.9)

Proof. The first inequality derives immediately from the equivalent definition
of complementary function

φ∗(u) := sup
t≥0

(
ut− φ(t)

)
.

The proof of (2.9) (cf. [15]) follows by the Young’s inequality and by observing
that, in addition to (2.3b), one also has

φ∗(φ′(t)) ≃ φ(t) uniformly in t ≥ 0.

The above relation can be derived immediately from

φ

(
φ∗(t)

t

)
≤ φ∗(t) ≤ φ

(
2φ∗(t)

t

)
, ∀ t > 0,

see also [46, Lemma 5.1].

In this abstract setting one may also consider an important subclass of N-
functions, those satisfying the ∆2-condition.

Definition 2.10 (∆2-condition). A function φ : R
≥0 → R

≥0 satisfies the ∆2-
condition if

φ(t) ≤ φ(2t) ≤ Kφ(t) ∀ t ≥ 0, (2.11)

for some constant K ≥ 2. The ∆2-constant of φ is the smallest constant K
having this property.

In the sequel we shall also consider functions satisfying the ∆2-condition.
Moreover, we shall also assume that the complementary function satisfies the
∆2-condition, with constant K∗. Standard (relevant) examples are the functions

φ(t) = tp, φ(t) = (δ + t)p−2t2, and φ(t) =
∫ t

0
(δ + s)p−2s ds.

Remark 2.12. It is easy to show that inequalities (2.3) hold true with constants
depending only on the ∆2-constant of φ.

Definition 2.13 (Shifted N-functions). Let φ be an N-function. We define the
family of shifted N-functions {φa}a≥0 by

φ′a(t) := φ′(a+ t)
t

a+ t
. (2.14)

6

March 30, 2008, 18:32



One can show that for all s, t ≥ 0 with s+ t > 0 holds

φs(|s− t|) ≃ φ′s(|s− t|)|s− t|

≃ φ′′(s+ t)|s− t|
2

≃ (δ + s+ t)p−2|s− t|
2
,

(2.15)

where the constants depend only on ν0, ν1, and p (cf. [15, Lemma 6.6], [46,
Lemma 6.3]).

We report some results and inequalities on shifted N-functions, which we
shall need later. A very complete account of inequalities for these functions is
given in [46], to which we shall constantly refer for all results on N-functions.

Lemma 2.16. Let φ : R
≥0 → R

≥0 be an N-function satisfying the ∆2-condition
with constant K and let K ′ ∈ [K,K2] denote the ∆2-condition constant of
φ′ (which satisfies the ∆2-condition due to [46, Lemma 5.2]). Then, for all
P, Q ∈ R

N×n the following inequalities hold true:

φ′|P|(t) ≤ 2K ′φ′|Q|(t) + φ′|P|(|P − Q|) ∀ t ≥ 0, (2.17a)

φ′|P|(t) ≤ 2K ′φ′|Q|(t) + 2K ′φ′|Q|(|P − Q|) ∀ t ≥ 0. (2.17b)

Moreover, if we assume that the complementary function φ∗ satisfy the ∆2-
condition with constant K∗, then

1

2K ′
∗K

′
(φ∗)′φ′(a)(u) ≤ ((φa)∗)′(u) ≤ 2K∗(φ

∗)′φ′(a)(u) ∀ a, u ≥ 0. (2.18)

Proof. For the proofs see Lemmas 5.9-5.13 and Corollary 5.14 in [46].

From the above lemma we derive immediately a fundamental inequality,
which will be used several times in the sequel.

Corollary 2.19. The following relation

δ
p
2 + t

p
2 ≃ (δ + t)

p−2
2 t+ δ

p
2 (2.20)

holds for all δ, t ≥ 0 with constants depending only on p (and not on δ).

As claimed, one improvement with respect to previous results is that here
it is not necessary that S is derived from a potential. It is sufficient that S is
a stress tensor with p-structure or more precisely (p, δ)-structure. This means
that S satisfies (2.4). In order to clearly formulate the results we introduce the
function

ϕ(t) :=
1

p
tp, (2.21)

and the corresponding shifted functions ϕδ, where δ ≥ 0 is the same constant
as in (2.4). Note that the {ϕδ}δ≥0 belong to C1(R≥0) ∩ C2(R>0) and are N-
functions satisfying the ∆2-condition with ∆2-constants independent of δ ≥ 0.
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Moreover, we have ϕ′
δ(t) = (δ + t)p−2t and min {1, p− 1} (δ + t)p−2 ≤ ϕ′′

δ (t) ≤
max {1, p− 1}(δ + t)p−2.

Now we can precisely formulate our assumption on the extra stress tensor
with (p, δ)-structure.

Assumption 1 (extra stress tensor). We assume that the extra stress tensor
S : R

d×d → R
d×d
sym belongs to C1(Rd×d,Rd×d

sym) ∩ C2(Rd×d \ {0},Rd×d
sym) and satis-

fies S(A) = S
(
Asym

)
and S(0) = 0. Moreover, we assume that S has (p, δ)-

structure, i.e., there exist p ∈ (1,∞), δ ∈ [0,∞), and constants C0, C1 > 0 such
that

d∑

i,j,k,l=1

∂klSij(A)CijCkl ≥ C0

(
δ + |Asym|

)p−2
|Csym|2, (2.22a)

∣∣∂klSij(A)
∣∣ ≤ C1

(
δ + |Asym|

)p−2
(2.22b)

is satisfied for all A,C ∈ R
d×d with Asym 6= 0 and all i, j, k, l = 1, . . . , d.

In terms of ϕδ (where ϕ has been defined in (2.21)), inequalities (2.22) defin-
ing the (p, δ)-structure can be written equivalently as

d∑

i,j,k,l=1

∂klSij(A)CijCkl ≥ C0 ϕ
′′
δ

(
|Asym|

)
|Csym|2 , (2.23a)

∣∣∂klSij(A)
∣∣ ≤ C1

p− 1
ϕ′′

δ

(
|Asym|

)
. (2.23b)

Moreover, even if the stress tensor does not derive from a potential we can still
introduce F (cf. (2.5)). For that we observe that if φ is an N-function, then we
set

ψ′(t) :=
√
φ′(t)t t ≥ 0,

and we define the associated N-function by

ψ(t) :=

∫ t

0

ψ′(s) ds.

The properties of the N-function ψ are treated in detail in [15] and in [46,
Section 6]. For a given function φ we denote by F the operator with N-potential
ψ, i.e., F(0) := 0 and for all A ∈ R

d×d\{0}

F(A) := ψ′(|Asym|)
Asym

|Asym|
. (2.24)

This is the abstract setting for the definition of F. In order to get F (or more
precisely Fδ) defined in (2.5) one has to use φ(t) = ϕδ(t) in the above con-
struction. The main result is that if S is a stress tensor with (p, δ)-structure
then

|Fδ(A) − Fδ(B)|
2
≃ (S(A) − S(B)) · (A − B),
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and this defines a quantity which is relevant in the study of partial regularity
of fluids with shear dependent viscosity, cf. [15]. In the next sections we collect
several results related to stress tensors with p-structure, by using (when neces-
sary) the formalism of N-functions. This abstract setting will be particularly
useful in section 3.1 to derive suitable estimates and continuity properties of
approximate stress tensors.

3 Properties of the extra stress tensor S

In this section we collect general properties of the extra stress tensor S (with
p-structure) and related quantities that naturally occur in the analysis of the
system (NSp). All results in this section hold for all p ∈ (1,∞) hence they
are not specific of the shear thinning case. In addition, no restriction on the
space dimension is requested in this section. The results of this section are
rather standard. What is relevant is that we carefully checked that all constants
appearing in the various inequalities turn out to be independent of δ ∈ (0,∞).
This will allow us to obtain uniform (in δ) estimates on solutions to (NSp).

Let us start with the following crucial lemma, which shows the equivalence
of several quantities which are useful in the analysis of the system (NSp).

Lemma 3.1. Let S satisfy Assumption 1 with p ∈ (1,∞) and δ ∈ [0,∞), let F

be defined by (2.5), and let ϕ be defined in (2.21). Then for all A, B ∈ R
d×d

there holds

(S(A) − S(B)) · (A − B) ≃ |Asym − Bsym|2(δ + |Bsym| + |Asym|)p−2

≃ ϕ|Asym|(|A
sym − Bsym|) (3.2)

≃ |F(A) − F(B)|2 ,

|S(A) − S(B)| ≃ |Asym − Bsym|(δ + |Bsym| + |Asym|)p−2, (3.3)

where the constants depend only on C0, C1, and p. In particular, the constants
are independent of δ ≥ 0.

Proof. For the proof see [14, Lemma 2.1], [15, Lemma 2.3], [46, Lemma 6.16,
Section 6].

Remark 3.4. Since in the following we will insert into S, F, ϕδ, and ψδ, δ ≥ 0,
only symmetric tensors, we can drop in the above formulas the superscript “ sym”
and restrict the admitted tensors to symmetric ones.

The following lemma is a version of Young’s inequality and will be used
frequently in the sequel.

Lemma 3.5. Let S satisfy Assumption 1 with p ∈ (1,∞) and δ ∈ [0,∞), and
let F be defined by (2.5). Then for each ε > 0 there exists cε(p) > 0, such that
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for all A, B, C ∈ R
d×d
sym there holds

(
S(A) − S(B)

)
·
(
A − C

)

≤ ε
(
S(A) − S(B)

)
·
(
A − B

)
+ cε

(
S(A) − S(C)

)
·
(
A − C

)

and
(
S(A) − S(B)

)
·
(
A − C

)
≤ ε

∣∣F(A) − F(B)
∣∣2 + cε

∣∣F(A) − F(C)
∣∣2 .

Proof. Using (2.9), (2.15), (3.2), and (3.3) the result follows (cf. [6, Lemma
2.2]).

Especially, for v,w1,w2 ∈ W 1,p(Ω) we easily deduce from Lemma 3.5 the
following useful inequality.

∫

Ω

(S(Dv) − S(Dw1)) · (Dv − Dw2) dx

≤ ε ‖F(Dv) − F(Dw1)‖
2
2 + cε ‖F(Dv) − F(Dw2)‖

2
2.

(3.6)

We recall the definition of two quantities that will be used extensively in
the sequel (and that are common in the literature concerning (NSp)). The
terms ‖∇F(Du)‖2 and ‖(F(Du))t‖2 are related to those coming from testing
the term −div S(Du) with −∆u and utt, respectively. They are defined for
δ > 0 through

I(u)(t) :=

∫

Ω

(δ + |Du(t)|)p−2|∇Du(t)|2 dx ,

J (u)(t) :=

∫

Ω

(δ + |Du(t)|)p−2|Dut(t)|
2 dx .

(3.7)

Let us first prove that the integrands of I(u)(t) and J (u)(t) are equivalent to

|∇F(Du)|
2

and
∣∣(F(Du)

)
t

∣∣2, respectively.

Lemma 3.8. Let δ ∈ (0,∞) and let F be defined by (2.5). Then, for all
sufficiently smooth u defined on I × Ω there holds a.e.

C2 (δ + |Du|)p−2|∇Du|2 ≤ |∇F(Du)|
2
≤ C3 (δ + |Du|)p−2|∇Du|2 ,

C2 (δ + |Du|)p−2|Dut|
2 ≤

∣∣(F(Du)
)
t

∣∣2 ≤ C3 (δ + |Du|)p−2|Dut|
2 ,

where C2 = min {1, p2

4 }, and C3 = max {1, p2

4 }.

Proof. We show the first inequality, the other follows analogously. On the set
{Du = 0} we have ∇Du = 0 almost everywhere, so (δ + |Du|)p−2|∇Du|2 = 0
on {Du = 0}. Since {Du = 0} = {F(Du) = 0}, also ∇F(Du) = 0 almost
everywhere in {Du = 0}. This proves the inequality on the set {Du = 0}.
Therefore, we can assume in the following that |Du| > 0. We easily calculate

∂iFmn

(
Du
)

=
p− 2

2

(
δ + |Du|

) p−4
2 Dmnu ∂i|Du| +

(
δ + |Du|

) p−2
2 ∂iDmnu

=: A + B.
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Consequently we get

|∇F(Du)|
2

= |A|
2

+ 2A · B + |B|
2
.

We observe that

|B|
2

=
(
δ + |Du|

)p−2∣∣∇Du
∣∣2, (3.9)

2A · B = (p− 2)
(
δ + |Du|

)p−3
|Du|

∣∣∇|Du|
∣∣2, (3.10)

|A|
2

=

(
p− 2

2

)2(
δ + |Du|

)p−4
|Du|

2∣∣∇|Du|
∣∣2 ≤

(
p− 2

2

)2

|B|
2
. (3.11)

Let us begin with the case p ≥ 2. Then 2A ·B ≥ 0 by (3.10) and consequently

|∇F(Du)|
2

= |A|
2

+ 2A · B + |B|
2
≥ |B|

2
.

To prove the upper bound we observe that A · B = |A||B| and by (3.11) it
follows that

|∇F(Du)|
2

= |A|
2

+ 2 |A||B| + |B|
2

≤

((p− 2

2

)2

+ (p− 2) + 1

)
|B|

2
=
p2

4
|B|

2
.

Let us consider the case p ∈ (1, 2). From (3.11) we get |A| ≤ 2−p
2 |B| ≤ 2+p

2 |B|.
This implies

|∇F(Du)|
2

= |A|
2
− 2|A||B| + |B|

2

=

(
|A| −

p+ 2

2
|B|

)(
|A| −

2 − p

2
|B|

)
+
p2

4
|B|

2

≥
p2

4
|B|

2
.

From (3.11) we get |A| ≤ 2−p
2 |B| ≤ 2|B| and

|∇F(Du)|
2

= |A|
2
− 2 |A||B| + |B|

2

= |A|
(
|A| − 2|B|

)
+ |B|

2

≤ |B|
2
.

This ends the proof.

Corollary 3.12. Let I(u)(t) and J (u)(t) be defined in (3.7) with δ ∈ (0,∞)
and let F be defined by (2.5). Then, for all sufficiently smooth functions u and
almost all times t ∈ I there holds

‖∇F(Du(t))‖
2
2 ≃ I(u)(t) ,

∥∥(F(Du(t))
)
t

∥∥2

2
≃ J (u)(t) ,

with constants depending only on p.
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3.1 Approximation of degenerate stress tensors by non-

degenerate ones

In this subsection we construct an approximation for degenerate stress tensors
by non-degenerate ones. This enables us to use estimates that are uniform with
respect to δ > 0 for the treatment of the problem (NSp) with δ = 0.

Thus we assume that S satisfies Assumption 1 with δ = 0 and p ∈ (1,∞).
For κ > 0 we define the tensor valued function Sκ : R

3×3 → R
3×3
sym through

Sκ(A) : =
(
ηκ ∗ S

)
(A) −

(
ηκ ∗ S

)
(0)

=

∫

R3×3

(
S(A − B) − S(−B)

)
ηκ(B) dB ,

(3.13)

where η ∈ C∞
0 (R3×3) with c χB1/2(0) ≤ η ≤ C χB1(0), supp η ⊂ B1(0), and∫

R9 η(B) dB = 1 is a standard mollification kernel and ηκ(B) := κ−9 η(B/κ).
One easily verifies that Sκ(A) = Sκ(Asym), Sκ(0) = 0, and that for all i, j, k, l =
1, 2, 3 it holds

∂klS
κ
ij(A) = (ηκ ∗ ∂klSij)(A) .

Since S satisfies Assumption 1 we obtain, for all A,C ∈ R
3×3 with Asym 6= 0,

and all i, j, k, l = 1, 2, 3

3∑

i,j,k,l=1

∂klS
κ
ij(A)CijCkl ≥ C0

(
ηκ ∗ ϕ′′(| · |)

)(
|Asym|

)
|Csym|2,

∣∣∂klS
κ
ij(A)

∣∣ ≤ C1

p− 1

(
ηκ ∗ ϕ′′(| · |)

)(
|Asym|

)
,

where ϕ(t) = 1
p t

p.
In order to show that Sκ satisfies Assumption 1 with δ = κ it is thus sufficient

to show the following result.

Lemma 3.14. Let ηκ, ϕ′′, and p be as above. Then, we have for all A,B ∈ R
3×3

∫

Bκ(0)

ηκ(B)ϕ′′(|A − B|) dB ≃ ϕ′′(κ+ |A|) ,

with constants depending only on p.

Proof. If |B| ≤ κ, then for |A| ≥ 2κ we have 1
4

(
|A| + κ

)
≤
∣∣|A| − |B|

∣∣ ≤
|A − B| ≤ |A| + κ and consequently we get ϕ′′(|A − B|) ≃ ϕ′′(κ+ |A|). Using∫
ηκ(B) dB = 1 we thus get for |A| ≥ 2κ that

∫

Bκ(0)

ηκ(B)ϕ′′(|A − B|) dB ≃ ϕ′′(κ+ |A|) .
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For |A| ≤ 2κ we have κ ≃ |A|+κ and consequently ϕ′′(κ) ≃ ϕ′′(κ+ |A|). Using
the properties of ηκ and |A| ≤ 2κ we get

∫

Bκ(0)

ηκ(B)ϕ′′(|A − B|) dB =

∫

Bκ(A)

ηκ(A − B)ϕ′′(|B|) dB

≤
C

κ9

∫

B3κ(0)

ϕ′′(|B|) dB

≃ ϕ′′(3κ) ≃ ϕ′′(κ+ |A|) .

On the other hand, we also have
∫

Bκ(0)

ηκ(B)ϕ′′(|A − B|) dB =

∫

Bκ(A)

ηκ(A − B)ϕ′′(|B|) dB

≥
c

κ9

∫

Bκ/2(A)

ϕ′′(|B|) dB

≥
c

κ9

∫

Bκ/2(A)\Bκ/4(0)

ϕ′′(|B|) dB

≃ ϕ′′(κ/2) ≃ ϕ′′(κ+ |A|) .

This finishes the proof.

Using Lemma 3.14 and the equivalence ϕ′′(κ + t) ≃ ϕ′′
κ(t) with constants

depending only on p we thus proved the following result.

Theorem 3.15. If S satisfies Assumption 1 with p ∈ (1,∞) and δ = 0, then
Sκ defined in (3.13) satisfies Assumption 1 with the same p and δ = κ > 0, i.e.,
for all A,C ∈ R

3×3 with Asym 6= 0, and all i, j, k, l = 1, 2, 3 holds

3∑

i,j,k,l=1

∂klS
κ
ij(A)CijCkl ≥ C̃0 ϕ

′′
κ

(
|Asym|

)
|Csym|2,

∣∣∂klS
κ
ij(A)

∣∣ ≤ C̃1 ϕ
′′
κ

(
|Asym|

)
,

with C̃0 and C̃1 depending only on p, C0, and C1. In particular they are inde-
pendent of κ.

If we denote S0 := S, then we get from the properties of the mollifier that Sκ

converges locally-uniformly to S0 for κ→ 0+. This means that for any R > 0

lim
κ→0+

Sκ(A) = S0(A) uniformly for |A| ≤ R.

From the properties of mollifiers and N-functions, we can deduce the following
results, which are crucial in order to pass to the limit as the approximation
parameter κ goes to zero.

Lemma 3.16. Let S satisfy Assumption 1 with p ∈ (1,∞) and δ = 0. Moreover,
let Sκ be defined in (3.13). Then, the mapping (κ,A) 7→ Sκ(A) is continuous
on R

≥0 × R
d×d.
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Proof. Let (κn,An) converge to (κ0,A0) as n→ ∞ We have

∣∣Sκn(An) − Sκ0(A0)
∣∣ ≤

∣∣Sκn(An) − Sκn(A0)
∣∣+
∣∣Sκn(A0) − Sκ0(A0)

∣∣ .

If κ0 = 0 then the second term converges to 0 since Sκn converges locally
uniformly to S by the discussion above. If κ0 > 0 we have that ηκn

converges
locally uniformly to ηκ0

and is bounded. Thus, also in this case the second
term converges to 0. To treat the first term, we need some formulas on the
shift change for N-functions. For the first term we have due to (3.3), (2.15),
and (2.17b)

∣∣Sκn(An) − Sκn(A0)
∣∣ ≤ c |An − A0|

(
κn + |An| + |A0|

)p−2

≤ c ϕ′
κn

(|An − A0|)

≤ c ϕ′
κ0

(|An − A0|) + c ϕ′
κ0

(|κn − κ0|).

From the continuity properties of the shifted N-functions it follows that the
right-hand-side converges to 0.

In the case that the extra stress tensor S is derived from a potential Φ, i.e.,
(2.1), (2.2) hold with δ = 0 and p ∈ (1,∞), one can use another approximation.
In the situation of a stress tensor derived from a potential we define Sκ(0) := 0

and for all A ∈ R
3×3 \ {0} we set

Sκ(A) := Φ′
κ(|Asym|)

Asym

|Asym|
, (3.17)

where Φ′
κ is the shifted N-function (cf. (2.14)) corresponding to the N-function

Φ. Of course we set again S0 := S. This approximation (which is very natural)
suggested to us the more general approximation (3.13) necessary to treat a wider
class of stress tensors with p-structure. In addition, results here will be used
to detect relevant properties of the function F, which is also derived from a
potential (cf. (2.24)).

Lemma 3.18. Let the potential Φ satisfy (2.2) with δ = 0 and let Sκ be de-
fined in (3.17). Then the mappings (κ, t) 7→ Φ′

κ(t) and (κ,A) 7→ Sκ(A) are
continuous on R

≥0 × R
≥0 and R

≥0 × R
d×d, respectively.

Proof. Let (κn, tn) → (κ0, t0). If κ0 + t0 > 0 then by the definition of Φ′
κ(t) it

follows that Φ′
κn

(tn) → Φ′
κ0

(t0). If κ0 = t0 = 0 then by (2.17b)

Φ′
κn

(tn) ≤ c
(
Φ′

0(tn) + Φ′
0(|tn − κn|)

)

and since Φ′
0(0) = Φ′(0) = 0 we get

|Φ′
κn

(tn) − Φ′
0(0)| ≤ c

(
Φ′

0(tn) + Φ′
0(|tn − κn|)

)
→ 0.

Thus the assertion for Φ′
κ(t) is proved.
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Let now (κn,An) converge to (κ0,A0). If |A0| > 0, due to the definition of
Sκ and the continuity of Φ′

κ(t) we have that Sκn(An) → Sκ0(A0). For A0 = 0

we have Sκ(A0) = 0 and

|Sκn(An)| ≤ Φ′
κn

(|Asym
n |) → 0 , (3.19)

which shows Sκn(An) → 0. Thus also the assertion for Sκ(A) is proved.

Next, we derive some information on the function F. First, we observe that

F in (2.5) for δ = 0 and p ∈ (1,∞) is derived from the potential ψ(t) := 2
p+2 t

p+2
2 ,

i.e.,

F0(A) := F(A) = ψ′(|Asym|)
Asym

|Asym|
, (3.20)

and this happens also if the stress tensor S in (NSp) does not derive from a
potential.

Consequently we set

Fκ(A) := ψ′
κ(|Asym|)

Asym

|Asym|
. (3.21)

Now Lemma 3.18 with p replaced by p+2
2 ∈ (3/2,∞) implies the following result.

Corollary 3.22. Let p ∈ (1,∞) and let the potential ψ and Fκ be defined
in (3.20) and (3.21), respectively. Then, the mappings (κ, t) 7→ ψ′

κ(t) and
(κ,A) 7→ Fκ(A) are continuous on R

≥0 × R
≥0 and R

≥0 × R
d×d, respectively.

In order to pass to the limit and to identify appropriate limits with solutions
of the degenerate equations, we shall use also continuity in the approximation
of the inverse of F. We have the following lemma.

Lemma 3.23. Let p ∈ (1,∞) and let the potential ψ and Fκ be defined in (3.20)

and (3.21), respectively. Then, the mapping (κ,A) 7→
(
Fκ
)−1

(A) is continuous
on R

≥0 × R
d×d.

Proof. Note that (Fκ
)−1

(A)=
(
ψ∗

κ

)′
(|Asym|) Asym

|Asym| , where
(
ψ∗

κ

)′
(t)=

(
ψ′

κ

)−1
(t).

From (2.18) it follows that
(
ψ∗

κ

)′
(t) ≃

(
κ

p
2 + t

) 2−p
p t. This implies that the

assumptions of Lemma 3.16 are satisfied with p replaced by p+2
p ∈ (1, 3), and

the assertion follows.

4 Some estimates specific of the case p ∈ (1,2]

In preparation for the proof of the main result in the section 5 we prove in this
section the necessary estimates and relations needed to extend the existence
result for strong solutions proved in [20] to the degenerate case δ = 0. In
particular, we prove several results that are confined to the case 1 < p ≤ 2. We
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proceed as in [20] and show the necessary changes to the various lemmas needed
to get suitable a priori estimates. In particular, we shall replace the quantity

(D̃u)p = (1 + |Du|2)p/2

used in [20] by the more natural (vectorial) quantity F(Du) and in view of
Corollary 3.12 we will also replace the quantities I(u) and J (u) used in the

previous papers by ‖∇F(Du)‖
2
2 and ‖(F(Du))t‖

2
2, respectively. Moreover, we

show that all constants in the estimates are independent of δ > 0.
Throughout this section we shall assume that d = 3 and 1 < p ≤ 2. We also

recall the following result, taken from [20, Lemma 8].

Lemma 4.1. Let S satisfy Assumption 1 with p ∈ (1, 2] and δ ∈ [0,∞), and let
F be defined by (2.5). Then, for sufficiently smooth u, v and q ∈ [1, 2] holds

‖D(u − v)‖
2
q ≤ c ‖F(Du) − F(Dv)‖

2
2

∥∥(δ + |Du| + |Dv|)2−p
∥∥

q
2−q

,

where the constant c depends only on C0, C1, and p. Moreover, q
2−q = ∞ for

q = 2. For p ∈ (1, 2], δ ∈ [0,∞), r ∈ [1,∞], and δ + ‖Du‖r + ‖Dv‖r > 0 we
can formulate this result also as follows

∫

Ω

(S(Du) − S(Dv)) · D(u − v) dx

≥ c ‖Du − Dv‖
2

2r
2−p+r

(δ + ‖Du‖r + ‖Du − Dv‖r)
p−2.

Proof. From (3.2) it follows that |F(Du) − F(Dv)|
q
(δ + |Du| + |Dv|)

(2−p)q
2 ≃

|Du−Dv|q. Integrating this and applying Hölder’s inequality gives the assertion
(cf. also [20, Lemma 8]). For the second inequality we also use that for all
A,B ∈ R

3×3 holds |A| + |A − B| ≃ |A| + |B|.

Lemma 4.2. Let δ ∈ (0,∞). Then for all sufficiently smooth v and w and for
all q ∈ [1, 2] and p ∈ (1, 2] and for almost all t ∈ I there holds

‖Dv‖2
q ≤

∫

Ω

(δ + |Dw|)p−2|Dv|2 dx
∥∥(δ + |Dw|

)2−p∥∥
q

2−q

,

≤ c

∫

Ω

(δ + |Dw|)p−2|Dv|2 dx
∥∥∥
(
δ

p
2 + |F(Dw)|

) 2−p
p

∥∥∥
2

2q
2−q

,

where q/(2 − q) = ∞ if q = 2 and where the constant c depends only on p.

Proof. The first inequality follows directly from Hölder’s inequality (cf. [20,
Lemma 7]). Using the relation (2.20) and the definition of F the second in-
equality follows.

Remark 4.3. The reason that we exclude the case δ = 0 in the above lemma
is that, even for sufficiently smooth w 6= v, we do not know a priori whether or
not the right-hand-side is finite.
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We prove now two lemmas, which show which information on second deriva-
tives of u can be extracted from first derivatives of F(Du).

Lemma 4.4. Let p ∈ (1, 2] and δ ∈ (0,∞). Then for all sufficiently smooth
function u there holds

‖∇2u‖p
p ≤ c

(
‖∇F(Du)‖

2
2 +

∥∥δ + |Du|
∥∥p

p

)
,

c ‖∇ut‖
p
p ≤ c ‖Dut‖

p
p ≤ c

(∥∥(F(Du)
)
t

∥∥2

2
+
∥∥δ + |Du|

∥∥p

p

)

with constants c depending only on p and Ω.

Proof. The proof of this lemma is given in [20, Lemma 6] in the case δ = 1. We
show now that the same bounds hold, without any dependence on δ. We use
the inequality

ap ≤ a2bp−2 + bp,

which holds for all 0 ≤ a, 0 < b, and p ∈ [1, 2]. The previous inequality implies

|∇2u|p ≤ (δ + |Du|)p−2|∇2u|2 + (δ + |Du|)p.

Observing |∇2u| ≤ 3 |∇Du| and using Corollary 3.12 the first assertion follows
immediately. For the second assertion we proceed analogously and use Korn’s
inequality.

Lemma 4.5. Let p ∈ (1, 2] and δ ∈ (0,∞). Then, for all sufficiently smooth
functions u with vanishing mean value over Ω there holds for s ∈ [1,∞)

‖u‖p

W
2,

3p
p+1 (Ω)

≤ c
(
‖∇F(Du)‖

2
2 + δp

)
,

‖∇u‖
2

6s
6−3p+s

+ ‖∇2u‖
2

2s
2−p+s

≤ c ‖∇F(Du)‖
2
2

(
δ + ‖∇u‖s

)2−p
,

‖ut‖
p

W
1,

3p
p+1 (Ω)

≤ c ‖(F(Du))t‖
p
2

(
‖∇F(Du)‖

2
2 + δp

) 2−p
2

≤ c
(
‖∇F(Du)‖

2
2 + ‖(F(Du))t‖

2
2 + δp

)
,

‖ut‖
2

6s
6−3p+s

+ ‖∇ut‖
2

2s
2−p+s

≤ c ‖(F(Du))t‖
2
2

(
δ + ‖∇u‖s

)2−p
,

with constants depending only on Ω, p, and s and independent of δ > 0.

Proof. Using Lemma 4.2 and Corollary 3.12 one can adapt the proof of [20,
Lemma 10] and [19, Lemma 4.2] easily to obtain the results.

The above lemmas are enough in order to prove existence of strong solutions
for small times or small data in the case 5/3 < p ≤ 2, since essentially in this
case testing with −∆u is needed and the convective term can be handled by
assuming that the time interval is small (cf. [35]).
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In order to have existence of solutions also for smaller values of p it is nec-
essary to test the equations simultaneously with −∆u and “utt.”

‡ The next
lemma shows how to extract information from the additional term d

dt‖F(Du)‖q
q

on the left-hand-side.

Lemma 4.6. Let p ∈ (1, 2], δ ∈ (0,∞), F be defined by (2.5), and q ∈ [1,∞).
Then, for sufficiently smooth functions u there holds

d

dt
‖F(Du)‖q

q ≤ c ‖(F(Du))t‖2

∥∥F(Du)
∥∥q−1

2(q−1)

≤ ε ‖(F(Du))t‖
2
2 + cε

∥∥F(Du)
∥∥2(q−1)

2(q−1)
,

where
∥∥F(Du)

∥∥2(q−1)

2(q−1)
:=
∫
Ω
|F(Du)|

2(q−1)
dx even if 2(q−1) < 1, with constants

c = c(p, q) and cε = c(ε, p, q) for all ε > 0.

Proof. This follows by direct computation of the time derivative of |F(Du(t))|
q
,

the definition of F(Du), Hölder’s inequality, and Corollary 3.12 (for more details
cf. [20, Lemma 11]). The last estimate follows from Young’s inequality.

This lemma can be used to produce the time derivative of ‖F(Du)‖q
q on the

left-hand-side, provided that we add a multiple of
∥∥F(Du)

∥∥2(q−1)

2(q−1)
on the right-

hand-side. Moreover, the information coming from ‖(F(Du))t‖
2
2 is stronger

than that coming from −
∫
Ω

ut ·∆u dx = 1
2

d
dt‖∇u‖

2
2. Thus we leave this term in

its original form and move it to the right-hand-side, where it must be estimated.
This has the advantage that the equation (NSp) tested with −∆u can be raised
to some power. The following lemmas show how the terms coming from the

convective term, the additional terms
∥∥F(Du)

∥∥2(q−1)

2(q−1)
and −

∫
Ω

ut · ∆u dx can

be estimated.

Lemma 4.7. Let p ∈ (1, 2], δ ∈ (0,∞), and q ∈
(

9−3p
p ,∞). Then, there exists a

constant R1 = R1(p) such that for all ε > 0 and all sufficiently smooth functions
u there is a constant cε = c(ε, p,Ω) such that there holds

‖∇u‖3
3 ≤ cε

(∥∥F(Du)
∥∥R1

q
+ δ3

)
+ ε

(
‖F(Du)‖

2
2 + ‖∇F(Du)‖

2
2

)
.

Proof. It suffices to consider the case q < 6/p, since if q ≥ 6/p we can get directly
the above estimate, without using interpolation. Using Korn’s inequality we get

‖∇u‖
3
3 ≤ c ‖Du‖

3
3. From relation (2.20) we get ‖∇u‖

3
3 ≤ c (‖F(Du)‖

6/p
6/p + δ3),

with a constant independent of δ. Thus, we interpolate L6/p(Ω) between Lq(Ω)
and L6(Ω) to obtain

‖F(Du)‖
6/p
6/p ≤ ‖F(Du)‖

6(1−θ)
p

q ‖F(Du)‖
6θ
p

6 ,

‡This means to take the derivative of the equations with respect to t, then multiply by ut,
and perform suitable integrations by parts.
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with θ = pq−6
q−6 . If 6θ

p < 2 we can use Young’s inequality and the embedding

W 1,2(Ω) →֒ L6(Ω) to obtain the assertion of the lemma. This condition is
equivalent to the requirement 9−3p

p < q < 6.

Lemma 4.8. Let p ∈ (1, 2], δ ∈ (0,∞), and q ∈
(

9−3p
p ,∞). Then, there exist

constants R2 = R2(p), R3 = R3(p), and R4 = R4(p) such that for all ε > 0 and
all sufficiently smooth functions u there is a constant cε = c(ε, p,Ω) such that
there holds
∣∣∣∣
∫

Ω

[∇ut]u · ut dx

∣∣∣∣ ≤ ε ‖(F(Du))t‖
2
2 + cε

(
‖ut‖

R2
2 +

∥∥F(Du)
∥∥R3

q
+ δR4

)
.

Proof. Korn’s and Hölder’s inequalities imply for q > 2
p

∣∣∣∣
∫

Ω

[∇u]ut · ut dx

∣∣∣∣ ≤ c ‖ut‖
2
2pq

pq−2
‖Du‖ pq

2

Next, by using (2.20) and the definition of F(Du) we get

∣∣∣∣
∫

Ω

[∇u]ut · ut dx

∣∣∣∣ ≤ c ‖ut‖
2
2pq

pq−2

(∥∥F(Du)
∥∥ 2

p

q
+ δ
)
,

≤ c ‖ut‖
2(1−θ)
2 ‖ut‖

2θ
6qp

12−6p+pq

(∥∥F(Du)
∥∥ 2

p

q
+ δ
)
,

with a constant c independent of δ. Note that the interpolation L
2pq

pq−2 (Ω) =

[L2(Ω), L
6qp

12−6p+pq (Ω)]θ, is possible since q > 9−3p
p . Next, Lemma 4.2 (replace

q there by 2pq
4−2p+pq and v by ut), Corollary 3.12, the definition of F(Du),

and (2.20) imply

‖Dut‖ 2pq
4−2p+pq

≤ c ‖(F(Du))t‖2

∥∥δ
p
2 + |F(Du)|

∥∥
2(2−p)

p

q
.

Note, that 2pq
4−2p+pq ∈ (1, 2] for q > 9−3p

p and p ∈ [1, 2]. Korn’s inequality and

the embedding W 1, 2pq
4−2p+pq (Ω) →֒ L

6qp
12−6p+pq (Ω) thus imply

∣∣∣∣
∫

Ω

[∇u]ut · ut dx

∣∣∣∣

≤ c ‖ut‖
2(1−θ)
2

(
‖(F(Du))t‖2

∥∥δ
p
2 + |F(Du)|

∥∥
2(2−p)

p

q

)2θ(
‖F(Du)‖

2
p
q + δ

)

≤ ε ‖(F(Du))t‖
2
2 + cε

(
‖ut‖

R2
2 +

∥∥F(Du)
∥∥R3

q
+ δR4

)
,

which proves the assertion. Note, that the q here is obtained from the q in [20,
Lemma 13] by multiplying with 2

p .

Proceeding similarly one can modify also Lemmas 14 and 16 in [20].
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Lemma 4.9. Let Let p ∈ (1, 2], δ ∈ (0,∞). Then, there exists a constant
c = c(p,Ω) such that for all sufficiently smooth functions u there holds

∣∣∣∣
∫

Ω

ut · ∆u dx

∣∣∣∣ ≤ c ‖ut‖
4(p−1)
3p−2

2 ‖(F(Du))t‖
2−p
3p−2

2

(
‖∇F(Du)‖

2
2 + δp

) p+2
2(3p−2) .

Proof. Cf. [20, Lemma 14] and Corollary 3.12.

Lemma 4.10. Let p ∈ (1, 2], δ ∈ (0,∞), r ∈ [1,∞), and 2 < q < min{4, 6(r+1)
3+r }.

Then, there exists a constant R5 = R5(p) > 1 such that for all ε > 0 there is a
constant cε = c(ε, p, r,Ω) such that for all sufficiently smooth functions u there
holds

∥∥F(Du)
∥∥2(q−1)

2(q−1)
≤ cε

∥∥F(Du)
∥∥R5

q
+ ε

(∥∥F(Du)
∥∥2r

2
+ ‖∇F(Du)‖

2r
2

)
.

Proof. For 2 < q < 4 we can interpolate L2(q−1)(Ω) = [Lq(Ω), L6(Ω)]θ, with

θ = 3(q−2)
(q−1)(6−q) . Using Sobolev embedding W 1,2(Ω) →֒ L6(Ω) we thus obtain

∥∥F(Du)
∥∥2(q−1)

2(q−1)
≤ c

∥∥F(Du)
∥∥2(q−1)(1−θ)

q

∥∥F(Du)
∥∥2(q−1)θ

W 1,2(Ω)
.

If 2(q − 1)θ < 2r we can use Young’s inequality to get the assertion. This

condition is equivalent to q < 6(r+1)
3+r (cf. [20, Lemma 16]).

Using the above results one can show for each δ > 0 (cf. [20] and see also
section 5) suitable a priori estimates which can be used to prove the local in time
existence of strong solutions of the problem (NSp), via the Galerkin method.
Since all previous estimates are independent of δ > 0, we shall be able treat
the case δ = 0 by a limiting procedure. However, we shall need the results of
subsection 3.1 in order to justify also the limit in the extra stress tensor S and
related quantities.

5 Main Theorem

Now we have prepared everything to formulate and prove the main result of the
paper.

Theorem 5.1. Let S satisfy Assumption 1 with p ∈
(

7
5 , 2] and δ ∈ [0, δ0]

where δ0 > 0. Assume that f ∈ L∞(I;W 1,2(Ω)) ∩ W 1,2(I;L2(Ω)), where
I = [0, T ], and u0 ∈ W 2,2

div (Ω), div S(Du0) ∈ L2(Ω). Then there exists a time
T ′ = T ′(δ0, p, C0, f ,u0, T,Ω), with 0 < T ′ ≤ T , such that the system (NSp) has

a strong solution u ∈ Lp(I ′;W 1,p
div (Ω)), I ′ = [0, T ′], satisfying for a.e. t ∈ I ′ and

for all ϕ ∈W 1,p
div (Ω)

∫

Ω

ut(t) · ϕ + S(Du(t)) · Dϕ + [∇u(t)]u(t) · ϕ dx =

∫

Ω

f(t) · ϕ dx, (5.2)
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and

‖ut‖L∞(I′;L2(Ω))+‖F(Du)‖W 1,2(I′×Ω) + ‖F(Du)‖
L

2
5p−6
2−p (I′;W 1,2(Ω))

≤ c , (5.3)

with a constant c = c(δ0, p, C0, ‖f‖, ‖u0‖, T,Ω). In particular, we have

u ∈ L
p(5p−6)

2−p (I ′;W 2, 3p
p+1 (Ω)) ∩ C(I ′;W 1,s(Ω)) 1 ≤ s < 6(p− 1) (5.4a)

ut ∈ L∞(I ′;L2(Ω)) ∩ L
p(5p−6)

(3p−2)(p−1) (I ′;W 1, 3p
p+1 (Ω)) , (5.4b)

with norms of u and ut bounded by constants c = c(δ0, p, C0, ‖f‖, ‖u0‖, T,Ω, s)
and c = c(δ0, p, C0, ‖f‖, ‖u0‖, T,Ω), respectively. Due to (5.4a) and p > 7

5 we

have u ∈ C(I,W 1, 12
5 (Ω)). This solution is unique within C(I;W 1, 12

5 (Ω)).

Remark 5.5. Moreover, for δ > 0 there exists a pressure π satisfying

∇π ∈ L
2(5p−6)

2−p (I ′;L2(Ω)) (5.6)

and the second time derivative satisfies

utt ∈ L2(I ′;
(
W 1,2

div (Ω)
)∗

) , (5.7)

with both norms bounded by a constant c = c(δ, p, C0, C1, ‖f‖, ‖u0‖, T,Ω),
which may explode as δ → 0+.

Proof of Theorem 5.1. We split the proof into two parts: first we treat the non-
degenerate case δ > 0 and then the degenerate one δ = 0.

The case δ > 0: In the non-degenerate case the proof follows exactly along the
line of the corresponding statements in [20] (cf. [45]), if one replaces the lemmas
there with corresponding lemmas here. We sketch the proof here in order to
obtain a precise dependence of the constants with respect to δ.

The proof is obtained by an application of the Galerkin method. Let ω
k, with

k ∈ N, be the eigenfunctions of the Stokes operator and let λk be the correspond-
ing eigenvalues. Note that

∫
Ω

ω
k dx = 0. We denote XN := span{ω1, . . . ,ωN}

and we define the projection PNu =
∑N

r=1

∫
Ω

u · ω
r dx ω

r. Note that
PN : W s,2 → (XN , ‖·‖s,2) are uniformly continuous for all 0 ≤ s ≤ 3. As usual,

we seek the Galerkin approximation uN (t, x) =
∑N

r=1 c
N
r (t)ω

r(x), N ∈ N, as
the solutions of the Galerkin system (for all 1 ≤ r ≤ N , t ∈ I)
∫

Ω

uN
t (t) · ωr + S(DuN (t)) · Dω

r + [∇uN (t)]uN (t) · ωr dx =

∫

Ω

f(t) · ωr dx,

uN (0) = PNu0. (5.8)

Existence of the function uN follows from standard theory for systems of ordi-
nary differential equations. Moreover, the Galerkin approximate functions uN

are sufficiently smooth due to our assumptions on the data. We can consequently
use uN as a test function in (5.8) to obtain the “energy” inequality

‖uN‖
2

L∞(I;L2(Ω)) + ‖uN‖
p

Lp(I;W 1,p(Ω)) ≤ c(‖f‖, ‖u0‖) + c(Ω, T ) δp, (5.9)
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where we used (3.2) (with B = 0), δp + tp ≃ (δ + t)p−2t2 + δp (cf. [46, Remark
6.15]) and Korn’s inequality. By following a well-established technique (cf. [35],
[36], [20]) for (NSp) with space periodic boundary conditions, we use −∆uN as
a test function in (5.8). Moreover, we move the term −

∫
uN

t · ∆uNdx to the
right-hand-side to get

C0

C3

∥∥∇F(DuN )
∥∥2

2
≤ ‖∇uN‖

3

3 +

∣∣∣∣
∫

Ω

∇f · ∇uN dx

∣∣∣∣+
∣∣∣∣
∫

Ω

uN
t · ∆uN dx

∣∣∣∣,

where we used (2.22a) and Corollary 3.12. Using the assumptions on f , inequal-
ity (5.9), Lemma 4.7, Lemma 4.9, and Young’s inequality we can estimate the
right-hand-side to obtain for q > 9−3p

p and for a.e. t ∈ I

∥∥∇F(DuN (t))
∥∥2

2

≤ cε

(
‖∇uN (t)‖2‖∇f(t)‖2 + max{δp, δ3} +

∥∥F(DuN (t))
∥∥R1

q

+ ‖uN
t (t)‖

8(p−1)
5p−6

2

∥∥(F(DuN (t))
)
t

∥∥2 2−p
5p−6

2
+
∥∥F(DuN (t))

∥∥2

2

)

+ ε
∥∥∇F(DuN (t))

∥∥2

2
, (5.10)

where cε = cε(p,Ω). Raising this inequality to the power r ∈ [1, 5p−6
2−p

)
we obtain

with Young’s inequality and absorbing the last term on the right-hand-side in
the left-hand-side

∥∥∇F(DuN (t))
∥∥2r

2

≤ cε

(
‖∇f(t)‖

R6

2 + max{δpr, δ3r} +
∥∥F(DuN (t))

∥∥R7

q
+ ‖uN

t (t)‖
R8

2

+ ‖∇uN (t)‖
R9

2 +
∥∥F(DuN (t))

∥∥2r

2

)
+ ε

∥∥(F(DuN (t))
)
t

∥∥2

2
, (5.11)

where R6 = R6(p), R7 = R7(p), R8 = R8(p), R9 = R9(p), and cε = cε(p, r,Ω).
We take now the time derivative of (5.8) and, by using uN

t as a test function,
we arrive at the following equality:

1
2dt‖u

N
t ‖

2

2 +

∫

Ω

(S(DuN ))t · DuN
t +

(
[∇uN ]uN

)
t
· uN

t dx =

∫

Ω

ft · u
N
t dx.

Using (2.22a), Lemma 4.8, Corollary 3.12 and the assumptions on f we get for
a.e. t ∈ I and q > 9−3p

p

d

dt
‖uN

t (t)‖
2

2 +
2C0

C3

∥∥(F(DuN (t))
)
t

∥∥2

2

≤ cε

(
‖ft(t)‖

2
2 + ‖uN

t (t)‖
max{2,R2}
2 +

∥∥F(DuN (t))
∥∥R3

q
+ δR4

)

+ ε
∥∥(F(DuN (t))

)
t

∥∥2

2
,
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where cε = c(ε, p,Ω). Adding d
dt

∥∥F(DuN )
∥∥q

q
to both sides and using Lem-

mas 4.6 and 4.10 we thus obtain

d

dt
‖uN

t (t)‖
2

2 +
d

dt

∥∥F(DuN (t))
∥∥q

q
+

2C0

C3

∥∥(F(DuN (t))
)
t

∥∥2

2

≤ 2 ε
∥∥(F(DuN (t))

)
t

∥∥2

2
+ ε

∥∥∇F(DuN (t))
∥∥2r

2
(5.12)

+ c
(
‖ft(t)‖

2
2 + ‖uN

t (t)‖
max{2,R2}
2 +

∥∥F(DuN (t))
∥∥max{R3,R5}

q
+ δR4

)
,

Summing up (5.11) and (5.12), and choosing ε sufficiently small we arrive, for
a.e. t ∈ I, to the following

d

dt

(
‖uN

t (t)‖2
2 +

∥∥F(DuN (t))
∥∥q

q

)
+
∥∥∇F(DuN (t))

∥∥2r

2
+
∥∥(F(DuN (t))

)
t

∥∥2

2

≤ c
(

max{δpr, δ3r, δR4} + ‖∇uN (t)‖
R9

2 +
∥∥F(DuN (t))

∥∥max{2,R3,R5,R7}

q
+

+ ‖uN
t (t)‖

max{2,R2,R8}
2 + ‖∇f(t)‖

R6

2 + ‖ft(t)‖
2
2

)
,

as long as

max
{
2, 9−3p

p

}
< q < min

{
4, 6(r+1)

3+r

}
and 1 ≤ r < 5p−6

2−p ,

with a constant c = c(p, r, C0,Ω). In order to control the term ‖∇uN‖2 on
the right-hand-side we need to have also q > 4/p since by recalling (2.20)∥∥F(DuN (t))

∥∥
q
+ δp/2 ≃ ‖∇uN‖

p/2

pq/2 + δp/2.

The restrictions on q are then equivalent to

max
{

4
p ,

9−3p
p

}
< q < min

{
4, 12(p−1)

p

}
.

One easily checks that we can find such q and r as long as p > 7/5. Moreover,
from the assumptions on the data, the fact that uN (0) = PNu0 is a solution
of the Galerkin system (5.8) at time t = 0, and the properties of the projection
PN follows that

‖F(DuN (0))‖q + ‖uN
t (0)‖2 ≤ c(f ,u0).

Thus, we can apply the local Gronwall lemma (cf. [20, Lemma 24]) which yields
that there exists a time T ′ = T ′(δ0, p, r, C0, ‖f‖, ‖u0‖, T,Ω) such that on the
interval I ′ := [0, T ′] we have in particular

‖uN
t ‖L∞(I′;L2(Ω)) + ‖F(DuN )‖W 1,2(I′×Ω) + ‖F(DuN )‖L2r(I′;W 1,2(Ω)) ≤ c ,

with a constant c = c(δ0, p, r, C0, ‖f‖, ‖u0‖, T,Ω) and 1 ≤ r < 5p−6
2−p . Using this

estimate and (5.10) one can get rid of the dependence on r. Thus we finally
obtain

‖uN
t ‖L∞(I′;L2(Ω)) + ‖F(DuN )‖W 1,2(I′×Ω) + ‖F(DuN )‖

L
2
5p−6
2−p (I′;W 1,2(Ω))

≤ c ,

(5.13)
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with a constant c = c(δ0, p, C0, ‖f‖, ‖u0‖, T,Ω). From (5.13) one can pass to the
limit as N → ∞ and show the existence of a strong solution u of (NSp) defined
through

u := lim
N→∞

uN .

This can be done with standard compactness results and De Giorgi’s semi-
continuity theorem (see e.g, [26]). By using interpolation theory one can show
that the limit function u has the regularity properties stated in the theorem
(cf. [20, Section 6] for full-details). Note that

∫

Ω

|∇(S(Du))|
2
dx ≤ C1

∫

Ω

(δ + Du)2(p−2)|∇Du|
2
dx ≤ C1 δ

p−2 ‖∇F(Du)‖
2
2 ,

∫

Ω

|(S(Du))t|
2
dx ≤ C1

∫

Ω

(δ + Du)2(p−2)|Dut|
2
dx ≤ C1 δ

p−2 ‖(F(Du))t‖
2
2 ,

which together with (5.3) implies (by comparison) the statements for utt and
π in Remark 5.5. Uniqueness follows in a standard way (compare [20]) from
regularity in (5.4). This finishes the proof for δ > 0.

The case δ = 0: In the degenerate case we cannot use directly the same tools,
but we approximate the (now degenerate) system (NSp) by the non-degenerate
one

uκ
t − div Sκ(Duκ) + [∇uκ]uκ + ∇πκ = f in I × Ω,

div uκ = 0 in I × Ω,

uκ(0) = u0 in Ω,

(NSκ
p)

where Sκ (for 0 < κ < 1) is defined in (3.13). Since Sκ satisfies Assumption 1
with δ = 0 replaced now by κ > 0, by using the above theory (and by recalling
the independence of δ of results in section 4) we obtain that there exists a unique
strong solution uκ satisfying (5.3) uniformly in κ, i.e., for κ ∈ (0, 1] we have

‖uκ
t ‖L∞(I′;L2(Ω))+

∥∥Fκ(Duκ)
∥∥

W 1,2(I′×Ω)
+
∥∥Fκ(Duκ)

∥∥
L

2
5p−6
2−p (I′;W 1,2(Ω))

≤ c,

(5.14)

where c = c(p,C0, ‖f‖, ‖u0‖, T,Ω). For each “smooth enough” function v we
write (cf. (3.21))

Fκ(Dv) :=
(
κ+ |Dv|

) p−2
2 Dv,

to be able to follow exactly the dependence on κ. The limiting process κ→ 0+ in
all terms in (NSκ

p) except the extra stress tensor Sκ is clear. Using Lemma 3.16
and Lemma 3.23 one can identify the limit

lim
n→∞

∫

I′

∫

Ω

Sκn(Duκn) · Dw dx dt (5.15)

for smooth w and κn → 0+ as n → ∞. Indeed, from (5.14) it follows that
Fκn(Duκn) is bounded in W 1,2(I ′ × Ω). Thus, there exist Q ∈ W 1,2(I ′ × Ω)
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and a subsequence (labeled again Fκn(Duκn)) such that

Fκn(Duκn) → Q a.e. in I ′ × Ω,

Fκn(Duκn) ⇀ Q in W 1,2(I ′ × Ω)

Fκn(Duκn) → Q in L2(I ′ × Ω)

We set P := (F0)−1(Q). From Lemma 3.23 it follows that

Duκn = (Fκn)−1(Fκn(Duκn)) → (F0)−1(Q) = P a.e. in I ′ × Ω.

From (5.14) we obtain that Duκn is bounded in Lp(I ′;W 1,p(Ω)) and thus there
exists a subsequence, labeled again Duκn , which converges weakly to Du in
Lp(I ′;W 1,p(Ω)). Since weak and a.e. limit coincide we obtain that

Duκn → Du = P a.e. in I ′ × Ω. (5.16)

Lemma 3.16 and Corollary 3.22 imply now that

Fκn(Duκn) → F(Du) a.e. in I ′ × Ω ,

Fκn(Duκn) → F(Du) in L2(I ′ × Ω) ,

Fκn(Duκn) ⇀ F(Du) in W 1,2(I ′ × Ω) ,

Sκn(Duκn) → S(Du) a.e. in I ′ × Ω .

The limit in (5.15) is now easily identified by Vitali’s convergence theorem,
due to the growth condition of Sκn and (5.14). We define the solution of the
degenerate problem as

u := lim
n→∞

uκn .

The lower semicontinuity of the norm implies that

‖ut‖L∞(I′;L2(Ω))+
∥∥F(Du)

∥∥
W 1,2(I′×Ω)

+
∥∥F(Du)

∥∥
L

2
5p−6
2−p (I′;W 1,2(Ω))

≤ c, (5.17)

with a constant c = c(p,C0, ‖f‖, ‖u0‖, T,Ω). From these results, the esti-
mates (5.4) can be derived in the same way as for δ > 0. These estimates,
together with (5.16), imply also that

Duκn → Du in L1(I ′ × Ω),

∇2uκn ⇀ ∇2u in L1(I ′ × Ω),

∇uκn
t ⇀ ∇ut in L1(I ′ × Ω).

(5.18)

6 Steady problems

The same technique introduced in the previous section can be also used to prove
related results for steady space periodic problems. From the a priori estimates
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which can be derived by using u and −∆u as test function one can easily prove
existence results for strong solutions. In the degenerate case one can use the
same approximation {Sκ}κ>0 as above.

We consider two steady problems: the p-Navier-Stokes and a quasi-p-Oseen
problem. The first system is the natural one for fluids with shear dependent
viscosity, while the study of the second one is motivated by the fact that it
is needed in the error analysis of time discretization problems, we performed
in [11]. The first result we prove is the following.

Theorem 6.1. Let us consider the steady problem

−div S(Du) + [∇u]u + ∇π = f in Ω,

div u = 0 in Ω,
(6.2)

with space periodic boundary conditions. Let the extra stress tensor S satisfy
Assumption 1 with p ∈

(
9
5 , 2] and δ ∈ [0, δ0] for some δ0 > 0 and assume

that f ∈ W 1,2(Ω). Then, the system (6.2) has a strong solution u ∈ W 1,p
div (Ω),

satisfying for all ϕ ∈W 1,p
div (Ω)

∫

Ω

S(Du) · Dϕ + [∇u]u · ϕ dx =

∫

Ω

f · ϕ dx,

and
‖F(Du)‖W 1,2(Ω) ≤ c,

with a constant c = c(δ0, p, C0, ‖f‖,Ω). In particular, we have

u ∈W 2, 3p
p+1 (Ω),

with norm bounded by a constant c = c(δ0, p, C0, ‖f‖,Ω).
Moreover, for δ > 0 there exists a pressure π satisfying

∇π ∈ L2(Ω)

with norm bounded by a constant c = c(δ, p, C0, C1, ‖f‖,Ω), which may explode
as δ → 0+.

Proof. We only sketch the proof of this result, since it can be obtained by
following exactly the same arguments of the previous one. First, we observe
that weak solutions have gradients in Lp(Ω). In fact, by employing a Galerkin
approximation and using uN as test function we get (independently of the value
of δ ≥ 0)

‖DuN‖
p

p ≤ c
(
‖f‖

p′

2 + δp
)
.

To prove existence of strong solutions, for δ > 0, we consider again the Galerkin
system, and after using −∆uN as test function and performing suitable inte-
gration by parts, we estimate the integral coming from the convection term as
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follows (by definition of F and the Sobolev embedding W 1,2(Ω) →֒ L6(Ω))

‖∇uN‖
3

3 ≤ c ‖DuN‖
3θ

p ‖DuN‖
3(1−θ)

3p

≤ c ‖DuN‖
3θ

p

(
‖F(DuN )‖

6(1−θ)
p

6 + δ3(1−θ)
)

≤ c ‖DuN‖
3θ

p

(
‖F(DuN )‖

6(1−θ)
p

2 + ‖∇F(DuN )‖
6(1−θ)

p

2 + δ3(1−θ)
)
,

where θ = (p − 1)/2. By using Corollary 3.12, the equivalence ‖F(DuN )‖2 +

δp/2 ≃ ‖DuN‖
p
2

p + δp/2, and also that ‖DuN‖p is bounded uniformly in terms
of the data, we consequently get the following a priori estimate

‖∇F(DuN )‖2
2 ≤ c

∥∥∇F(DuN )
∥∥

6(1−θ)
p

2

with c = (p,C0, C1, ‖f‖,Ω, δ0), and, in order to absorb
∥∥∇F(DuN )

∥∥
2

in the
left-hand-side, we need

6(1 − θ)

p
< 2 ⇐⇒ p >

9

5
.

Passing to the limit for N → ∞ is done with standard compactness tools.
In the degenerate case δ = 0 we use the approximation technique of the

previous section and we prove the existence of uκ (with bounds independent of
κ) for the approximate problem with S replaced by Sκ. The limiting process
κ→ 0+ follows exactly as in the previous section.

Since the problem is steady we cannot use utt as a test function. This results
in a narrower range of admissible p compared to the time evolution problem.

We consider now an Oseen-like problem and have the following result.

Theorem 6.3. Let us consider the steady problem

u − div S(Du) + [∇u]v + ∇π = f in Ω,

div u = 0 in Ω,
(6.4)

with space periodic boundary conditions. Let the extra stress tensor S satisfy
Assumption 1 with p ∈

(
7
5 , 2] and δ ∈ [0, δ0] for some δ0 > 0. Assume that

f ∈ W 1,2(Ω) and that v ∈ W 1,3p
div (Ω) are given. Then, the system (6.4) has a

strong solution u ∈W 1,p
div (Ω), satisfying for all ϕ ∈W 1,p

div (Ω)

∫

Ω

u · ϕ + S(Du) · Dϕ + [∇u]v · ϕ dx =

∫

Ω

f · ϕ dx,

and
‖∇u‖

2
2 + ‖F(Du)‖

2
W 1,2(Ω) ≤ c,

with a constant c = c(δ0, p, C0, ‖v‖, ‖f‖,Ω). In particular, we have

u ∈W 2, 3p
p+1 (Ω),
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with norm bounded by a constant c = c(δ0, p, C0, ‖v‖, ‖f‖,Ω). This solution is
unique within the class W 1,p

div (Ω) for p > 3
2 and within the class W 1,3p

div (Ω) for
p > 7

5 .
Moreover, for δ > 0 there exists a pressure π satisfying

∇π ∈ L2(Ω)

with norm bounded by a constant c = c(δ, p, C0, C1, ‖v‖, ‖f‖,Ω), which may
explode as δ → 0.

Proof. Again we give the only basic steps of the proof, since details are similar
to the previous results. We show the a priori estimate for the Galerkin solutions
uN . First we get (independently of the value of δ ≥ 0) the estimate obtained
by testing with uN

‖uN‖
2

2 + ‖DuN‖
p

p ≤ c
(
‖f‖

p′

2 + δp
)
.

For δ > 0, to prove the existence of strong solution we use −∆uN as test
function and perform integrations by parts. By using Corollary 3.12 we get

‖∇uN‖2
2 +

∥∥∇F(DuN )
∥∥2

2
≤ c

(
‖f‖2

W 1,2 +

∫

Ω

|∇v| |∇uN |2 dx

)

≤ c
(
‖f‖2

W 1,2 + ‖∇v‖3p‖∇uN‖2
6p

3p−1

)
.

With Korn’s inequality, interpolation L
6p

3p−1 = [Lp, L
3p

3−p ]θ (which is possible for
p > 7

5 ), and a Sobolev embedding, we obtain

‖∇v‖3p‖∇uN‖2
6p

3p−1

≤ c ‖Dv‖3p‖DuN‖
5p−7

p
p ‖DuN‖

7−3p
p

3p
3−p

≤ cε ‖Dv‖
2p

5p−7

3p ‖DuN‖2
p + ε ‖DuN‖2

3p
3−p

≤ cε ‖Dv‖
2p

5p−7

3p ‖DuN‖2
p + ε c ‖∇DuN‖2

p.

Finally, by using Lemma 4.5 (first and second inequality with s = p), by recalling
the uniform bound for ‖DuN‖p, by using Korn’s inequality, δ ∈ (0, δ0], and
p ∈ (1, 2], we get

‖∇v‖3p‖∇uN‖2
6p

3p−1

≤ cε ‖Dv‖
2

5p−7

3p ‖DuN‖2
p + ε c ‖∇F(DuN )‖2

2

(
δ + ‖∇uN‖p

)2−p

≤ cε ‖Dv‖
2

5p−7

3p + ε c ‖∇F(DuN )‖2
2,

with c = c(δ, p, C0, C1, ‖v‖, ‖f‖,Ω). By choosing ε small enough we can absorb
the last term in the left-hand-side to get

‖∇uN‖
2

2 +
∥∥∇F(DuN )

∥∥2

2
≤ c.
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This last estimate shows the a priori bound which can be used (passing to the
limit as in the previous theorem) to show the existence of the strong solution u

to problem (6.4). Moreover, the fact that the quantity ‖∇u‖
2
2 + ‖∇F(Du)‖

2
2 is

bounded uniformly for δ ∈ (0, δ0] can be employed, by the same approximation
technique, to show existence also in the degenerate case. Details can be easily
fixed by using the machinery of the previous section.

The uniqueness result is easily obtained by testing the difference of the equa-
tions by the difference of the solutions. The bounds for p are due to the justifi-
cation of the computations.
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