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ON LIPSCHITZ TRUNCATIONS OF SOBOLEV

FUNCTIONS (WITH VARIABLE EXPONENT) AND THEIR

SELECTED APPLICATIONS

L. DIENING, J. MÁLEK1, AND M. STEINHAUER

Abstract. We study properties of Lipschitz truncations of Sobolev
functions with constant and variable exponent. As non-trivial appli-
cations we use the Lipschitz truncations to provide a simplified proof
of an existence result for incompressible power-law like fluids presented
in Frehse, Málek, Steinhauer: SIAM J. Math. Anal., 34, 1064-1083
(2003). We also establish new existence results to a class of incompress-
ible electro-rheological fluids.

1. Introduction

Let λ be a large positive number, p ≥ 1. Sobolev-functions from W 1,p
0 can

be approximated by λ-Lipschitz functions that coincide with the originals
up to sets of small Lebesgue measure. The Lebesgue measure of these non-
coincidence sets is bounded by the Lebesgue measure of the sets where the
Hardy-Littlewood maximal function of the gradients are above λ. See for
example [AF88], [Zie89],[Lan96], [MZ97], [Ped97], and [GMS98].

Lipschitz truncations of Sobolev functions are used in various areas of
analysis in different aspects. To name a few, we refer to the articles with
applications in the calculus of variations [AF84], [Zha90], [Zha92a], [GIS97],
[GMS98], [Mül99], in the existence theory of partial differential equations
[Zha88], [Zha92b], [Lan96], [DHM00], [FMS03] and in the regularity theory
[AF87], [DM04].

The purpose of this article is four-fold. First of all, in Section 2 we recall,
survey, and strengthen properties of W 1,∞

0 -truncations of W 1,p
0 -functions

that are useful from the point of view of the existence theory concerning
nonlinear PDE’s. We illustrate the potential of this tool by establishing
the weak stability for the system of p-Laplace equations with very general
right-hand sides.
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Then, in Section 3 we exploit Lipschitz truncations in the analysis of
steady flows of generalized power-law fluids. In this case we reprove in a
simplified way the existence results established in [FMS03].

Next, in order to apply this method to a class of electro-rheological flu-
ids which are characterized by power-law index varying with the spatial
variables we extend the Lipschitz truncation method to Sobolev functions
of variable exponents W 1,p(·). The properties of Lipschitz truncations are
presented in Section 4.

Finally, we establish new existence results to an electro-rheological fluid
model in Section 5.

We wish to mention that our main interest in investigating properties of
Lipschitz truncations of Sobolev functions comes from studies of equations
describing flows of certain incompressible fluids. In order to explain how the
properties of Lipschitz truncations can be used in the analysis of nonlinear
partial differential equations to those readers who are not familiar with (or
not interested in) analysis of generalized incompressible Navier-Stokes equa-
tions we decided to consider first the following problem: for a given vector
field F = (F1, . . . , Fd), to find v = (v1, . . . , vd) solving1

− div
(

|Dv|p−2Dv
)

= F in Ω ⊂ R
d,

v = 0 on ∂Ω.
(1.1)

Here Ω is a bounded domain with Lipschitz boundary, p > 1 and Dv denotes
either the gradient of v or its symmetric part.

If p 6= 2, (1.1) represents a non-linear problem. A key issue in the proof of
the existence of a weak solution to (1.1) is the stability of weak solutions with
respect to weak convergence. This property, called weak stability of (1.1),
can be made more precise in the following way: assume that we have {vn}
enjoying the properties

∫

Ω

|Dvn|p−2Dvn ·Dϕ dx = 〈Fn,ϕ〉 for all suitable ϕ,(1.2)

and
∫

Ω

|Dvn|p dx ≤ K < ∞ for all n ∈ N ,

〈Fn,ϕ〉 → 〈F,ϕ〉 for all suitable ϕ .

(1.3)

The uniform estimate (1.3)1 implies (modulo a suitably taken subsequence)
that

vn ⇀ v weakly in W 1,p
0 (Ω)d.(1.4)

If v is also a weak solution to (1.1) then we say that system (1.1) posseses
the weak stability property.

1In (1.1) we could replace the p-Laplace operator by any p-coercive, strictly monotone
operator of (p − 1)-growth.
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Setting T(B) := |B|p−2B (p′ = p
p−1), we can reformulate our task differ-

ently. Noticing that for p′ = p
p−1 the uniform bound (1.3)1 implies that

∫

Ω

|T(Dvn)|p′ dx ≤ c(K) ,(1.5)

we conclude that T(Dvn) ⇀ χ weakly in Lp′(Ω)d×d (at least for a sub-
sequence). The weak stability of (1.1) is thus tantamount to show that
T(Dv) = χ.

To provide an affirmative answer to the issue of stability of weak solutions,
it is enough to show that for a not relabeled subsequence

lim sup
k→∞

∫

Ω

(

T(Dvn) − T(Dv)
)

·D(vn − v) dx = 0.(1.6)

Indeed, knowing that T is strictly monotone, i.e.,

(T(ζ) − T(z)) · (ζ − z) > 0 for all ζ, z ∈ R
d×d (ζ 6= z) ,

one concludes from (1.6) that

Dvn → Dv almost everywhere in Ω ,(1.7)

at least for a not relabeled subsequence. Vitali’s theorem then completes
the proof allowing to pass to the limit in the nonlinear term.

Note that (1.6) can be weakened, still giving (1.7), see also [BM92]. More
precisely, to obtain (1.7) it is enough to show for some 0 < θ ≤ 1 that there
is a not relabelled subsequence of {vn} such that

lim sup
n→∞

∫

Ω

(

(

T(Dvn) − T(Dv)
)

· D(vn − v)
)θ

dx = 0.(1.8)

We distinguish two cases how to achieve (1.6), or (1.8) respectively.
Simple Case. The problem is simply solvable if we assume that Fn,F ∈

(W 1,p
0 (Ω)d)∗ and Fn → F strongly in (W 1,p

0 (Ω)d)∗. In fact, to obtain (1.6),
it is natural to take ϕ = vn − v in (1.2), which is a suitable test function
(all terms are meaningful). Then we obtain, after subtracting the term
∫

Ω T(Dv) · D(vn − v) dx from both sides of the equation
∫

Ω

(

T(Dvn) − T(Dv)
)

· D(vn − v) dx

= 〈Fn,vn − v〉 −
∫

Ω

T(Dv) ·D(vn − v) dx.

For n → ∞, the right-hand side vanishes due to weak convergence of {vn}
and strong convergence of {Fn}, and (1.6) follows.

Difficult Case. More difficult and also more interesting is the case when

Fn = divGn with Gn → G strongly ∈ L1(Ω)d×d.(1.9)
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Then un := vn −v is not anymore a suitable test function since 〈divG,un〉
or −〈G,∇un〉 do not have a clear meaning. However, we can replace un

by its Lipschitz truncation and conjecture that uniform smallness of the
integrand on the sets where the Lipschitz truncation differs from un can
lead to (1.8). Note that Fn = div Gn with {Gn} bounded in L1(Ω)d×d

is not sufficient for the estimate (1.3)1. However, in our applications in
Theorems 3.1 and 5.1 the right hand side will have additional structure
(due to the incompressibility constraint involved in the problem) to ensure
the validity of (1.3)1.

To proceed further, we need to study carefully the properties of Lipschitz
truncations of Sobolev functions. This is the subject of the next section,
where we also complete the proof of the weak stability of (1.1) in the difficult
case.

2. Lipschitz truncations of standard Sobolev Functions

Let Z ⊂ R
d. Then Z{ denotes R

d \ Z and |Z| denotes the d-dimensional
Lebesgue measure of Z.

Assumption 2.1. We assume that Ω ⊂ R
d is an open bounded set with the

property: there exists a constant A1 ≥ 1 such that for all x ∈ Ω

|B2 dist(x,Ω{)(x)| ≤ A1 |B2 dist(x,Ω{)(x) ∩ Ω{|.(2.1)

Remark 2.2. If Ω ⊂ R
d is an open bounded set with Lipschitz boundary

then Ω satisfies Assumption 2.1.

For any p ∈ [1,∞), we use standard notation for the Lebesgue spaces

(Lp(Ω), ‖·‖p) and the Sobolev spaces (W 1,p
0 (Ω), ‖·‖1,p), being the completions

of smooth, compactly supported functions w.r.t. the relevant norms. If X is
a Banach space of scalar functions then Xd and Xd×d stand for the spaces
of vector-valued or tensor-valued functions whose components belong to X.

For f ∈ L1(Rd), we define the Hardy-Littlewood maximal function as
usual through

(Mf)(x) := sup
r>0

1

|Br(x)|

∫

Br(x)

|f(y)| dy .

Similarly, for u ∈ W 1,1(Rd) we define M(∇u) := M(|∇u|) and for u ∈
(W 1,1(Rd)d we set M(Du) := M(|Du|).

Theorem 2.3. Let Ω ⊂ R
d satisfy Assumption 2.1. Let v ∈ W 1,1

0 (Ω)d.

Then for every θ, λ > 0 there exist truncations vθ,λ ∈ W 1,∞
0 (Ω)d such that

‖vθ,λ‖∞ ≤ θ,(2.2)

‖∇vθ,λ‖∞ ≤ c1 A1 λ,(2.3)
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where c1 > 0 does only depend on the dimension d. Moreover, up to a nullset
(a set of Lebesgue measure zero)

{vθ,λ 6= v} ⊂ Ω ∩
(

{Mv > θ} ∪ {M(∇v) > λ}
)

.(2.4)

Theorem 2.3 summarizes the facts established earlier in original papers
[AF88] or [Lan96], and presented in the monograph [MZ97], among others.
Since Theorem 2.3 serves as a basic stone in proving Theorem 2.5 (for stan-
dard Sobolev functions) and Theorem 4.4 (for functions from the Sobolev
space with variable exponent), we give a proof of Theorem 2.3 here for the
sake of completness. Before doing so we recall the following extension the-
orem ([Fed69], p.201 or also [EG92], p.80 and [MZ97], p.40 for the scalar
case).

Lemma 2.4. Let v : E → R
m, defined on a nonempty set E ⊂ R

d, be such
that for certain λ > 0 and θ > 0 and for all x, y ∈ E

(2.5) |v(y) − v(x)|Rm ≤ λ|y − x|Rd and |v(x)|Rm ≤ θ .

Then there is an extension vθ,λ : R
d → R

m fulfilling (2.5) for all x, y ∈ R
d,

and vθ,λ = v on E.

Let us return to the proof of Theorem 2.3.

Proof of Theorem 2.3. We first extend v by zero outside of Ω and obtain
v ∈ W 1,1

0 (Rd)d.

The following facts are proved e.g. in [MZ97]: for a function h ∈ W 1,1
0 (Rd)

let L(h) be the set of its Lebesgue points. Then |L(h){| = 0, and for all
balls Br(x0) ⊂ R

d and for all ξ, ζ ∈ L(h) ∩ Br(x0) it holds

|h(ξ) − 〈h〉Br(x0)| ≤ c r M(∇h)(ξ),

|h(ζ) − 〈h〉Br(x0)| ≤ c r M(∇h)(ζ) ,
(2.6)

which implies that

|h(ξ) − h(ζ)| ≤ c r
(

M(∇h)(ξ) + M(∇h)(ζ)
)

.

Then for any x, y ∈ L(h) we take x0 = x, r = 2|y − x|, ξ = x and ζ = y in
the above inequality and obtain

|h(x) − h(y)| ≤ c |x − y|
(

M(∇h)(x) + M(∇h)(y)
)

.(2.7)

For λ > 0 we define

Hθ,λ := L(v) ∩ {Mv ≤ θ} ∩ {M(∇v) ≤ λ}.
Then it follows from (2.7) that for all x, y ∈ Hθ,λ

|v(x) − v(y)| ≤ c λ |x − y| and |v(x)| ≤ θ.(2.8)

If Ω = R
d, the statements of Theorem 2.3 follow from Lemma 2.4 applied

to E = Hθ,λ.

If Ω 6= R
d, we need to proceed more carefully in order to arrange that

the Lipschitz truncations vanish on the boundary. Let x ∈ Hθ,λ ∩ Ω and
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r := 2 dist(x,Ω{). Then by Assumption 2.1 and since v is zero on Ω{ we
have

−
∫

Br(x)

|v(z) − 〈v〉Br(x)| dz ≥ 1

|Br(x)|

∫

Br(x)∩Ω{

|v(z) − 〈v〉Br(x)| dz

=
|Br(x) ∩ Ω{|

|Br(x)| |〈v〉Br(x)|

≥ 1

A1
|〈v〉Br(x)|.

(2.9)

By a variant of the Poincaré inequality, e.g. in [MZ97],

−
∫

Br(x)

|h(z) − 〈h〉Br(x)| dz ≤ c r −
∫

Br(x)

|∇h(z)| dz

we observe from (2.9) that for x ∈ Hθ,λ ∩ Ω

|〈v〉Br(x)| ≤ cA1 r −
∫

Br(x)

|∇v(z)| dz ≤ cA1 r M(∇v)(x) ≤ cA1 r λ.

Consequently, using also (2.6), we obtain

|v(x)| ≤ c r M(∇v)(x) + |〈v〉Br(x)| ≤ cA1 r λ.(2.10)

It follows from (2.10) that for all x ∈ Hθ,λ ∩ Ω and all y ∈ Ω{ holds

|v(x) − v(y)| = |v(x)| ≤ cA1 dist(x,Ω{)λ ≤ cA1 |x − y|λ.(2.11)

Since v is zero on Ω{ it follows from (2.8) and (2.11) that

|v(x) − v(y)| ≤ cA1 |x − y|λ for all x, y ∈ Hθ,λ ∪ Ω{.(2.12)

In other words, we have shown that v is Lipschitz continuous on Gθ,λ :=

Hθ,λ ∪ Ω{ with Lipschitz constant bounded by cA1 λ. Since, Mv ≤ θ on

Hθ,λ and v = 0 on Ω{, we also have |v| ≤ θ on Gθ,λ. Therefore, applying

Lemma 2.4 to E = Gθ,λ there exists an extension vθ,λ ∈ W 1,∞(Rd) of v|Gθ,λ

with v(x) = vθ,λ(x) for all x ∈ Gθ,λ, ‖∇vθ,λ‖∞ ≤ cA1 λ, and ‖vθ,λ‖∞ ≤ θ.

This proves (2.2) and (2.3). From vθ,λ = 0 on Ω{ (since it is contained in

Gθ,λ) we conclude that vθ,λ ∈ W 1,∞
0 (Ω). Finally, (2.4) follows observing

that v = vθ,λ on Gθ,λ, |L(v){| = 0, and

G{
θ,λ = Ω ∩ H{

θ,λ = Ω ∩
(

L(v){ ∪ {Mv > θ} ∪ {M(∇v) > λ}
)

.

The proof of Theorem 2.3 is complete. �

Theorem 2.5. Let 1 < p < ∞. Let Ω ⊂ R
d be a bounded domain which

satisfies Assumption 2.1. Let un ∈ W 1,p
0 (Ω)d be such that un ⇀ 0 weakly in
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W 1,p
0 (Ω)d as n → ∞. Set

K := sup
n
‖un‖1,p < ∞,(2.13)

γn := ‖un‖p → 0 (n → ∞).(2.14)

Let θn > 0 be such that (e.g. θn :=
√

γn)

θn → 0 and
γn

θn
→ 0 (n → ∞).

Let µj := 22j
. Then there exist a sequence λn,j > 0 with

µj ≤ λn,j ≤ µj+1.(2.15)

and a sequence un,j ∈ W 1,∞
0 (Ω)d such that for all j, n ∈ N

‖un,j‖∞ ≤ θn → 0 (n → ∞),(2.16)

‖∇un,j‖∞ ≤ c λn,j ≤ c µj+1.(2.17)

Moreover, up to a nullset

{un,j 6= un} ⊂ Ω ∩
(

{Mun > θn} ∪ {M(∇un) > 2λn,j}
)

.(2.18)

For all j ∈ N and n → ∞
un,j → 0 strongly in Ls(Ω)d for all s ∈ [1,∞],(2.19)

un,j ⇀ 0 weakly in W 1,s
0 (Ω)d for all s ∈ [1,∞),(2.20)

∇un,j ∗
⇀ 0 *-weakly in L∞(Ω)d.(2.21)

Furthermore, for all n, j ∈ N

∥

∥∇un,j χ{un,j 6=u
n}

∥

∥

p
≤ c

∥

∥λn,jχ{un,j 6=u
n}

∥

∥

p
≤ c

γn

θn
µj+1 + c εj ,(2.22)

where εj := K 2−j/p vanishes as j → ∞. The constant c depends on Ω via
Assumption 2.1.

The assertions (2.16)–(2.21) summarize the properties of Lipschitz trun-
cations established earlier in [AF88] and [Lan96]. To our best knowledge,
the estimate (2.22) seems to be new. More specifically, Acerbi-Fusco approx-

imation lemma says, see [AF88], that |{un,λn,j 6= un}| ≤ C‖un‖p
1,p

λp
n,j

. Applying

this estimate we obtain

‖∇un,λn,j χ
{un,λn,j 6=un}

‖p ≤ λn,j|{un,λn,j 6= un}|1/p ≤ C‖un‖1,p ≤ K .

Thus one concludes just boundedness of the above term from Acerbi-Fusco
approximation lemma while (2.22) says that for suitable Lipschitz trunca-
tions this term can be so small as needed.

Proof of Theorem 2.5. First, observe that (2.13) and (2.14) are direct con-

sequences of un ⇀ 0 in W 1,p(Ω)d and the compact embedding of W 1,p
0 (Ω)

into Lp(Ω).
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Since 1 < p < ∞ the Hardy-Littlewood maximal operator M is continuous
from Lp(Rd) to Lp(Rd). This and (2.13) imply

sup
n

∫

Ω

|Mun|p dx + sup
n

∫

Ω

|M(∇un)|p dx ≤ cKp.(2.23)

Next, we observe that for g ∈ Lp(Rd) with ‖g‖p ≤ K we have

Kp ≥ ‖g‖p
p =

∫

Rd

|g(x)|p dx = p

∫

Rd

∞
∫

0

tp−1 χ{|g|>t} dt dx

= p

∫

Rd

∑

m∈Z

2m+1
∫

2m

tp−1 χ{|g|>t} dt dx

≥
∫

Rd

∑

m∈Z

(

2m
)p

χ{|g|>2m+1} dx

≥
∫

Rd

∑

m∈N

(

2m
)p

χ{|g|>2m+1} dx

=
∑

j∈N

2j+1−1
∑

k=2j

∫

Rd

(

2k
)p

χ{|g|>2k+1} dx.

(2.24)

The choice g = M(∇un) implies

∑

j∈N

2j+1−1
∑

k=2j

∫

Rd

(

2k
)p

χ{|M(∇u
n)|>2·2k} dx ≤ Kp.

Especially, for all j, n ∈ N

2j+1−1
∑

k=2j

∫

Rd

(

2k
)p

χ{|M(∇u
n)|>2·2k} dx ≤ Kp.

Since the sum contains 2j summands, there is at least one index kn,j such
that

∫

Rd

(

2kn,j
)p

χ
{|M(∇u

n)|>2·2kn,j}
dx ≤ Kp 2−j .(2.25)

Define λn,j := 2kn,j and µj := 22j
. Then

µj = 22j ≤ λn,j < 22j+1
= µj+1(2.26)

and we conclude from (2.25) that
∫

Rd

(

λn,j

)p
χ{|M(∇u

n)|>2 λn,j} dx ≤ Kp 2−j .(2.27)
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Next, we notice that
∫

(λn,j)
p χ{Mu

n>θn}∪ {M(∇u
n)>2 λn,j} dx

≤
(

λn,j

θn

)p ∫

θp
n χ{Mu

n>θn} dx +

∫

(λn,j)
p χ{M(∇u

n)>2 λn,j} dx

≤
(

λn,j

θn

)p

‖Mun‖p
p + Kp 2−j .

≤ c

(

λn,j

θn

)p

‖un‖p
p + Kp 2−j .

= c

(

λn,jγn

θn

)p

+ Kp 2−j .

(2.28)

For each n, j ∈ N we apply Theorem 2.3 and set

un,j := (un)θn,λn,j
.

Due to Theorem 2.3 (with θn and 2λn,j) we have for all n, j ∈ N

‖un,j‖∞ ≤ θn,(2.29)

‖∇un,j‖∞ ≤ 2 c1 A1 λn,j =: c λn,j ≤ c µj+1(2.30)

and up to a nullset

{un,j 6= un} ⊂ Ω ∩
(

{Mun > θn} ∪ {M(∇un) > 2λn,j}
)

.(2.31)

Using (2.28), (2.30), and (2.31) we observe

∥

∥∇un,j χ{un,j 6=u
n}

∥

∥

p

p
≤ c

∥

∥λn,j χ{un,j 6=u
n}

∥

∥

p

p
≤ c

(

λn,jγn

θn

)p

+ cKp 2−j .

(2.32)

Taking the p-th root of (2.32) with the help of (2.26) we conclude (2.22).

Since D(Ω) is dense in Ls′(Ω) for all s′ ∈ [1,∞) and (2.29) implies that
∫

Ω

∇un,j ϕ dx = −
∫

Ω

un,j ∇ϕ dx → 0 as n → ∞, for all ϕ ∈ D(Ω),

(2.20) and (2.21) follow for s ∈ (1,∞] using also (2.30). The case s = 1 then
also follows. �

We complete this section by proving the weak stability of (1.1) in the
case when F = divG with G ∈ L1(Ω)d×d. It means that we have {vn}
such that (1.2), (1.3), (1.4), (1.5) and (1.9) hold and we want to prove (1.8).
Recall that the choice ϕ = un, where un := vn − v, is not admissible test
function in (1.2). Observing, however, that {un} fulfills the assumptions
of Theorem 2.5, its application leads to the sequence {un,j} possessing the
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properties (2.16)–(2.22); in particular, un,j ∈ W 1,∞
0 (Ω)d is an admissible

(suitable) test function. Inserting ϕ = un,j into (1.2) we obtain

∫

Ω

(

T(Dvn) − T(Dv)
)

·
(

Dun,j
)

dx

= −
∫

Ω

(

(Gn − G) + G + T(Dv)
)

· (Dun,j) dx
(2.33)

and the term at the right hand side vanishes as n → ∞ thanks to (2.21) and
(1.9). Especially, we have

lim
n→∞

∫

Ω

(

T(Dvn) − T(Dv),Dun,j
)

dx = 0.(2.34)

We will show below in Lemma 2.6 that (2.34) or even the weaker condi-
tion (2.35) implies exactly condition (1.8) that remained to complete the
weak stability of (1.1) in the case (1.9) (compare the discussion around (1.5)–
(1.8) for details).

Lemma 2.6. Let Ω and p be as in Theorem 2.5. Let vn,v ∈ W 1,p
0 (Ω) with

vn ⇀ v in W 1,p
0 (Ω). Let un := vn −v and let un,j be the approximations of

un as in Theorem 2.5. Assume that for all j ∈ N we have

lim
n→∞

∫

Ω

(

T(Dvn) − T(Dv),Dun,j
)

dx ≤ δj ,(2.35)

where limj→∞ δj = 0. Then for any 0 < θ < 1

lim sup
n→∞

∫

Ω

[

(

T(Dvn) − T(Dv)
)

· (Dvn − Dv)
]θ

dx = 0.

Proof. For all j ∈ N, (2.35) implies that

lim sup
n→∞

In := lim sup
n→∞

∫

{un,j=u
n}

(

T(Dvn) − T(Dv)
)

·
(

Dun
)

dx

≤ lim sup
n→∞

∣

∣

∣

∣

∫

{un,j 6=u
n}

(

T(Dvn) − T(Dv)
)

·
(

Dun,j
)

dx

∣

∣

∣

∣

+ δj

= lim sup
n→∞

∣

∣

∣

∣

∫

Ω

(

T(Dvn) − T(Dv)
)

·
(

Dun,j
)

χ{un,j 6=u
n} dx

∣

∣

∣

∣

+ δj .

Note that since vn ⇀ v in W 1,p
0 (Ω), also v satisfies (1.3)1 and (1.5). Apply-

ing Hölder’s inequality to the last integral, and using (1.5) and (2.22) valid
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for all j ∈ N with γn

θn
→ 0 as n → ∞, we obtain

lim sup
n→∞

In ≤ c(K) lim sup
n→∞

‖∇un,jχ{un,j 6=u
n}‖p + δj

≤ c(K) lim sup
n→∞

(

c
γn

θn
µj+1 + c εj + δj

)

≤ c(K) εj + δj ,

(2.36)

with µj , εj as in Theorem 2.5. Since the last estimate holds for all j ∈ N

and limj→∞ εj = limj→∞ δj = 0, we finally conclude from (2.36) that

(2.37) lim sup
n→∞

In = 0 .

Then with Hölder’s inequality
∫

Ω

[

(

T(Dvn) − T(Dv)
)

· (Dun)
]θ

dx

=

(
∫

{un=u
n,j}

∣

∣

(

T(Dvn) − T(Dv)
)

· (Dun)
∣

∣ dx

)θ

|Ω|1−θ

+

(
∫

{un 6=u
n,j}

∣

∣

(

T(Dvn) − T(Dv)
)

· (Dun)
∣

∣ dx

)θ
∣

∣{un 6= un,j}
∣

∣

1−θ

=: Yn,j,1 + Yn,j,2,

where j ∈ N is arbitrary. Since (T(Dvn) − T(Dv)) · (Dun) ≥ 0, we have

Yn,j,1 ≤ (In)θ |Ω|1−θ.

And therefore with (2.37)

lim sup
n→∞

Yn,j,1 = 0.(2.38)

On the other hand from (2.22), Lp(Ω) ↪→ L1(Ω), and λn,j ≥ 1 we deduce

lim sup
n→∞

∣

∣{un 6= un,j}
∣

∣ = lim sup
n→∞

‖χ{un 6=u
n,j}‖1

≤ lim sup
n→∞

c λ−1
n,j ‖λn,j χ{un 6=u

n,j}‖p

≤ lim sup
n→∞

c ‖λn,j χ{un 6=u
n,j}‖p

≤ c εj .

(2.39)

Now, Hölder’s inequality, (1.3)1, (1.5), and (2.39) prove

Yn,j,2 ≤ c(K)
(

lim sup
n→∞

∣

∣{un 6= un,j}
∣

∣

)1−θ

≤ c(K) (εj)
1−θ

(2.40)
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Since j ∈ N is arbitrary and limj→∞ εj = 0, we get from (2.40) and (2.38)

lim sup
n→∞

∫

Ω

[

(

T(Dvn) − T(Dv)
)

· (Dvn − Dv)
]θ

dx = 0,

This proves Lemma 2.6. �

3. An application: Existence result for power-law fluids

We consider the following problem of nonlinear fluid mechanics. For Ω ⊂
R

d with Lipschitz boundary ∂Ω we look for (v,p) : Ω → R
d×R, representing

the velocity and the pressure, satisfying

div(v ⊗ v) − div
(

T(Dv)
)

= −∇p + f , divv = 0 in Ω(3.1)

and

v = 0 on ∂Ω ,(3.2)

where f : Ω → R
d is given, Dv denotes the symmetric part of the gradient of

v, and T : R
d×d
sym → R

d×d
sym is a known continuous function having the following

properties: for fixed p ∈ (1,∞) there are certain positive constants C1 and
C2 such that for all η ∈ R

d×d
sym

T(η) · η ≥ C1(|η|p − 1) ,(3.3)

|T(η)| ≤ C2(|η| + 1)p−1(3.4)

and for all η1,η2 ∈ R
d×d
sym

(T(η1) − T(η2)) · (η1 − η2) > 0 if η1 6= η2.(3.5)

System (3.1)–(3.2) describes steady flows of incompressible fluids exhibiting
no-slip on the boundary. The fluid is non-Newtonian as its viscosity is not
constant and depends on |Dv|, the quantity that reduces in a simple shear
flow to the shear rate. A special class of such fluids with shear rate dependent
viscosity are the power-law fluids for which T, the Cauchy stress, takes the
form T(η) = ν0|η|p−2η.

Our aim here is to reprove, in a simpler way, the result established in
[FMS03]. In [FMS03] and in [MR05], the reader can find details related to
mechanical and mathematical aspects of the considered system and related
results dealing with an analysis of (3.1)–(3.2) as well.

Theorem 3.1. Let p > 2d
d+2 , d ≥ 2. Let Ω ⊂ R

d be an open, bounded,

connected set with Lipschitz boundary. Assume that f ∈ (W 1,p
0 (Ω)d)∗ and
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(3.3)–(3.5) hold. Set s := min{p′, dp/(2(d − p)} if p < d and s := p′ other-
wise. Then there exists a weak solution (v,p) to (3.1)–(3.2) such that

v ∈ W 1,p
0 (Ω)d and p ∈ Ls(Ω) ,(3.6)

divv = 0 a.e. in Ω and

∫

Ω

p dx = 0 ,(3.7)

(T(Dv),Dϕ) = (v ⊗ v,Dϕ) + (p,divϕ) + 〈f ,ϕ〉
for all ϕ ∈ W 1,∞

0 (Ω)d,
(3.8)

where Dv denotes the symmetric part of the gradient of v.

Proof. Let us for a fixed p ∈ ( 2d
d+2 , d) and q = 2p

p−1 = 2p′ consider vn ∈
W 1,p

0 (Ω) ∩ Lq(Ω) satisfying divvn = 0 a.e. in Ω and

(T(Dvn),Dϕ) +
1

n
(|vn|q−2vn,ϕ) = 〈f ,ϕ〉 + (vn ⊗ vn,Dϕ)

for all ϕ ∈ W 1,p
0 (Ω)d ∩ Lq(Ω)d, divϕ = 0.

(3.9)

Moreover, all vn satisfy the uniform estimate2

(3.10) ‖Dvn‖p
p + ‖∇vn‖p

p +
1

n
‖vn‖q

q ≤ K

and consequently, due to the growth condition (3.4) and Sobolev’s embed-
ding theorem

‖T(Dvn)‖p′ ≤ c(K),(3.11)

‖vn‖ dp

d−p

≤ c(K),(3.12)

‖vn ⊗ vn‖ dp

2(d−p)
≤ c(K).(3.13)

The existence of vn solving (3.9) for n ∈ N is standard and can be proved,
for example, via Galerkin approximations combined with the monotone op-
erator theory and the compactness for the velocity. An important feature
and the advantage of this approximation consists in the fact that the space
of test functions coincides with the space where the solution is constructed.
The choice of the value for q is due to the quadratic term since for n ∈ N

(vn ⊗ vn,Dϕ) ≤ ‖vn‖2
2p′‖Dϕ‖p = ‖vn‖2

q‖Dϕ‖p ≤ C(n) .

Obviously, the estimate (3.10) implies the existence of v ∈ W 1,p
0 (Ω), and a

(not relabeled) subsequence {vn} such that

vn ⇀ v weakly in W 1,p
0 (Ω)d ,(3.14)

1

n
(|vn|q−2vn,ϕ) → 0 for all ϕ ∈ L∞(Ω)d ,(3.15)

2To verify it, take ϕ = v
n in (3.9) and apply basic inequalities including the Korn one.
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and due to the compact embedding theorem

vn → v strongly in Lσ(Ω)d for all σ ∈ [1,
dp

d − p
).(3.16)

In particular,

vn → v strongly in L2(Ω)d provided that p >
2d

d + 2
,(3.17)

which implies that

(vn ⊗ vn,Dϕ) → (v ⊗ v,Dϕ) for all ϕ ∈ W 1,∞
0 (Ω)d .(3.18)

Next goal is to prove that also

(T(Dvn),Dϕ) → (T(Dv),Dϕ) for all ϕ ∈ W 1,∞
0 (Ω)d .(3.19)

It suffices, by virtue of (3.10), (3.11) and Vitali’s theorem, to show at least
for a subsequence that

Dvn → Dv a.e. in Ω .(3.20)

This follows, see for example [DMM98] for details, from (3.5) provided that
for a certain θ ∈ (0, 1]

lim sup
n→∞

∫

Ω

(

(T(Dvn) − T(Dv)) · (Dvn − Dv)
)θ

dx = 0 .(3.21)

To verify (3.21) (even with θ = 1) we take ϕ = vn − v in (3.9) and let
n → ∞. It is then easy to observe that (3.21) is a consequence of

lim sup
n→∞

|(vn ⊗ vn,D(vn − v))| = 0 .(3.22)

Since (vn⊗vn,D(vn−v)) = (vn⊗vn,∇(vn−v)) = −(vn⊗(vn−v),∇v)) =
−(vn⊗(vn−v),Dv)), (3.22) follows from (3.10), (3.12), (3.13) and Hölder’s
inequality, provided that

p >
3d

d + 2
.(3.23)

In order to establish the existence result also for

p ∈
( 2d

d + 2
,

3d

d + 2

]

,(3.24)

we first notice that owing to (3.10) and (3.14) the functions

un := vn − v

fulfill the assumptions of Theorem 2.5 and we conclude the existence of a
sequence {un,j} possessing the properties (2.16)–(2.22).

Note that the functions un,j are in general not divergence free on the set
{un 6= un,j} and we have to correct them in order to use them as a test
function in (3.9). For 1 < σ < ∞ define

Lσ
0 (Ω) :=

{

h ∈ Lσ(Ω) :

∫

Ω

hdx = 0
}

.
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Since ∂Ω is Lipschitz, according to [Bog80], there exists an linear operator

B such that for all σ ∈ (1,∞) we have B : Lσ
0 (Ω) → W 1,σ

0 (Ω)d continuously
and div(Bh) = h. In particular for all σ ∈ (1,∞) and all h ∈ Lσ

0 (Ω) we have

div(Bh) = h,

‖Bh‖1,σ ≤ c ‖h‖σ .
(3.25)

where the constant depends only on Ω and σ. We define

ψn,j := B(divun,j) = B(χ{un 6=u
n,j} div un,j)

Then

‖ψn,j‖1,p ≤ c ‖div un,j χ{un 6=u
n,j}‖p.

Consequently, (3.14) and (2.16)–(2.22) yield for j ∈ N, n → ∞,

ψn,j ⇀ 0 weakly in W 1,σ(Ω)d for all σ ∈ (1,∞),(3.26)

ψn,j → 0 strongly in Lσ(Ω)d for all σ ∈ (1,∞), ,(3.27)

and

lim sup
n→∞

‖ψn,j‖1,p ≤ c lim sup
n→∞

(

‖div un,j χ{un 6=u
n,j‖p

)

≤ c lim sup
n→∞

(

‖∇un,jχ{un 6=u
n,j}‖p

)

≤ c εj

(3.28)

with εj := K 2
− j

p . Note that we have used in (3.26) that a continuous linear
operator preserves weak convergence.

Next, we take in (3.9) ϕ of the form

ϕn,j = un,j −ψn,j.(3.29)

Note that ϕn,j ∈ W 1,s′

0 (Ω)d ∩ Lq(Ω)d and by (3.25)

divϕn,j = 0.(3.30)

Note that due to (3.26) and (3.27) we have for j ∈ N, n → ∞
ϕn,j ⇀ 0 weakly in W 1,σ(Ω)d for all σ ∈ (1,∞),(3.31)

ϕn,j → 0 strongly in Lσ(Ω)d for all σ ∈ (1,∞).(3.32)

The weak formulation of the approximative problem (3.9) with ϕn,j as a
test function can be rewritten as

(T(Dvn) − T(Dv),Dun,j) = (T(Dvn),Dψn,j)

− (T(Dv),Dun,j)

− 1

n
(|vn|q−2vn,ϕn,j) + 〈f ,ϕn,j〉

+ (vn ⊗ vn,Dϕn,j)

:= J1
n,j + J2

n,j + J3
n,j + J4

n,j .

(3.33)



16 L. DIENING, J. MÁLEK1, AND M. STEINHAUER

From W 1,p
0 (Ω) ↪→↪→ L2(Ω) (since p > 2d

d+2 ) and (3.14) we deduce

vn ⊗ vn → v ⊗ v in L2(Ω).

Letting n → ∞, we observe from (3.10) and (3.18) that

lim
n→∞

(J2
n,j + J3

n,j + J4
n,j) = 0 .(3.34)

On the other hand with Hölder’s inequality, (3.11), and (3.28)

lim sup
n→∞

J1
n,j ≤ c(K) εj .(3.35)

Overall, (3.33), (3.34), and (3.35) imply for all j ∈ N

lim sup
n→∞

(T(Dvn) − T(Dv),Dun,j) ≤ c(K) εj .(3.36)

Now, (3.21) follows immediately from (3.36) and Lemma 2.6. This proves
the validity of (3.9). This and (3.16), (3.18), as well as (3.19) prove that

(T(Dv),Dϕ) = 〈f ,ϕ〉 + (v ⊗ v,Dϕ)

for all ϕ ∈ W 1,∞
0 (Ω)d, divϕ = 0.

(3.37)

Next, we apply deRham’s theorem and the Nečas theorem on Sobolev spaces
with negative exponents to reconstruct the pressure. Especially, there is
p ∈ Ls

0(Ω) fulfilling

(T(Dv),Dϕ) = 〈f ,ϕ〉 + (v ⊗ v,Dϕ) + (p,divϕ)

for all ϕ ∈ W 1,∞
0 (Ω)d.

(3.38)

The proof of Theorem 3.1 is complete. �

4. Lipschitz truncations of Variable Exponent Sobolev

Functions

In this section we will give a brief introduction to the Lebesgue and
Sobolev space with variable exponents. We refer the interested reader
to [FZ01, KR91] and the literature cited below.

Let Ω ⊂ R
d be an open set. By Br(x) we denote a ball in R

d with radius r
and center x. We write Br if the center is not important. Let p : Ω → [1,∞)
be a measurable bounded function, called a variable exponent on Ω, and
denote p+ = esssup p(x) and p− = essinf p(x). For the sake of simplicity we
will always assume that 1 < p− ≤ p+ < ∞. We define the variable exponent
Lebesgue space Lp(·)(Ω) to consist of all measurable functions f : Ω → R

for which the modular

%Lp(·)(Ω)(f) =

∫

Ω

|f(x)|p(x) dx

is finite. We define the Luxemburg norm on this space by

‖f‖Lp(·)(Ω) = inf
{

λ > 0: %Lp(·)(Ω)(f/λ) ≤ 1
}

,
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which is just the Minkowski functional of the absolutely convex set
{f : %Lp(·)(Ω)(f) ≤ 1}. Equipped with this norm the set Lp(·) is a Ba-

nach space. Since Lp(·)(Ω) → Lp−(Ω) we can define the variable expo-

nent Sobolev space W 1,p(·)(Ω) as the subspace of Lp(·)(Ω) of functions f

whose distributional gradient exists and satisfies ∇f ∈ Lp(·)(Ω). The norm

‖f‖W 1,p(·)(Ω) = ‖f‖Lp(·)(Ω)+‖∇f‖Lp(·)(Ω) makes W 1,p(·)(Ω) a Banach space. If

there is no misunderstandig will write ‖·‖p(·) and ‖·‖1,p(·) for the norms of the

spaces Lp(·)(Ω) and W 1,p(·)(Ω). Due to 1 < p− ≤ p+ < ∞ the spaces Lp(·)(Ω)

and W 1,p(·)(Ω) are reflexive. The dual of Lp(·) is Lp′(·), where 1
p(x) + 1

p′(x) = 1

for all x ∈ Ω.
For fixed exponent spaces we have a very simple relationship between

norm and modular. In the variable exponent case this is not so. However,
we have the following useful property:

%p(·)(f) ≤ 1 if and only if ‖f‖p(·) ≤ 1.(4.1)

We say that a variable exponent p : Ω → [1,∞) is (locally) log-Hölder
continuous if there exists a constant c > 0 such that

|p(x) − p(y)| ≤ c

log(1/|x − y|) .

for all points x, y ∈ Ω with |x − y| < 1
2 . (Note that this local continuity

condition is uniform in Ω.) We say that p is globally log-Hölder continuous
if it is locally log-Hölder continuous and there exist constants c > 0 and
p∞ ∈ [1,∞) such that for all points x ∈ Ω we have

|p(x) − p∞| ≤ c

log(e + |x|) .

The following simple fact is proven e.g. in [DH05, CUFMP04]

Proposition 4.1. Let Ω ⊂ R
d. If p is globally log-Hölder continuous on Ω,

then there exists an extension p̃ such that p̃ is globally log-Hölder continuous
on R

d and p̃− = p−, p̃+ = p+.

For f ∈ L1
loc(R

d), we define the non-centered maximal function of f by

Mf(x) := sup
B3x

−
∫

B

|f(y)| dy,

where the maximum is taken over all balls B ⊂ R
d which contain x. The

following proposition is proved in [Die04a, CUFN03].

Proposition 4.2. Let p : R
d → [1,∞) be a variable exponent with 1 < p− ≤

p+ < ∞ which is globally log-Hölder continuous. Then the Hardy-Littlewood
maximal operator M is continuous from Lp(·)(Rd) to Lp(·)(Rd).

Global log-Hölder continuity is the best possible modulus of continuity to
imply the boundedness of the maximal operator, see [CUFN03, PR01]. But
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for other, weaker results see [Die04a, Ler05, Nek04]. If the maximal operator

is bounded, then it follows easily that C∞
0 (Rd) is dense in W 1,p(·)(Rd).

The following Corollary is a consequence of Propositions 4.1 and 4.2. It
can be used to verify the assumptions on p for the Lipschitz truncation
Theorem 4.4 below.

Corollary 4.3. Let Ω be bounded with Lipschitz boundary and let p : Ω →
[1,∞) be log-Hölder continuous with 1 < p− ≤ p+ < ∞. Then there exist
an extension p̃ : R

d → [1,∞) with 1 < p̃− ≤ p̃+ < ∞ such that the Hardy-

Littlewood maximal operator M is continuous from Lp̃(·)(Rd) to Lp̃(·)(Rd).

We are now prepared to generalize the results on Lipschitz truncations of
standard Sobolev functions established in Section 2 to Sobolev spaces with
variable exponents.

Theorem 4.4. Let Ω ⊂ R
d be a bounded domain which satisfies Assump-

tion 2.1 and let p : R
d → [1,∞) with 1 < p− ≤ p+ < ∞ be such that M

is continuous from Lp(·)(Rd) to Lp(·)(Rd). Let vn ∈ W
1,p(·)
0 (Ω) be such that

vn ⇀ 0 weakly in W
1,p(·)
0 (Ω) as n → ∞. Set

K := sup
n
‖vn‖1,p(·) < ∞,(4.2)

γn := ‖vn‖p(·) → 0 (n → ∞).(4.3)

Let θn > 0 be such that (e.g. θn :=
√

γn)

θn → 0 and
γn

θn
→ 0 (n → ∞).

Then there exist sequences µj and λn,j > 1 such that for all n, j ∈ N

µj ≤ λn,j ≤ µj+1(4.4)

and a sequence vn,j ∈ W 1,∞
0 (Ω) such that for all j, n ∈ N

‖vn,j‖∞ ≤ θn → 0 (n → ∞),(4.5)

‖∇vn,j‖∞ ≤ c λn,j ≤ c µj+1.(4.6)

Moreover, up to a nullset

{vn,j 6= vn} ⊂ Ω ∩
(

{Mvn > θn} ∪ {M(∇vn) > 2λn,j}
)

.(4.7)

For all j ∈ N and n → ∞
vn,j → 0 strongly in Ls(Ω)d for all s ∈ [1,∞],(4.8)

vn,j ⇀ 0 weakly in W 1,s
0 (Ω)d for all s ∈ [1,∞),(4.9)

∇vn,j ∗
⇀ 0 *-weakly in L∞(Ω)d×d.(4.10)

Furthermore, there exists a sequence εj > 0 with εj → 0 for j → ∞ such
that for all n, j ∈ N

∥

∥∇vn,j χ{vn,j 6=v
n}

∥

∥

p(·)
≤ c

∥

∥λn,jχ{vn,j 6=v
n}

∥

∥

p(·)
≤ c

γn

θn
µj+1 + εj .(4.11)
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It is possible to choose εj := 2−j/p+
. The constant c depends on Ω via

Assumption 2.1.

Proof. From Lemma 5.5 of [Die04b] it follows that W
1,p(·)
0 (Ω) embeds com-

pactly into Lp(·)(Ω). Therefore, from vn ⇀ 0 in W
1,p(·)
0 (Ω)d we deduce

vn → 0 in Lp(·)(Ω)d. So (4.2) and (4.3) are just direct consequences of

vn ⇀ 0 in W
1,p(·)
0 (Ω)d.

Now, (4.2) and the continuity of the Hardy-Littlewood maximal function
imply

sup
n
‖Mvn‖p(·) + sup

n
‖M(∇vn)‖p(·) ≤ cK,(4.12)

so (4.1) implies

sup
n

∫

|Mvn/(cK)|p(x) dx + sup
n

∫

|M(∇v)n/(cK)|p(x) dx ≤ 1.

Next, we observe that for g ∈ Lp(·)(Rd) with ‖g‖p(·) ≤ 1 we have

1 ≥
∫

Rd

|g(x)|p(x) dx =

∫

Rd

∞
∫

0

p(x) tp(x)−1 χ{|g|>t} dt dx

≥
∫

Rd

∑

m∈Z

2m+1
∫

2m

tp(x)−1 χ{|g|>t} dt dx

≥
∫

Rd

∑

m∈Z

(

2m
)p(x)

χ{|g|>2m+1} dx

≥
∫

Rd

∑

m∈N

(

2m
)p(x)

χ{|g|>2m+1} dx

=
∑

j∈N

2j+1−1
∑

k=2j

∫

Rd

(

2k
)p(x)

χ{|g|>2k+1} dx.

(4.13)

The choice g = M(∇vn)/(cK) implies

∑

j∈N

2j+1−1
∑

k=2j

∫

Rd

(

2k
)p

χ{|M(∇v
n/(c K))|>2 ·2k} dx ≤ 1.

Especially, for all j, n ∈ N

2j+1−1
∑

k=2j

∫

Rd

(

2k
)p(x)

χ{|M(∇v
n/(c K))|>2·2k} dx ≤ 1.
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Since the sum contains 2j summands, there is at least one index kn,j such
that

∫

Rd

(

2kn,j
)p(x)

χ
{|M(∇v

n/(c K))|>2·2kn,j}
dx ≤ 2−j.(4.14)

Let εj := 2−j/p+
then limj→∞ εj = 0. By definition of the norm ‖·‖p(·) and

p+ < ∞ it follows from (4.14) that
∥

∥2kn,j χ
{|M(∇v

n/(c K))|>2·2kn,j}

∥

∥

p(·)
dx ≤ εj .(4.15)

Define λn,j := 2kn,j and µj := 22j
. Then

µj = 22j ≤ λn,j < 22j+1
= µj+1(4.16)

and we conclude from (4.15) that
∥

∥λn,j χ{|M(∇v
n)|>2·c K λn,j}

∥

∥

p(·)
dx ≤ εj .(4.17)

Next, we notice that
∥

∥λn,j χ{Mv
n>θn}∪ {M(∇v

n)>2 c K λn,j} dx
∥

∥

p(·)

≤ λn,j

θn

∥

∥θn χ{Mv
n>θn}

∥

∥

p(·)
+

∥

∥λn,j χ{M(∇v
n)>2 c K λn,j}

∥

∥

p(·)

≤ λn,j

θn
‖Mvn‖p(·) + εj

≤ c
λn,j

θn
c ‖vn‖p(·) + εj

= c
γn

θn
λn,j + εj

≤ c
γn

θn
µj+1 + εj .

(4.18)

For each n, j ∈ N we apply Theorem 2.5 and set

vn,j := (vn)θn,λn,j
.

Due to Theorem 2.5 (with θn and 2 cK λn,j) we have for all n, j ∈ N

‖vn,j‖∞ ≤ θn,(4.19)

‖∇vn,j‖∞ ≤ 2 cK c1 A1 λn,j =: cK λn,j ≤ cK µj+1(4.20)

and up to a nullset

{vn,j 6= vn} ⊂ Ω ∩
(

{Mvn > θn} ∪ {M(∇vn) > 2 cK λn,j}
)

.(4.21)

Using (4.18), (4.20), and (4.21) we observe
∥

∥∇vn,j χ{vn,j 6=v
n}

∥

∥

p(·)
≤

∥

∥λn,j χ{vn,j 6=v
n}

∥

∥

p(·)
≤ c

γn

θn
µj+1 + εj .(4.22)

This proves (4.11).
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Since D(Ω) is dense in Ls′(Ω) for all s′ ∈ [1,∞) and (4.20) implies that
∫

Ω

∇vn
θn,λϕ dx = −

∫

Ω

vn
θn,λ ∇ϕ dx → 0 as n → ∞, for all ϕ ∈ D(Ω),

(4.9) and (4.10) follow for s ∈ (1,∞]. The case s = 1 then also follows. �

Remark 4.5. We would like to remark that Theorem 4.4 can easily be ex-
tended to other spaces such as weighted Lp spaces. Let for example 1 < p <
∞ and ω ∈ Ap, where Ap denotes the Muckenhoupt class. Then M is a

continuous operator on Lp(Rd;ω dx). As consequence Theorem 4.4 remains

true if we replace Lp(·) by Lp(Rd;ω dx) and W 1,p(·) by W 1,p(Rd;ω dx).

5. An application: Existence result for electro-rheological

fluids

In Section 3 we have studied the system

div(v ⊗ v) − div
(

T(Dv)
)

= −∇p + f , divv = 0 in Ω(5.1)

and

v = 0 on ∂Ω(5.2)

under the assumption that p appearing in (3.3) and (3.10) is constant, with
1 < p < ∞. Motivated by a model introduced in [RR96, RR01] to describe
motions of electrorheological fluids and that has been further studied in
[Růž00], we are also interested in the case, where p is a function of spatial
variables. Electrorheological fluids are a special type of smart fluids which
change their material properties due to the application of an electric field.
In the model in [RR01] p is not a constant but a function of the electric
field E, i.e. p = p(|E|2). The interested reader can find the full model for
electrorheolgical fluids in [Růž00]. The electric field itself is a solution to the
quasi–static Maxwell equations and is not influenced by the motion of the
fluid. Thus, we can separate the Maxwell equation from (5.1) and to study,
for a given function p : Ω → (1,∞), system (5.1) with T : Ω×R

d×d
sym → R

d×d
sym

satisfying for all x ∈ Ω, η ∈ R
d×d
sym

T(x,η) · η ≥ C1

(

|η|p(x) − 1
)

,(5.3)

|T(x,η)| ≤ C2

(

|η| + 1
)p(x)−1

(5.4)

and for all η1,η2 ∈ R
d×d
sym

(T(x,η1) − T(x,η2)) · (η1 − η2) > 0 if η1 6= η2.(5.5)

This model comprises all the mathematical difficulties of the full system for
electrorheological fluids (considered in [Růž00]) and the results below can
be directly extended to the general case.

Due to the nature of the Maxwell equations it is reasonable to consider
that p is Lipschitz continuous. Nevertheless, we are able to handle the case
where p is just log-Hölder continuous on Ω.
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Theorem 5.1. For d ≥ 2 let Ω ⊂ R
d be an open, bounded, connected set

with Lipschitz boundary ∂Ω and let p : Ω → (1,∞) be globally log-Hölder

continuous with 2d
d+2 < p− ≤ p+ < ∞. Assume that f ∈ (W

1,p(·)
0 (Ω))∗ and

(5.3)–(5.5) hold.
Set s := min{(p+)′, dp−/(2(d − p−)} if p− < d and s := (p+)′ otherwise.

Then there exists a weak solution (v,p) to (5.1)–(5.2) such that

v ∈ W
1,p(·)
0 (Ω)d and p ∈ Ls(Ω) ,(5.6)

divv = 0 a.e. in Ω and

∫

Ω

p dx = 0 ,(5.7)

(T(Dv),Dϕ) = (v ⊗ v,∇ϕ) + (p,divϕ) + 〈f ,ϕ〉
for all ϕ ∈ W 1,∞

0 (Ω)d.
(5.8)

The existence of weak solutions to system (5.1)–(5.2) under the assump-
tions (5.3)–(5.5) was first proved in [Růž00] for the case p− > 3d

d+2 . This was

extended in [Hu05] to the case p− > 2d
d+1 .

Due to Corollary 4.3 we can assume that p is defined on R
d such that

1 < p− ≤ p+ < ∞(5.9)

and that

M : Lp(·)(Rd) → Lp(·)(Rd) is continuous.(5.10)

In order to proof Theorem 5.1 we will need a few auxiliary results. All these
results are solely based on (5.9) and (5.10).

Proposition 5.2 ([Die04b], Compact Embeddings). Let Ω ⊂ R
d be as

in Theorem 5.1 and let p : Ω → (1,∞) satisfy (5.9) and (5.10). Then the

embedding W
1,p(·)
0 (Ω) → Lp(·)(Ω) is compact. Moreover, for 1 ≤ q < ∞ with

1
p− − 1

d < 1
q the embedding W

1,p(·)
0 (Ω) → Lq(Ω) is compact.

Proposition 5.3 ([DR03], Korn). Let Ω, p be as in Proposition 5.2. Then

for all u ∈ W 1,p(·)(Ω) holds

‖∇u‖p(·) ≤ c ‖Du‖p(·).

Define

L
p(·)
0 (Ω) :=

{

f ∈ Lp(·)(Ω) :

∫

Ω

f(x) dx = 0

}

.

Proposition 5.4 ([DR03, Hu05], Divergence Equation). Let Ω, p be as
in Proposition 5.2 and let B denote the operator of (3.25). Then B is con-

tinuous from L
p(·)
0 (Ω) to W 1,p(·)(Ω)d and for each f ∈ L

p(·)
0 (Ω),

div(Bh) = h,

‖Bh‖1,p(·) ≤ c ‖h‖p(·).
(5.11)
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We will further need the following facts: Let A ⊂ Lp(·)(Ω).

Then supf∈A‖f‖p(·) < ∞ if and only if supf∈A

∫

|f(x)|p(x) dx < ∞. For

g ∈ Lp(·) and h ∈ Lp′(·) the following assertions analogoues to the standard
Hölder and Young inequality hold:

|(g, h)| ≤ 2 ‖g‖p(·) ‖h‖p′(·),(5.12)

(g, h) ≤
∫

Ω

|g(x)|p(x) dx +

∫

Ω

|h(x)|p′(x) dx.(5.13)

Lemma 5.5. Let Ω and p be as in Theorem 5.1. Let vn,v ∈ W
1,p(·)
0 (Ω) with

vn ⇀ v in W
1,p(·)
0 (Ω). Let un := vn − v and let un,j be the approximations

of un as in Theorem 2.5. Assume that for all j ∈ N we have

lim
n→∞

(

T(Dvn) − T(Dv),Dun,j
)

≤ δj ,(5.14)

where limj→∞ δj = 0. Then for any 0 < θ < 1

lim sup
n→∞

∫

Ω

[

(

T(Dvn) − T(Dv)
)

· (Dvn − Dv)
]θ

dx = 0.

Proof. The proof is exactly as the one of Lemma 2.6 with replace ‖·‖p by
‖·‖p(·) and use Theorem 4.4 instead of Theorem 2.5. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. With the help of Propositions 5.2, 5.3, and 5.4 and
Theorem 4.4 the proof of Theorem 5.1 is almost exactly as the one for
Theorem 3.1. Let us indicate the changes only: Instead of inequality (3.10)
we will rather write

∫

Ω

|Dvn(x)|p(x) dx +
1

n
‖vn‖q

q ≤ c.

Then Proposition 5.3 implies that also
∫

Ω

|∇vn(x)|p(x) dx ≤ c.

The next change in the proof will be in (3.16) and (3.17), which is now a
consequence of Propositon 5.2. Here we have used that 2d

d+2 < p−.

Note that as in the case p constant the proof gets slightly easier if p− >
3d

d+2 , see (3.22) and (3.23). We will omit this simplification here, since the

other method covers the general case 2d
d+2 < p− ≤ p+ < ∞.

To define the truncations un,j we will just use Theorem 4.4 instead of
Theorem 2.5. Especially, we have

lim sup
n→∞

(

‖∇un,jχ{un 6=u
n,j}‖p(·)

)

≤ εj

with εj → 0 for j → ∞.
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We will then use Proposition 5.4 to get the corresponding result of (3.25),
i.e.

‖ψn,j‖1,p(·) ≤ c ‖div un,j χ{un 6=u
n,j}‖p(·) ≤ c εj .

Now, the proof of (3.36) will be the same as for p constant if we use (5.13)
and (5.12) as a substitute for the standard Hölder’s inequality. Then (3.37)
follows as before, if we use Lemma 5.5 instead of Lemma 2.6.

From W 1,p+

0 (Ω) → W
1,p(·)
0 (Ω) we deduce W−1,p′(·)(Ω) → W−1,(p+)′(Ω).

With this embedding we can reconstruct the pressure just as in the case p
constant. The proof of Theorem 5.1 is complete. �
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mit p(·)-Struktur. Diploma Thesis, University of Freiburg, Germany, 2005.
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