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Abstract. We study an adaptive finite element method for the p-Laplacian
like PDE’s using piecewise linear, continuous functions. The error is measured
by means of the quasi-norm of Barrett and Liu. We provide residual based error
estimators without a gap between the upper and lower bound. We show linear

convergence of the algorithm which is similar to the one of Morin, Nochetto,
and Siebert. All results are obtained without extra marking for the oscillation.

1. Introduction

Let Ω be a polyhedral, bounded domain in R
d, d ∈ N. We consider the following

system of nonlinear structure

−div(A(∇u)) = f in Ω,

u = 0 on ∂Ω.
(1.1)

Our considerations include in particular the case of the p-Laplacian, where

A(∇u) = (κ+ |∇u|)p−2 ∇u,(1.2)

with 1 < p <∞, κ ≥ 0, f ∈ Lp
′

(Ω), and 1
p

+ 1
p′

= 1.

The purpose of this paper is to present a linear convergence result for an adaptive
finite element method AFEM applied to the nonlinear Laplace equation (1.1). As
is common practice the adaptive finite element method consists of a loop

Solve → Estimate → Mark → Refine(AFEM)

starting from a initial triangulation of Ω. To be more specific, the finite element
problem on the current mesh is solved, then the aposteriori errore stimator is com-
puted and finally with its help elements are marked for refinement. The algorithm
uses piecewise linear, continuous finite elements, whereas the refinement is real-
ized by newest vertex bisection. This produces a sequence of weak finite element
solutions uk of (1.1) in nested finite element spaces Vk.

The main result states linear convergence of uk to the weak solution u of (1.1).
In particular, we show that there exists α ∈ (0, 1), C > 0 with

‖F(∇uk) − F(∇u)‖2
2 + osc2

k(f) ≤ α2kC,

where the vectorfield F arises from the vector field A by F(a) := |A(a)|
1
2 |a|−

1
2 a.

The error ‖F(∇uk) − F(∇u)‖2
2 measured in terms of F is equivalent to the so called

quasi norm ‖∇uk −∇u‖2
(p) introduced by Barrett and Liu, cf. [BL94a] and Re-

mark 4. The quasi norm was a breakthrough in the numerical investigation of (1.1).
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2 L. DIENING AND C. KREUZER

In particular, Barrett and Liu obtained the best approximation property of the con-
forming, finite element solution uh ∈ Vh in terms of quasi norms, i.e.

‖∇v −∇vh‖
2
(p) ≤ c min

ψh∈Vh

‖∇v −∇ψh‖
2
(p),

In [EL05] it has been proved by Ebmeyer and Liu that for piecewise linear, contin-
uous finite elements and p > 2d

d+2 the best approximation error can be estimated
as

min
ψh∈Vh

‖∇v −∇ψh‖
2
(p) ≤ c h2

∫

Ω

(κ+ |∇u|)p−2 |∇2u|
2
dx.(1.3)

Recently, Diening and Růžička improved these results in [DR06] to the case p > 1
admitting also more general finite element spaces. In particular, they showed

‖F(∇v) − F(∇vh)‖
2
2 ≤ c min

ψh∈Vh

‖F(∇v) − F(∇ψh)‖
2
2

and

‖F(∇v) − F(∇Πhv)‖
2
2 ≤ c h2 ‖∇F(∇u)‖2

2,(1.4)

where Πh is a suitable interpolation operator, e.g. the Scott-Zhang operator. We
want to mention that the right hand sides of (1.3) and (1.4) are proportional. They
express the natural regularity of a strong solution of (1.1) (cf. [Giu03], [BL94b],
[ELS05], [Ebm05]).

The technique of quasi-norms founds its way into a posteriori analysis in the
work of Liu and Yan [LY01, LY02]. They show that

c η2
h − C osc2

h(f) ≤ ‖∇u−∇uh‖
2
(p) ≤ C

(
η2
h + η̃2

)
.

The residual based estimators are fully a posteriori computable. But for convergence
analysis the additional term η̃2 causes problems, since it forms a gap between the
left and the right hand side. In this work we are able to overcome this drawback
and prove estimates avoiding η̃2 (see Lemma 8 and Corollary 11):

c η2
h − C osc2

h(f) ≤ ‖F(∇u) − F(∇uh)‖
2
2 ≤ C η2

h.(1.5)

Dörfler was the first who proved in [Dör96] linear error reduction of (AFEM) for
the linear Laplacian, if the data oscillation is small enough. Later, this additional
assumption has been removed by Morin, Nochetto, and Siebert in [MNS00] by
additional marking for oscillation.

The results in the linear case are heavily based on Galerkin orthogonality and
the Pythagorean Theorem which yield

|||uh − u|||22 = |||uH − u|||22 − |||uH − uh|||
2
2.(1.6)

in the energy norm. To overcome the lack of orthogonality in the non-linear case we
proceed as follows: We prove that the energy difference of weak solutions in nested
spaces V1 ⊂ V2 is proportional two the quasi-norm distance, i.e.

J (u1) − J (u2) ∼ ‖∇u1 −∇u2‖
2
(p) ∼ ‖F(∇u1) − F(∇u2)‖

2
2,

where J (u) is the energy functional of (1.1), u1 ∈ V1, and u2 ∈ V2, see Lemma 16.
This property and the trivial equality

J (uh) − J (u) =
(
J (uH) − J (u)

)
−
(
J (uH) − J (uh)

)

is our substitute for the orthogonality of the error (1.6).
In the linear, symmetric case it is possible to consider the reduction of the error

and the oscillation independently, since the oscillation is solely dependent on the
data f . Mekchay and Nochetto showed linear reduction of the sum of error and
oscillation for non-symmetric second order linear elliptic PDE in [MN05]. In this
case oscillation and error are coupled. A similar effect appears in our non-linear
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setting. We introduce a new proof for error reduction, which enables us to manage
without extra marking for oscillation, see Remark 14. Our proof permits to use the
fact that oscillation is dominated by the error indicator. Moreover, we proof a strict
reduction of the difference of energies plus the oscillation in each step.

An essential tool in our calculations in the use of shifted N -functions, namely ϕa.
They are closely related to the quasi-norms, which is best expressed by the relation

(
A(a) − A(b)

)
· (a − b) ∼

∣∣F(a) − F(b)
∣∣2 ∼ ϕ|a|(|a − b|)

for a,b ∈ R
d. See Lemma 3 for more details. The shifted N -functions enable us

to handle more general non-linear equations than the p-Laplacian, namely the ϕ-
Laplacian from (2.1). But most important, the shifted N -functions simplify and
clarify the calculations significantly also in the case of the p-Laplacian.

2. Preliminaries

We first introduce our nonlinear Dirichlet problem. Thereby the nonlinear partial
differential operator called ϕ-Laplacian is defined via a certain function ϕ : R

≥0 →
R

≥0. The most popular case of such operators is the p-Laplacian which corresponds

to the function ϕ(t) :=
∫ t
0
(κ+ s)p−2s ds. As mentioned before the treatment of the

nonlinear Laplacian via N -functions simplifies and clarifies calculations. Assump-
tions on ϕ and related properties are discussed subsequently. Afterwards the weak
formulation of the problem is stated along with the corresponding minimizing prob-
lem.

Let Ω be a polyhedral, bounded domain in R
d, d ∈ N. In the center of our

considerations are solutions of the ϕ-Laplacian problem, i.e.

−div(A(∇u)) = f in Ω,

u = 0 on ∂Ω,
(2.1)

with

A(∇u) = ϕ′(|∇u)|
∇u

|∇u|
.(2.2)

2.1. Assumptions on ϕ and resulting properties. Now we sheed light on the
considered function ϕ. To go not beyond the scope of this work we give only a short
sketch of the underlying theory. The following definitions and results are standard
in the theory of Orlicz functions and can for example be found in [RR91]. A few
assertions are also proved at the Appendix 5.

We use c, C > 0 (no index) as generic constants, i.e. their value may change from
line to line but does not depend on the important variables. Furthermore, we write
f ∼ g iff c f ≤ g ≤ C f .

A continuous function ϕ : R
≥0 → R

≥0 is said to be an N -function, iff

• ϕ is continuous and convex;
• there exists a derivative ϕ′ of ϕ which is right continuous, non-decreasing

and satisfies ϕ′(0) = 0, ϕ′(t) > 0 for t > 0, and limt→∞ ϕ′(t) = ∞.

Furthermore, ϕ satisfies the ∆2-condition, iff it holds

• ϕ(2t) ≤ C ϕ(t) uniformly in t ≥ 0.

We denote the smallest such constant by ∆2(ϕ). Since ϕ(t) ≤ ϕ(2t) the ∆2-
condition means that ϕ(t) and ϕ(2t) are proportional. Note that if ∆2(ϕ) < ∞
then ϕ(t) ∼ ϕ(a t) uniformly in t ≥ 0 for any fixed a > 1.

Define (ϕ′)−1 : R
≥0 → R

≥0 as

(ϕ′)−1(t) := sup {u ∈ R
≥0 : ϕ′(u) ≤ t}.
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If ϕ′ is strictly increasing then (ϕ′)−1 is the inverse function of ϕ′. By the definition

ϕ∗(t) :=

t∫

0

(ϕ′)−1(s) ds

the so called complementary function ϕ∗ of ϕ is again an N -function and (ϕ∗)′(t) =
(ϕ′)−1(t) for t > 0. Note that (ϕ∗)∗ = ϕ.

Assume that ∆2(ϕ),∆2(ϕ
∗) < ∞. Then for all δ > 0 there exists Cδ > 0 (only

depending on ∆2(ϕ), and ∆2(ϕ
∗)), such that for all s, t ≥ 0 hold

s t ≤ Cδ ϕ(s) + δ ϕ∗(t),

s t ≤ δ ϕ(s) + Cδ ϕ
∗(t).

(2.3)

This inequalities are called Young’s inequality. Moreover, for all t > 0 there exists
s > 0 such that

s t = ϕ(s) + ϕ∗(t).(2.4)

Further basic inequalities are for all t ≥ 0

(2.5)

t ≤ ϕ−1(t) (ϕ∗)−1(t) ≤ 2t,

t

2
ϕ′
( t

2

)
≤ ϕ(t) ≤ t ϕ′(t),

ϕ

(
ϕ∗(t)

t

)
≤ ϕ∗(t) ≤ ϕ

(
2ϕ∗(t)

t

)
.

Therefor, uniformly in t ≥ 0

ϕ−1(t) (ϕ∗)−1(t) ∼ t, ϕ(t) ∼ ϕ′(t) t, ϕ∗
(
ϕ′(t)

)
∼ ϕ(t),(2.6)

where the constants only depend on ∆2(ϕ) and ∆2(ϕ
∗).

As in [DE05, DR06] we require the following properties about our function ϕ:

Assumption 1. Let ϕ be an N -function with ∆2(ϕ) < ∞, ∆2(ϕ
∗) < ∞, and

ϕ ∈ C2(0,∞) such that

ϕ′(t) ∼ t ϕ′′(t)(2.7)

uniformly in t ≥ 0.

It is shown in [DE05] that ϕ satisfies Assumption 1 if and only if ϕ∗ satisfies
Assumption 1. Moreover, it is shown that we have for all a,b ∈ R

d

(
A(a) − A(b)

)
· (a − b) ≥ c ϕ′′(|a| + |b|) |a − b|2,

|A(a) − A(b)| ≤ C ϕ′′(|a| + |b|) |a − b|,
(2.8)

where c, C only depend on ∆2(ϕ), ∆2(ϕ), and the constant in (2.7).

Remark 2. The most important example of such functions is certainly the p-

Laplacian. Thereby ϕ(t) :=
∫ t
0
(κ + s)p−2 s ds with 1 < p < ∞ and κ ≥ 0. This

function satisfies Assumption 1. If κ = 0, then Young’s inequality (2.3) coincides
with the well known classical Young’s inequality

s t ≤ δ
1

p
tp + δ

1
p−1

1

q
sq,

where q ∈ (1,∞) with 1
p

+ 1
q

= 1. Moreover, with A(a) = ϕ′(|a|) a

|a| = (κ+ |a|)p−2a

(2.8) corresponds to the well known monotonicity and coercivity inequalities
(
(κ+ |a|)p−2a − (κ+ |b|)p−2b

)
(a − b) ≥ c (κ+ |a| + |b|)p−2 |a − b|2,

|(κ+ |a|)p−2a − (κ+ |b|)p−2b| ≤ C (κ+ |a| + |b|)p−2 |a − b|.

for all a,b ∈ R
d (see e.g. [GM75, BL94b]).
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2.2. Weak formulation of the ϕ-Laplacian problem and corresponding

minimizing problem. We introduce the weak form of the nonlinear equation
(2.1). To proceed so we first have to introduce analytical background. For details
we refer to [RR91].

In the following the function ϕ will be a fixed N -function as stated in Assump-
tion 1. By Lϕ and W 1,ϕ we denote the classical Orlicz and Sobolev-Orlicz spaces
i.e. g ∈ Lϕ iff

∫
ϕ(|g|) dx < ∞ and g ∈ W 1,ϕ iff g,∇g ∈ Lϕ. The norm on Lϕ is

given by ‖f‖ϕ = inf {λ > 0 :
∫
ϕ(f/λ) dx ≤ 1}. By W 1,ϕ

0 (Ω) we denote the closure

of C∞
0 (Ω) in W 1,ϕ(Ω).

The weak formulation reads as follows: For f ∈ Lϕ
∗

(Ω) ⊂ (W 1,ϕ
0 (Ω))∗ find

u ∈W 1,ϕ
0 (Ω) with

〈A(∇u),∇v〉 = 〈f, v〉 for all v ∈W 1,ϕ
0 (Ω).(2.9)

The theory of monotone operators ensures the unique existence of u. Moreover, u
is the unique minimizer of the energy functional

J (u) :=

∫

Ω

ϕ(|∇u|) dx−

∫

Ω

u f dx→ min!(2.10)

3. A Posteriori Analysis

In this section we first dicuss our concept of distance. In particular we introduce
shifted N -functions and construct an measure of distance related to the nonlinear
problem (2.1). In case of the p-Laplacian this concept is equivalent to the quasi-
norm introduced by Barrett and Liu [BL93b]. In the following we introduce the
finite element spaces and note an interpolation inequality. In the second part of
this section we construct a posteriori upper and lower bounds for the error of a
finite element solution to the continuous solution. Finally, we discuss a discrete
local lower bound, i.e., a lower bound for the distance between two different finite
element solutions.

3.1. Concept of Distance. Let ϕ be again a fixed N -function. We define another
N -function ψ by

ψ′(t) :=
√
ϕ′(t) t

and set for a ∈ R
d

F(a) := ψ′(|a|)
a

|a|
=
√
ϕ′(|a|) |a|

a

|a|
=
√

|A(a)| |a|
a

|a|
.(3.1)

It is shown in [DE05] that since ϕ satisfies Assumption 1 also ψ, ψ∗, and ϕ∗ satisfy
Assumption 1. It is also shown that as a consequence (2.8) holds with A, ϕ replaced
by F, ψ. In addition we introduce a family of N -function {ϕa}a≥0 by

ϕ′
a(t)

t
:=

ϕ′(a+ t)

a+ t
(3.2)

which owing to (2.7) implies ϕ′′
a(t) ∼ ϕ′′(a+ t) uniformly in a, t ≥ 0. The functions

ϕa are called shifted N -functions. The basic properties of ϕa are summarized in
the appendix. The connection between A, F, and {ϕa}a≥0 is best reflected in the

following lemma from [DE05].

Lemma 3. Let ϕ satisfy Assumption 1 and let A and F be defined by (2.2) and
(3.1). Then

(
A(a) − A(b)

)
·
(
a − b

)
∼
∣∣F(a) − F(b)

∣∣2(3.3a)

∼ ϕ|a|(|a − b|),(3.3b)

∼ |a − b|2 ϕ′′
(
|a| + |b|

)
,(3.3c)
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uniformly in a,b ∈ R
d. If ϕ′′(0) does not exists, the expression in (3.3c) is contin-

uously extended by zero for |a| = |b| = 0. Moreover

|A(a) − A(b)| ∼ ϕ′
|a|(|a − b|),(3.3d)

A(b) · b ∼ |F(b)|2 ∼ ϕ(|b|)(3.3e)

uniformly in a,b ∈ R
d.

We use the equivalences (3.3) extensively in this paper without referring.
An immediately consequence of Lemma 3 is

Corollary 4. We have for all u, v ∈W 1,ϕ(Ω)
∫

Ω

(
A(∇u) − A(∇v)

)
· (∇u−∇v) dx ∼ ‖F(∇u) − F(∇v)‖2

2

∼

∫

Ω

ϕ|∇u|(|∇u−∇v|) dx.

Remark 5. In the case of the p-Laplacian, i.e. A(∇v) = (κ + |∇v|)p−2∇v and
ϕ′(t) = (κ+ t)p−2 t with 1 < p <∞ and κ ≥ 0 we have for all a ∈ R

d, t ≥ 0

F(a) := (κ+ |a|)
p−2

2 a, ψ′(t) := (κ+ t)
p−2

2 t.

Moreover, for the p-Laplacian all expressions in Corrolary 4 are proportional to the
quasi-norm introduced by Barrett and Liu in [BL93a]. This follows from the relation

ϕ′
|a|(t) = (κ+ |a| + t)p−2t

and

‖∇u−∇v‖2
(p) =

∫

Ω

(κ+ |∇u| + |∇u−∇v|)p−2|∇u−∇v|2 dx

=

∫

Ω

ϕ′
|∇u|(|∇u−∇v|)|∇u−∇v| dx ∼

∫

Ω

ϕ|∇u|(|∇u−∇v|) dx.

This ensures in case of the p-Laplacian that all the results below can also be expressed
in terms of the quasi-norm.

Addtionally, we need the following direct consequence of Lemma 3:

Corollary 6. Let A, ϕ,F be as in Lemma 3. Then for all a,b ∈ R
d

(ϕ|a|)
∗
(∣∣A(a) − A(b)

∣∣) ∼ ϕ|a|

(∣∣a − b
∣∣) ∼

∣∣F(a) − F(b)
∣∣2.(3.4)

Proof. The second relation is contained in Lemma 3. The first relation follows
from (3.3d), (2.6), and ∆2(ϕ) <∞. �

3.2. Finite element spaces. Let TH be a conforming triangulation of Ω consisting
of closed simplices T ∈ TH . Let hT denote the diameter of the (closed) simplex
T ∈ TH and ρT the maximal radius of a ball that is contained in T . The maximal
quotient hT /ρT with T ∈ Th is called the shape regularity (chunkiness) of TH .

Let VH := V (TH) be the space of continuous, piecewise linear finite elements
over TH with boundary values zero, then VH ⊂ V . By uH ∈ VH we denote the
finite element solution of (2.9) with respect to VH , i.e.

〈A(∇uH),∇vH〉 = 〈f, vH〉 for all vH ∈ VH ,(3.5)

where 〈f, vH〉 =
∫
Ω
f vH dx. The theory of monotone operators ensures the existence

of a unique solution.
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We denote by ΓH the set of interior faces (sides) of the triangulation TH . For
γ ∈ ΓH we define Nγ as the set of elements sharing γ and Sγ as the union of these
elements, i.e.

Nγ := {T1, T2 ∈ TH : T1 ∩ T2 = γ}, Sγ :=
⋃

T∈Nγ

T.

For T ∈ TH define the set of neighbours NT and the neighbourhood ST by

NT := {T ′ ∈ TH : T ′ ∩ T ∈ ΓH}, ST :=
⋃

T ′∈NT

T ′.

For interpolation estimates (see (3.6)) we additionally need to define the patch ΩT
around T and the set of its elements ωT by

ωT := {T ′ ∈ TH : T ′ ∩ T 6= ∅}, ΩT :=
⋃

T ′∈ωT

T ′.

For γ ∈ ΓH let hγ := diam(γ). For T ∈ TH holds hT ∼ hγ for each face (side)
γ ⊂ ∂T depending only on the shape regularity of TH .

Let ΠH : V → VH be the Scott-Zhang interpolation operator which respects
zero boundary values, see [SZ90]. Additionally ΠH satisfies ΠHvH = vH for all
vH ∈ TH . It was shown in [DR06] that for all v ∈W 1,ϕ(Ω), a ≥ 0, and T ∈ Th

∫

T

ϕa(|v − ΠHv|) dx ≤ C

∫

ΩT

ϕa(hT |∇v|) dx,(3.6)

where C only depends on ∆2(ϕ) and the shape regularity of Th.
We introduce residual based error estimators for our system (2.1). For γ ∈ ΓH

and T ∈ TH define the (local) interior and the jump estimators by

η2
E(uH , T ) :=

∫

T

(ϕ|∇uH |)
∗
(
hT |f |

)
dx,

η2
J(uH , γ) :=

∫

γ

hγ
∣∣JF(∇uH)Kγ

∣∣2 dx.

where JF(∇uH)Kγ denotes the jump of F(∇uH) over the face γ. Furthermore we
define for T ∈ TH the (local) element based error indicators and the oscillation as

η2(uH , T ) := η2
E(uH , T ) +

∑

γ∈ΓH ,γ⊂∂T

η2
J(uH , γ),

osc2(uH , T ) := inf
fT ∈R

∫

T

(ϕ|∇uH |)
∗
(
hT |f − fT |

)
dx.

(3.7)

For a subset T̂H ⊂ TH we define the total error estimator over T̂H by

η2(uk, T̂H) :=
∑

T∈T̂H

η2(uk, T ).

Note that η2(uH , {T}) = η2(uH , T ), so there is no confusion between this definition
of η2 and (3.7). Similarly, we define the total oscillation on subsets of TH .

Furthermore we use eH := u− uH for the difference of the solutions.

Remark 7. In the case of the p-Laplacian we can translate the above definitions of
the estimators and the oscillation. For the jump estimator we obtain by Corollary 4,
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Lemma 22, and Remark 5

η2
J(uH , γ) =

∫

γ

hγ
∣∣JF(∇uH)Kγ

∣∣2 dx ∼

∫

Sγ

ϕ|∇uH |

(
J∇uHKγ

)

∼

∫

Sγ

(
κ+ |∇uH | + |J∇uHKγ |)p−2|J∇uHKγ | dx.

The element residual an the oscillation can be treated in the same way. We use
Lemma 22, (2.6), and Remark 5 to obtain

η2
E(uH , T ) =

∫

T

(ϕ|∇uH |)
∗
(
hT |f |

)
dx ∼

∫

T

(ϕ∗)ϕ′(|∇uH |)

(
hT |f |

)
dx

∼

∫

T

(
κ+ |∇uH |p−1

+ hT |f |
)q−2

h2
T |f |2 dx.

Let f̄T denote the mean value of f over T . Then the same calculations yield for the
oscillation

osc2(uH , T ) ∼

∫

T

(
κ+ |∇uH |p−1

+ hT |f − f̄T |
)q−2

h2
T |f − f̄T |

2
dx,

where we have used that for any N -function ̺ with ∆2(̺) <∞ holds

inf
fT

∫

T

̺(|f − fT |) dx ≤

∫

T

̺(|f − f̄T |) dx ≤ c inf
fT

∫

T

̺(|f − fT |) dx

with constants c only depending on ∆2(ϕ). Thus our a posteriori estimators improve
the one in [LY02].

3.3. Upper Bound. To obtain the upper bound we use Lemma 3, the Galerkin
orthogonality, and ΠhuH = uH :

∥∥F(∇uH) − F(∇u)
∥∥2

2
∼
〈
A(∇u) − A(∇uH),∇(u− uH)

〉

=
〈
A(∇u) − A(∇uH),∇(eH − ΠHeH)

〉
.

By integration by parts on each T ∈ Th we get
∥∥F(∇uH) − F(∇u)

∥∥2

2

∼ −
∑

T∈TH

∫

∂T

(
A(∇u)Hn

)
·
(
eH − ΠHeH

)
dx+

〈
f, eH − ΠHeH

〉

= −
∑

γ∈ΓH

∫

γ

q
A(∇uH)n

y
γ
·
(
eH − ΠHeH

)
dx+

〈
f, eH − ΠHeH

〉

= (Upper1) + (Upper2),

(3.8)

where n is the outernormal of ∂T . We handle the two terms jump residual (Upper1)
and element residual (Upper2) separately. First we estimate

(Upper1) ≤
∑

γ∈ΓH

∣∣qA(∇uH)
y
γ

∣∣
∫

γ

∣∣eH − ΠHeH
∣∣ dx,

where we have used that ∇uH is constant on each T ∈ TH . The trace theorem
W 1,1(Sγ) →֒ L1(γ), the W 1,1-approximability of ΠH (see [SZ90] and compare (3.6))
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and the stability of ΠH gives

(Upper1) ≤ C
∑

γ∈ΓH

(
∣∣qA(∇uH)

y
γ

∣∣ ∑

T∈Nγ

∫

ΩT

∣∣∇eH
∣∣ dx

)
.

Now Young’s inequality (2.3) for ϕ|∇uH | on each element yields

(Upper1) ≤
∑

γ∈ΓH

∫

ΩT

Cδ (ϕ|∇uH |)
∗
(∣∣qA(∇uH)

y
γ

∣∣)+ δ ϕ|∇uH |

(∣∣∇eH
∣∣) dx

≤
∑

γ∈ΓH

∑

T∈Nγ

∫

ΩT

Cδ (ϕ|∇uH |)
∗
(∣∣qA(∇uH)

y
γ

∣∣) dx

+ δ
∑

γ∈ΓH

∑

T∈Nγ

∫

ΩT

ϕ|∇uH |

(∣∣∇eH
∣∣) dx.

Due to (3.4) we have

(ϕ|∇uH |)
∗
(∣∣qA(∇uH)

y
γ

∣∣) ∼ ϕ|∇uH |

(∣∣q∇uH
y
γ

∣∣) ∼
∣∣JF(∇uH)Kγ

∣∣2.(3.9)

With the help of (3.9), Lemma 3 and the finite overlapping of the ΩT we get

(Upper1) ≤ Cδ
∑

γ∈Γ

∑

T∈Nγ

∣∣JF(∇uH)Kγ
∣∣2

+ δ
∑

γ∈ΓH

∑

T∈Nγ

∫

ΩT

∣∣F(∇u) − F(∇uH)
∣∣2 dx.

≤ Cδ
∑

γ∈ΓH

η2
J(uH , γ) + δ C

∥∥F(∇uH) − F(∇u)
∥∥2

2
.

(3.10)

We treat the element residual as follows

(Upper2) ≤
∑

T∈TH

∫

T

|f | |eH − ΠHeH | dx

≤
∑

T∈TH

∫

T

Cδ (ϕ|∇uH |)
∗
(
hT |f |

)
+ δ (ϕ|∇uH |)

(
|eH − ΠHeH |

hT

)
dx,

where we have used Young’s inequality (2.3). Since ∇uH is constant on each T ∈ TH
we can use (3.6) to obtain

(Upper2) ≤ Cδ
∑

T∈TH

η2
E(uH , T ) + δ C

∑

T∈TH

∫

ΩT

ϕ|∇uH(T )|(|∇eH |) dx,

where we write ∇uH(T ) to indicate that the shift on the whole ΩT depends on
the value of ∇uH on the triangle T . In order to get ϕ|∇uH |(|∇eH |) instead of
ϕ|∇uH(T )|(|∇eH |) we need a change of shift. We apply Corollary 26 on each T ′ ∈ ωT
and get

(Upper2) ≤ Cδ
∑

T∈TH

η2
E(uH , T ) + δ C

∑

T∈TH

∫

ΩT

ϕ|∇uH |(|∇eH |) dx

+ δ C
∑

T∈TH

∑

T ′∈ωT

∫

T ′

∣∣F(∇uH(T )) − F(∇uH(T ′))
∣∣2 dx.

Now we transform the last term. Since one can reach T ′ from T by passing through
a finite number of faces (depending on the shape regularity of TH), we can estimate
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each
∣∣F(∇uH(T )) − F(∇uH(T ′))

∣∣ for T ′ ∈ ωT by a sum of jumps
∣∣qF(∇uH)

y
γ

∣∣
over these faces. In particular,

∑

T∈TH

∑

T ′∈ωT

∫

T ′

∣∣F(∇uH(T )) − F(∇uH(T ′))
∣∣2 dx ∼

∑

γ∈ΓH

∫

Sγ

∣∣qF(∇uH)
y
γ

∣∣2 dx

∼
∑

γ∈ΓH

hγ

∫

γ

∣∣qF(∇uH)
y
γ

∣∣2 dx =
∑

γ∈ΓH

η2
J(uH , γ)

using that ∇uH is piecewise constant and |Sγ | ∼ hγ |γ|. Hence, with Lemma 3

(Upper2)

≤ Cδ
∑

T∈TH

η2
E(uH , T ) + δ C

∑

T∈TH

∫

ΩT

ϕ|∇uH |(|∇eH |) dx+ δ C
∑

γ∈ΓH

η2
J(uH , γ)

≤ Cδ
∑

T∈TH

η2
E(uH , T ) + δ C

∥∥F(∇uH) − F(∇u)
∥∥2

2
+ δ C

∑

γ∈ΓH

η2
J(uH , γ).

Now, taking δ > 0 small enough we obtain from (3.8), (3.10), the last inequality,
(3.7) and the fact that each side γ ∈ ΓH is shared by at most two elements:

Lemma 8 (Upper Bound). For finite element solutions uH of (3.5) it holds

(3.11)
∥∥F(∇uH) − F(∇u)

∥∥2

2
≤ C η2(uH , TH),

where the constant C only depend on ∆2(ϕ), ∆2(ϕ
∗), and the shape regularity of TH .

3.4. Lower Bound. In this section we show that the error can be locally estimated
from below by the error estimators. We begin with the element estimator. As is
well known, for each T ∈ TH there exists a bubble function wT ∈ W 1,ϕ

0 (T ) with
wT ≥ 0 and

∫

T

wT dx = |T |, ‖wT ‖∞ ≤ C, ‖∇wT ‖∞ ≤
C

hT
,(3.12)

where C > 0 depends only on the shape regularity of TH . Then for s ∈ R

〈
A(∇u) − A(∇uH),∇(swT )

〉
= 〈f, swT 〉,(3.13)

where we have used that ∇uH is constant on T . For fT ∈ R by (2.4) applied to
ϕ|∇uH | there exists sT ∈ R such that

sT (hT fT ) = (ϕ|∇uH(T )|)
∗(hT |fT |) + ϕ|∇uH |(|sT |),(3.14)

i.e. Young’s inequality is sharp. We obtain with (3.14) and (3.13) taking s = hT sT

|T | (ϕ|∇uH(T )|)
∗(hT |fT |) + |T |ϕ|∇uH |(|sT |) = |T | fT hT sT

= −
〈
A(∇u) − A(∇uH),∇(hT sT wT )

〉
+ 〈f − fT , hT sT wT 〉

= (Lower1) + (Lower2).

(3.15)

We estimate with (3.12), Young’s inequality (2.3), (3.4) and the fact that the inte-
grant ϕ|∇uH |(hT |sT |) is piecewise constant

(Lower1) ≤ C

∫

T

|A(∇u) − A(∇uH)| |sT | dx

≤ Cδ

∫

T

|F(∇u) − F(∇uH)|2 dx+ δ C |T |ϕ|∇uH |(|sT |).

(3.16)



CONVERGENCE OF AN AFEM FOR THE p-LAPLACIAN 11

Similarly, with (3.12) and Young’s inequality (2.3) we get

(Lower2) ≤ C

∫

T

hT sT |f − fT | dx

≤ Cδ

∫

T

(ϕ|∇uH |)
∗(hT |f − fT |) dx+ δ |T |ϕ|∇uH |(|sT |).

(3.17)

Now, taking δ > 0 small enough we obtain from (3.15), (3.16), and (3.17) that

(3.18)

|T | (ϕ|∇uH(T )|)
∗(hT |fT |) ≤ C

∫

T

|F(∇u) − F(∇uH)|2 dx

+ C

∫

T

(ϕ|∇uH |)
∗(hT |f − fT |) dx.

Observe that by convexity of (ϕ|∇uH(T )|)
∗, ∆2(ϕ

∗),∆2(ϕ) <∞ and Lemma 22

η2
E(uH , T ) =

∫

T

(ϕ|∇uH(T )|)
∗(hT |f |)

≤ C

∫

T

(ϕ|∇uH |)
∗(hT |f − fT |) dx+ C |T | (ϕ|∇uH(T )|)

∗(hT |fT |)

with C > 0 depending only on ∆2(ϕ) and ∆2(ϕ
∗). This and (3.18) gives

η2
E(uH , T ) ≤ C

∫

T

|F(∇u) − F(∇uH)|2 dx+ C

∫

T

(ϕ|∇uH |)
∗(hT |f − fT |) dx.

(3.19)

Taking the infimum over all fT ∈ R proves the following assertion:

Lemma 9. For finite element solutions uH of (3.5) and T ∈ Th it holds

η2
E(uH , T ) ≤ C ‖F(∇uH) − F(∇u)‖2

L2(T ) + C osc2(uH , T ).(3.20)

where the constant C only depends on ∆2(ϕ), ∆2(ϕ
∗), and the shape regularity

of TH .

Now we estimate the jump estimator. As is well known, for each γ ∈ ΓH there
exists a bubble function wγ ∈W 1,ϕ

0 (Sγ) with wγ ≥ 0 and
∫

γ

wγ dx = |γ|, ‖wγ‖∞ ≤ C, ‖∇wγ‖∞ ≤
C

hγ
,(3.21)

where C > 0 depends only on the shape regularity of TH . Then for s ∈ R

(3.22)

〈
A(∇u) − A(∇uH),∇(swγ)

〉
= 〈f, swγ〉 −

∫

γ

JA(∇uH)nKγ swγ dx

= 〈f, swγ〉 − |γ| JA(∇uH)nKγ s,
where we have used partial integration and that ∇uH is piecewise constant. Let T0,
T1 be the two triangles sharing γ. Then by (2.4) applied to ϕ|∇uH(T0)| there exists
sγ ∈ R such that

JA(∇uH)nKγ sγ = (ϕ|∇uH(T0)|)
∗
(∣∣JA(∇uH)nKγ

∣∣)+ ϕ|∇uH(T0)|(|sγ |),(3.23)

i.e. Young’s inequality is sharp. We have chosen |∇uH(T0)| as the shift, which
puts T0 into a special position, but we will see later that it is not important which
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of the two triangles is chosen. Let s =
|Sγ |
|γ| sγ in (3.22), then we obtain with (3.23)

|Sγ | (ϕ|∇uH(T0)|)
∗
(
JA(∇uH)nKγ

)
+ |Sγ |ϕ|∇uH(T0)|(|sγ |)

= |Sγ| JA(∇uH)nKγ sγ

= −
|Sγ |

|γ|

〈
A(∇u) − A(∇uH),∇(sγ wγ)

〉
+

|Sγ |

|γ|
〈f, sγ wγ〉

= (Lower3) + (Lower4).

(3.24)

Before we proceed with the estimates for (Lower3) and (Lower4) we simplify the
term (ϕ|∇uH(T0)|)

∗
(∣∣JA(∇uH)nKγ

∣∣). First we show that
∣∣JA(∇uH)nKγ

∣∣ ∼ ϕ′
|∇uH |

(∣∣J∇uHKγ
∣∣) ∼

∣∣JA(∇uH)Kγ
∣∣.(3.25)

The last part of (3.25) is an immediate consequence of Lemma 3. If J∇uHKγ = 0,
then also JA(∇uH)nKγ = 0 and all terms in (3.25) are zero. So we can assume
J∇uHKγ 6= 0. Since uH ∈ C(Sγ), the tangential derivatives of uH are continuous
on γ and do not jump. Hence, |J∇uHKγ | = |J∇uHKγn| and

n = ±
J∇uHKγ
|J∇uHKγ |

.

This and (3.3) imply

|JA(∇uH)nKγ | · |J∇uHKγ | =
∣∣JA(∇uH)Kγ · J∇uHKγ

∣∣ ∼ ϕ|∇uH |(|J∇uHKγ |).
Now, (2.6) proves (3.25). With (3.4) and (3.25) we further get

(ϕ|∇uH(T0)|)
∗
(∣∣JA(∇uH)nKγ

∣∣) ∼ (ϕ|∇uH(T0)|)
∗
(∣∣JA(∇uH)Kγ

∣∣)

∼
∣∣JF(∇uH)Kγ

∣∣2.
(3.26)

where we have used ∆2((ϕ|∇uH(T0)|)
∗) which only depends on ∆2(ϕ) and ∆2(ϕ

∗).
Now, it becomes clear, why the preference of T0 is not important: The expres-
sion |JF(∇uH)Kγ |2 in (3.26) is symmetrical in T0 and T1 and therefor independent
of the choice T0.

We proceed with the estimate for (Lower3). With |Sγ | ∼ hγ |γ|, (3.21), Young’s
inequality (2.3), and (3.4) we get

(Lower3) ≤ C

∫

Sγ

|A(∇u) − A(∇uH)| |sγ | dx

≤ Cδ

∫

Sγ

|F(∇u) − F(∇uH)|2 dx+ δ C
∑

T∈Nγ

|T |ϕ|∇uH(T )|(|sγ |).

(3.27)

With |Sγ | ∼ hγ |γ|, (3.21), and Young’s inequality (2.3) we deduce

(Lower4)

≤ C

∫

Sγ

|f |hγ |sγ | dx

≤ C
∑

T∈Nγ

inf
fT ∈R

∫

T

|f − fT |hγ |sγ | + |fT |hγ |sγ | dx

≤ Cδ
∑

T∈Nγ

inf
fT ∈R

∫

T

(ϕ|∇uH |)
∗(hγ |f − fT |) dx+ (ϕ|∇uH |)

∗(hγ |fT |) dx

+ δ
∑

T∈Nγ

∫

T

ϕ|∇uH |(|sγ |) dx
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and with (3.4)

≤ Cδ
∑

T∈Nγ

osc2(uH , T ) + Cδ
∑

T∈Nγ

η2
H(uH , T ) + δ

∑

T∈Nγ

|T |ϕ|∇uH(T )|(|sγ |).

This, (3.24), (3.27), and |T0|, |T1| ≤ |Sγ | imply

|Sγ | (ϕ|∇uH(T0)|)
∗
(∣∣JA(∇uH)nKγ

∣∣)+ |Sγ |ϕ|∇uH(T0)|(|sγ |)

≤ Cδ

∫

Sγ

|F(∇u) − F(∇uH)|2 dx+ Cδ
∑

T∈Nγ

osc2(uH , T ) + Cδ
∑

T∈Nγ

η2
H(uH , T )

+ δ
∑

T∈Nγ

|Sγ |ϕ|∇uH(T )|(|sγ |).

For small δ > 0 the summand of the last term with T = T0 could be absorbed on
the left hand side, but the term with T = T1 bothers us, since it has the wrong
shift |∇uH(T1)|. With Corollary 26 and (3.26) we get rid of this term:

ϕ|∇uH(T1)|(|sγ |) ≤ C ϕ|∇uH(T0)|(|sγ |) + C
∣∣JF(∇uH)Kγ

∣∣2

≤ C ϕ|∇uH(T0)|(|sγ |) + C (ϕ|∇uH(T0)|)
∗
(∣∣JA(∇uH)nKγ

∣∣).

This and (3.27) gives for δ > 0 small

|Sγ | (ϕ|∇uH(T0)|)
∗
(∣∣JA(∇uH)nKγ

∣∣)

≤ C ‖F(∇u) − F(∇uH)‖2
L2(Sγ) + C

∑

T∈Nγ

osc2(uH , T ) + C
∑

T∈Nγ

η2
H(uH , T ).

Now, an application of (3.26) and |Sγ | ∼ hγ |γ| prove the following assertion:

Lemma 10. For finite element solutions uH of (3.5) and γ ∈ ΓH it holds

η2
J(uH , γ) ≤ C ‖F(∇uH) − F(∇u)‖2

L2(Sγ) + C osc2(uH , Nγ) + C η2
E(uH , Nγ),

where the constant C only depends on ∆2(ϕ), ∆2(ϕ
∗), and the shape regularity

of TH .

Lemma 9 and Lemma 10 can be combined:

Corollary 11. For finite element solutions uH of (3.5) and T ∈ TH it holds

η2(uH , T ) ≤ C ‖F(∇uH) − F(∇u)‖2
L2(ST ) + C osc2(uH , NT ),(3.28)

where the constant C only depends on ∆2(ϕ), ∆2(ϕ
∗), and the shape regularity

of TH .

3.5. Discrete Lower Estimates. In the following let Th be a refinement of TH ,
which is generated from TH by finitely many bisections. Then Vh := V (Th) and
VH := (TH) are nested, i.e. VH ⊂ Vh ⊂ V . Let uh, uH denote the unique solution
of (2.1) with respect to Vh respective VH .

Our aim is to generalize Corollary 11 from VH ⊂ V to VH ⊂ Vh. Therefore we
have to ensure that Vh is a sufficient refinement of VH . In particular, we have to
ensure the existence of bump functions as required in (3.12) and (3.21). We say that
T ∈ TH is fully refined in Th if T and each of its faces contains a node in its interior.
This yields the existence of a bump function wT ∈ Vh on T which satisfies (3.12)
and bump functions wγ ∈ Vh on Sγ for all γ ∈ ΓH ∪ T which satisfy (3.21). Thus,
to obtain the local lower bound (3.28) on ST for a certain T ∈ TH it suffices to
assume that each T ′ ∈ NT is fully refined in Th. With these additional assumptions
we can now transfer the estimates from Section 3.4 to VH ⊂ Vh:
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Lemma 12. If for T ∈ TH each T ′ ∈ NT is fully refined in Th then

η2(uH , T ) ≤ C ‖F(∇uH) − F(∇uh)‖
2
L2(ST ) + C osc2(uH , NT ),(3.29)

where the constant C only depends on ∆2(ϕ), ∆2(ϕ
∗), and the shape regularity

of TH .

4. Algorithm and Convergence

Let us first state the adaptive algorithm which produces a sequence uk of solutions
in nested spaces Vk := V (Tk) over triangulations Tk. We substitute the index H,
resp. h, of the previous sections by the Index k, resp. k+1, to indicate the underlying
mesh. Then we introduce the concept of energy reduction and thereafter we prove
convergence of the algorithm.

4.1. Adaptive Algorithm. We propose the following adaptive algorithm to solve (1.1):

Algorithm 13 (AFEM). Choose θ ∈ (0, 1). Construct an initial triangulation T0

of Ω and set k := 0.

(1) (’Solve’ ) Compute the solution uk ∈ Vk of Problem (3.5);
(2) (’Estimate’ ) Compute η2(uk, T ) for all T ∈ Tk.
(3) If η2(uk, Tk) = 0 then STOP;
(4) (’Mark’ ) Choose a subset T m

k ⊂ Tk such that

η2(uk, T
m
k ) ≥ θ2η2(uk, Tk).(4.1)

Now, ’Mark’ the subset N(T m
k ) :=

⋃
T∈T m

k
NT ⊂ Tk, i.e., the neighbour-

hood of T m
k , for refinement.

(5) (’Refine’ ) Perform a (minimal) conforming refinement of Tk using newest
vertex bisections to obtain Tk+1 such that each element T ∈ T m

k is fully
refined in Tk+1, i.e. each T ∈ T m

k and each of its faces contains a node of
Tk+1 in its interior. Increment k and go to step (1).

Remark 14. Note that our marking strategy differs from the one proposed by
Morin, Nochetto and Siebert in [MNS00]. They used separate marking steps for
the error estimator and the data oscillation. In our setting this would correspond to
the following strategy: Construct T m

k as in step ’Mark’. Second, enlarge T m
k such

that for θ̂ > 0 also

osc2(uk, T
m
k ) ≥ θ̂2 osc2(uk, Tk).(4.2)

This requires the calculation of the oscillation in step ’Estimate’. We want to point
out that by the marking strategy ( ’Mark’) our new proof of convergence overcomes
the drawback of additional marking for oscillation. This reflects the practical ex-
perience that the effect of oscillation plays a minor role (see e.g. [MNS00]). We
prove the success of most adaptive strategies which disregard the issue of oscillation
altogether. Since η2(uk, γ) ≥ osc2(uk, T ) for T ∈ Nγ , this implies that (4.1) is
equivalent to

η2(uk,Γ
m
k ) + osc2(uk, T

m
k ) ≥ θ

2(
η2(uk,Γk) + osc2(uk, Tk)

)
(4.3)

with θ ∈ (0, 1). Based on this cognitions we give a new proof to show that the combi-
nation of energy difference and oscillation is reduced in each step (see Theorem 20).

Remark 15. Note that the condition in ’Refine’ of fully refined T ∈ T m
k can be

obtained by bisecting each T ∈ T m
k three times in two dimensions respective six

times in three dimensions (see [MNS00]). With this property we have a reduction
factor λ < 1 of element size, i.e. if T ′ ∈ Tk+1 is obtained by refining T ∈ Tk it holds
hT ′ ≤ λhT . By using the method of newest vertex bisection the shape regularity of
(Tk) is uniformly bounded with respect to k depending on the shape regularity of T0.
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4.2. Energy Reduction in Nested Spaces. Assume as before that VH ⊂ Vh ⊂
V . One main ingredient of proving lineare convergence in [MNS00] for the linear
case is the error reduction property for the energy norm

|||uh − u|||22 = |||uH − u|||22 − |||uH − uh|||
2
2.

This is a consequence of the Galerkin orthogonality and the Pythagorean Theorem
which is related to Hilbert spaces. We do not have this property in the general case
of the ϕ-Laplacian. But there is another way to interprete this property. In the
linear case it is equivalent to

J (uh) − J (u) = J (uH) − J (uh) −
(
J (uH) − J (uh)

)
.(4.4)

Obviously, this equality holds also in our case. Since VH ⊂ Vh ⊂ V and the
minimizing property of u, uh, and uH we have

J (u) ≤ J (uh) ≤ J (uH).

Thus we have a reduction of energy difference. Now, it remains to find a link between
the energy differences and the error. This is the content of the following Lemma.
We include the precise statement and its proof in the appendix in Lemma 16. For
v, w ∈ V we define the energy difference by

ε(v, w) := J (v) − J (w).

Lemma 16. Let u1, u2 be minimizers of the energy functional J with respect to
the V1 ⊂ V2 ⊂ V . Then

J (u1) − J (u2) ∼ ‖F(∇u1) − F(∇u2)‖
2
2,

where the constants only depend on ∆2(ϕ), ∆2(ϕ
∗), and (2.7).

Proof. Define Φ : R
d → R by Φ(a) := ϕ(|a|) then J (u) =

∫
Ω
Φ(∇u) dx−

∫
Ω
u f dx.

Let g(t) := J ([u2, u1]t) for t ∈ R, where [u2, u1] := (1− t)u2 + t u1. Since u2 is the
minimizer of J on V2 ⊃ V1,we have g′(0) = 0. We estimate by Taylor’s formula

J (u1) − J (u2) = g(1) − g(0) =
1

2

1∫

0

g′′(t) (1 − t) dt

=
1

2

∑

k,m

1∫

0

∫

Ω

(∂k∂mΦ)([∇u2,∇u1]t) (∂ku1 − ∂ku2)(∂mu1 − ∂mu2) dx (1 − t) dt.

(4.5)

Note that for a,b ∈ R
d

∑

k,m

(∂k∂mΦ)(a) bk bm =
ϕ′(|a|)

|a|

(
|b|2 −

|a · b|

|a|2

)
+ ϕ′′(|a|)

|a · b|2

|a|2
.

By Assumption 1 we have c ϕ′(t) ≤ t ϕ′′(t) ≤ C ϕ′(t) uniformly in t ≥ 0. Therefor,

∑

k,m

(∂k∂mΦ)(a) bk bm ≤ (1 + C)
ϕ′(|a|)

|a|
|b|2

and

∑

k,m

(∂k∂mΦ)(a) bk bm ≥
ϕ′(|a|)

|a|
|b|2 + (c− 1)

ϕ′(|a|)

|a|

|a · b|2

|a|2
≥ c

ϕ′(|a|)

|a|
|b|2.
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In other words
∑
k,m(∂k∂mΦ)(a) bk bm ∼ ϕ′(|a|)

|a| |b|2 uniformly in a,b ∈ R
d. Com-

bining the last estimates with (4.5) yields

J (u1) − J (u2) ∼

1∫

0

∫

Ω

ϕ′(|[∇u2,∇u1]t|)

|[∇u2,∇u1]t|
|∇u1 −∇u2|

2
dx (1 − t) dt.(4.6)

Now, we cite Lemma 19 from [DE05], which states that for any a,b ∈ R
d

1∫

0

ϕ′(|[a,b]t|)

|[a,b]t|
dt ∼

ϕ′(|a| + |b|)

|a| + |b|

with constants only depending on ∆2(ϕ) and ∆2(ϕ
∗). In particular, this, (4.6),

Assumption 1, and Lemma 3 gives

J (u1) − J (u2) ≤ C

∫

Ω

ϕ′(|∇u2| + |∇u1|)

|∇u2| + |∇u1|
|∇u1 −∇u2|

2
dx

≤ C

∫

Ω

ϕ′′(|∇u2| + |∇u1|)|∇u1 −∇u2|
2
dx

≤ C

∫

Ω

|F(∇u1) − F(∇u2)|
2
dx.

On the other hand, (4.6), ϕ′(t) t ∼ ϕ(t) by (2.6), and Jensen’s inequality give

J (u1) − J (u2) ≥ c

∫

Ω

1∫

0

ϕ(|[∇u2,∇u1]t|)

(|∇u2| + |∇u1|)2
(1 − t) dt |∇u1 −∇u2|

2
dx.

≥ c

∫

Ω

ϕ(
∫ 1

0
|[∇u2,∇u1]t| 2 (1 − t) dt)

(|∇u2| + |∇u1|)2
|∇u1 −∇u2|

2
dx.

Uniformly in a,b ∈ R
d holds

∫ 1

0
|[a,b]t| 2(1 − t) dt ∼ |a| + |b|, because both sides

are a norm for the couple (a,b). This and ϕ′′(t) t2 ∼ ϕ(t) imply

J (u1) − J (u2) ≥ c

∫

Ω

ϕ′′(|∇u2| + |∇u1|) |∇u1 −∇u2|
2
dx.

Now, Lemma 3 proves J (u1) − J (u2) ≥ c
∫
Ω
|F(∇u1) − F(∇u2)|

2
dx. �

We recall that by Algorithm 13 for each element T ∈ T m
k it holds NT ⊂ N(T m

k ).
Thus each of elements in NT is marked for full refinement. Thus by Lemma 12 we
have a discrete lower bound for each T ∈ T m

k . Summing over all sides in T m
k yields

together with Lemma 16:

Corollary 17. For the sequence of finite element solutions produced by Algo-
rithm 13 holds

η2(uk, T
m
k ) ≤ C ε(uk, uk+1) + C osc2(uk, N(T m

k )),(4.7)

where the constant C only depends on ∆2(ϕ), ∆2(ϕ
∗), (2.7), and the shape regularity

of T0.
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4.3. Convergence. To prove that Algorithm 13 produces a sequence (uk), which
converges to the weak solution u of (1.1) we need an auxiliary lemma which deals
with oscillation.

Lemma 18. Then for the sequence of finite element solutions produced by Algo-
rithm 13 there exists ρ ∈ (0, 1) such that

osc2(u, Tk+1) ≤ osc2(u, Tk) − ρ osc2(u,N(T m
k )),(4.8)

with ρ = 1 − λ and λ from Remark 15.

Proof. Recall that for any T ∈ Tk and any T ′ ∈ Tk+1 with T ′ ⊂ T we have hT ′ ≤ hT .
Moreover, if T is refined in Tk+1, then we even have hT ′ ≤ λhT . In particular, this
holds if T ∈ T m

k since these T are fully refined in Tk+1. First for every T ∈ Tk we
estimate

∑

T ′∈Tk+1,T ′⊂T

osc2(u, T ′) =
∑

T ′∈Tk+1,T ′⊂T

inf
fT ′∈R

∫

T ′

(ϕ|∇u|)
∗(hT ′ |f − fT ′ |) dx

≤
∑

T ′∈Tk+1,T ′⊂T

inf
fT ′∈R

∫

T ′

(ϕ|∇u|)
∗(hT |f − fT ′ |) dx

≤ inf
fT ∈R

∫

T

(ϕ|∇u|)
∗(hT |f − fT |) dx

= osc2(u, T ).

(4.9)

Second, for T ∈ N(T m
k ) we have a better estimate, since all elements in N(T m

k ) are
fully refined in Tk+1. Therefor, it holds with the convexity of N -functions

∑

T ′∈Tk+1,T ′⊂T

osc2(u, T ′) =
∑

T ′∈Tk+1,T ′⊂T

inf
fT ′∈R

∫

T ′

(ϕ|∇u|)
∗(hT ′ |f − fT ′ |) dx

≤
∑

T ′∈Tk+1,T ′⊂T

inf
fT ′∈R

∫

T ′

(ϕ|∇u|)
∗(λhT |f − fT ′ |) dx

≤ inf
fT ∈R

∫

T

(ϕ|∇u|)
∗(λhT |f − fT |) dx

≤ λ osc2(u, T ).

(4.10)

Now, (4.9) and (4.10) imply

osc2(u, Tk+1) ≤ osc2(u, Tk \ T
m
k ) + λ osc2(u, T m

k )

= osc2(u, Tk) − (1 − λ) osc2(u, T m
k ).

This proves the Lemma. �

Lemma 19. For the sequence of finite element solutions produced by Algorithm 13
holds

η2(uk, Tk) + osc2(uk, Tk) ∼ ε(uk, u) + osc2(uk, Tk)(4.11a)

∼ ε(uk, u) + osc2(u, Tk).(4.11b)

Proof. First we prove (4.11a). From Lemma 8, Corollary 11, and Lemma 16 follows

η2(uk, Tk) ≤ C ε(uk, u) + C osc2(uk, Tk),

ε(uk, u) ≤ C η2(uk, Tk) + C osc2(uk, Tk),
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which immediately implies (4.11a). With the help of Corollary 28 we can use change
the shift in the last term, i.e.

osc2(uk, Tk)

=
∑

T∈Tk

inf
fT ∈R

∫

T

(ϕ|∇uk|)
∗(hK |f − fT |) dx

≤
∑

T∈Tk

(
inf
fT ∈R

C

∫

T

(ϕ|∇u|)
∗(hK |f − fT |) dx+ C |F(∇uk) − F(∇u)|2

)

= C osc2(u, Tk) + C ‖F(∇uk) − F(∇u)‖2
2 ≤ C osc2(u, Tk) + C ε(uk, u).

(4.12)

The same calculation with uk and u exchanged proves

osc2(u, Tk) ≤ C osc2(uk, Tk) + C εk(uk, u).(4.13)

Now, (4.12) and (4.13) proves (4.11b). �

Now we are able to prove our first main result.

Theorem 20 (Energy/Oscillation Reduction). For the sequence (uk) of finite ele-
ments solutions produced by Algorithm AFEM there exist a constant α ∈ (0, 1) such
that

ε(uk+1, u) + osc2(u, Tk+1) ≤ α2
(
ε(uk, u) + osc2(u, Tk)

)
.(4.14)

Here α only depends on the shape regularity of the sequence (Tk), ∆2(ϕ), ∆2(ϕ
∗),

(2.7), and θ from the marking strategy (4.1). In particular, for k ∈ N

ε(uk, u) + osc2(u, Tk) ≤ α2k
(
ε(u0, u) + osc2(u, T0)

)
.(4.15)

Proof. To overcome the lack of orthogonality in the nonlinear case we start with
equation (4.4)

ε(uk+1, u) = ε(uk, u) − ε(uk, uk+1).(4.16)

By the equivalent form (4.3) of our marking strategy ‘Mark’ and (4.11) we get

θ
2 (
ε(uk, u) + osc2

k(u, Tk)
)
≤ C

(
η2(uk, T

m
k ) + osc2

k(uk, T
m
k )
)
.(4.17)

The sum of (4.16) and (4.8) gives

ε(uk+1, u) + osc2(u, Tk+1)

≤ ε(uk, u) + osc2(u, Tk) −
(
ε(uk, uk+1) + ρ osc2

(
u,N(T m

k )
))
.

(4.18)

With the help of Corollary 28 (change of shift) it follows as in (4.12) for δ > 0

osc2
(
uk, N(T m

k )
)
≤ Cδ osc2

(
u,N(T m

k )
)

+ δ εk(uk, u).

Equivalently,

1

Cδ
osc2

(
uk, N(T m

k )
)
−

δ

Cδ
ε(uk, u) ≤ osc2

(
u,N(T m

k )
)
.

This, (4.18), and (4.7) imply

ε(uk+1, u) + osc2
(
u,N(Tk+1)

)

≤ ε(uk, u) + osc2(u, Tk) −

(
ε(uk, uk+1) +

ρ

Cδ
osc2

(
uk, N(T m

k )
)
−
ρ δ

Cδ
ε(uk, u)

)

≤

(
1 +

ρ δ

Cδ

)
ε(uk, u) + osc2(u, Tk) −

(
ε(uk, uk+1) +

ρ

Cδ
osc2

(
uk, N(T m

k )
))
.

Hence, with ρ
Cδ

≤ 1 (choose δ small enough)

≤

(
1 +

ρ δ

Cδ

)
ε(uk, u) + osc2(u, Tk) −

ρ

2Cδ

(
ε(uk, uk+1) + 2 osc2

(
uk, N(T m

k )
))
.
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Now, the discrete lower estimate (4.7), and T m
k ⊂ N(T m

k ) yield

≤

(
1 +

ρ δ

Cδ

)
ε(uk, u) + osc2(u, Tk) −

ρ

2Cδ

(
1

C
η2(uk, T

m
k ) + osc2

(
uk, N(T m

k )
))

≤

(
1 +

ρ δ

Cδ

)
ε(uk, u) + osc2(u, Tk) −

ρ

2C Cδ

(
η2(uk, T

m
k ) + osc2(uk, T

m
k )

)
.

With (4.11) and (4.17) we get

ε(uk+1, u) + osc2(u, Tk+1)

≤

(
1 +

ρ δ

Cδ

)
ε(uk, u) + osc2(u, Tk) −

ρ θ
2

2C Cδ

(
η2(uk, Tk) + osc2(u, Tk)

)

≤

(
1 +

ρ δ

Cδ

)
ε(uk, u) + osc2(u, Tk) −

ρ θ
2

2C Cδ

(
ε(uk, u) + osc2(u, Tk)

)

≤

(
1 +

ρ δ

Cδ
−

ρ θ
2

2C Cδ

)
ε(uk, u) +

(
1 −

ρ θ
2

2C Cδ

)
osc2(u, Tk).

We set

α2 := min

{
1 +

ρ δ

Cδ
−

ρ θ
2

2C Cδ
, 1 −

ρ θ
2

2C Cδ

}

and obtain the proposition for δ > 0 small enough. �

From the energy/oscillation reduction of Theorem 20 it follows with the help of
Lemma 16:

Corollary 21 (Energy/Oscillation Reduction). For the sequence (uk) of finite ele-
ments solutions produced by Algorithm AFEM there exists constant α ∈ (0, 1) such
that for all k ∈ N

‖F(∇uk) − F(∇u)‖2
L2(Ω) + osc2(u, Tk)

≤ C α2k
(
‖F(∇u0) − F(∇u)‖2

L2(Ω) + osc2(u, T0)
)
.

(4.19)

Here α and the constants only depend on the shape regularity of T0, ∆2(ϕ), ∆2(ϕ
∗),

(2.7), and θ from the marking strategy (4.1).

5. Appendix

In this section we summarize the properties of the shifted N -functions ϕa. Recall
that for given N -function ϕ with ∆2(ϕ),∆2(ϕ

∗) <∞ we define ϕa as in (3.2) and F

as in (3.1). The following results are from [DE05] and we present them here without
proof.

Lemma 22. Let ϕ be a N -function with ∆2(ϕ),∆2(ϕ
∗) <∞. Then for all a ≥ 0 the

functions ϕa and (ϕa)
∗ are N -function. Moreover, the families ϕa and (ϕa)

∗ satisfy
the ∆2 condition uniformly in α ≥ 0, i.e. c0 := supa≥0(∆2(ϕa),∆2((ϕa)

∗)) < ∞.
The constant c0 depends on ϕ only by ∆2(ϕ) and ∆2(ϕ

∗). Moreover,

(ϕa)
∗(t) ∼ (ϕ∗)ϕ′(a)(t)(5.1)

uniformly in a, t ≥ 0, where the constants only depend on ∆2(ϕ) and ∆2(ϕ
∗).

Lemma 23. Let ϕ be a N -function with ∆2(ϕ),∆2(ϕ
∗) < ∞. Then uniformly in

a ∈ R
d

ϕ′′(|a| + |b|) |a − b| ∼ ϕ′
|a|(|a − b|) ∼ ϕ′

|b|(|a − b|),

ϕ′′(|a| + |b|) |a − b|2 ∼ ϕ|a|(|a − b|) ∼ ϕ|b|(|a − b|),
(5.2)

with constants only depending on ∆2(ϕ) and ∆2(ϕ
∗).
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Lemma 24. Let ϕ be as in Assumption 1. Then ϕ∗ satisfies Assumption 1, too. If
we define the N -function ψ by

ψ′(t)

t
:=

(
ϕ′(t)

t

) 1
2

then ψ and ψ∗ satisfy Assumption 1. Moreover, ψ′′(t) ∼
√
ϕ′′(t) uniformly in t > 0.

The ∆2-constants of ψ and ψ∗ and the constants of ψ′′(t) ∼
√
ϕ′′(t) only depend

on ∆2(ϕ).

The following lemma is proven already in [DR06], but we give a shorter proof:

Lemma 25. Let ϕ be a N -function with ∆2(ϕ),∆2(ϕ
∗) < ∞. Then there exists

C > 0, which only depends on ∆2(ϕ) such that for all a,b ∈ R
d and t ≥ 0

ϕ′
|a|(t) ≤ C ϕ′

|b|(t) + C ϕ′
|a|(|a − b|).(5.3)

Proof. Since ϕ′
|a|(t) ∼ ϕ|a|(t)/t and ϕ|a|(2t) ∼ ϕ|a|(t), we have ϕ′

|a|(2t) ∼ ϕ′
|a|(t).

In particular, ϕ′
|a|(2t) ≤ C ϕ′

|a|(t) for some C > 0 uniformly in t ≥ 0. All constants

depend only on ∆2(ϕ|a|), so by Lemma 22 the constants depend only on ∆2(ϕ).

Case |a − b| ≤ 1
2 t: From |a − b| ≤ 1

2 t follows 0 ≤ 1
2 (|b|+t) ≤ |a|+t ≤ 2(|b|+t).

Hence,

ϕ′
|a|(t) =

ϕ′(|a| + t)

|a| + t
t ≤

ϕ′(2 (|b| + t))
1
2 (|b| + t)

t ≤ 2C
ϕ′(|b| + t)

|b| + t
t = 2C ϕ′

|b|(t).

Case |a − b| ≥ 1
2 t: We estimate

ϕ′
|a|(t) ≤ ϕ′

|a|(2 |a − b|) ≤ C ϕ′
|a|(|a − b|).

Combining the two cases proves the lemma. �

Corollary 26 (Change of Shift). Let ϕ be a N -function with ∆2(ϕ),∆2(ϕ
∗) <∞.

Then for any δ > 0 there exists Cδ > 0, which only depends on δ and ∆2(ϕ) such
that for all a,b ∈ R

d and t ≥ 0

ϕ|a|(t) ≤ Cδ ϕ|b|(t) + δ ϕ|a|(|a − b|).(5.4)

If ϕ satisfies Assumption 1, then for any δ > 0 there exists Cδ > 0, which only
depends on δ, ∆2(ϕ), ∆2(ϕ

∗), and (2.7) such that for all a,b ∈ R
d and t ≥ 0

ϕ|a|(t) ≤ Cδ ϕ|b|(t) + δ
∣∣F(a) − F(b)

∣∣2.(5.5)

Proof. Due to (2.7) holds ϕ|a|(t) ∼ ϕ′
|a|(t) t. Now inequality (5.4) follows by (5.3)

and an application of Young’s inequality (2.3). On the other hand (5.5) follows
from (5.4) with the help of Lemma 3. �

The following lemma is new. It generalizes the change of shift to complementary
functions.

Lemma 27. If ϕ satisfies Assumption 1, then for any δ > 0 there exists Cδ > 0,
which only depends on δ, ∆2(ϕ), and ∆2(ϕ

∗), such that for all a,b ∈ R
d and t ≥ 0

(
(ϕ|a|)

∗
)′

(t) ≤ C
(
(ϕ|b|)

∗
)′

(t) + C |a − b|.(5.6)
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Proof. With Lemma 22, |A(a)| = ϕ′(|a|), Lemma 25, Lemma 3, and ∆2(ϕ) < ∞
we estimate

(
(ϕ|a|)

∗
)′

(t) ≤ C
(
(ϕ∗)|A(a)|

)′
(t)

≤ C
(
(ϕ∗)|A(a)|

)′
(t) + C

(
(ϕ∗)|A(a)|

)′
(|A(a) − A(b)|)

≤ C
(
(ϕ|a|)

∗
)′

(t) + C
(
(ϕ|a|)

∗
)′

(C ϕ′
|a|(|a − b|)

)

≤ C
(
(ϕ|a|)

∗
)′

(t) + C
(
(ϕ|a|)

∗
)′

(ϕ′
|a|(|a − b|)

)

= C
(
(ϕ|a|)

∗
)′

(t) + C |a − b|.

This proves the Lemma. �

Corollary 28 (Change of Shift). If ϕ satisfies Assumption 1, then for any δ > 0
there exists Cδ > 0, which only depends on δ, ∆2(ϕ), and ∆2(ϕ

∗), such that for all
a,b ∈ R

d and t ≥ 0

(ϕ|a|)
∗(t) ≤ Cδ (ϕ|b|)

∗(t) + δ ϕ|a|(|a − b|).(5.7)

If ϕ satisfies Assumption 1, then for any δ > 0 there exists Cδ > 0, which only
depends on δ, ∆2(ϕ), ∆2(ϕ

∗), and (2.7) such that for all a,b ∈ R
d and t ≥ 0

(ϕ|a|)
∗(t) ≤ Cδ (ϕ|b|)

∗(t) + δ |F(a) − F(b)|2.(5.8)

Proof. Due to (2.7) holds (ϕ|a|)
∗(t) ∼ ((ϕ|a|)

∗)′(t) t. Now, inequality (5.7) follows
by (5.6) and an application of Young’s inequality (2.3). On the other hand (5.8)
follows from (5.7) with the help of Lemma 3. �
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