SoSe 2016

Problem Sheet 3

To be discussed on Wednesday, 04.5.2016.

Ex. 1: Let $f \in \mathcal{S}'(\mathbb{R}^n)$, $g \in \mathcal{S}(\mathbb{R}^n)$. Prove that

$$\partial_x^{\alpha}(f*g) = (\partial_x^{\alpha}f)*g = f*(\partial_x^{\alpha}g), \quad \mathcal{F}[f*g] = \mathcal{F}[f]\mathcal{F}[g] \quad (\text{in } \mathcal{S}'(\mathbb{R}^n))$$

for all $\alpha \in \mathbb{N}_0^n$.

Ex. 2: Let $f \in C_0^{\infty}(\mathbb{R})$ be such that $\operatorname{supp} f \subseteq \overline{B_R(0)}$. Prove that \widehat{f} is holomorphic in \mathbb{C} . Moreover, $|\widehat{f}(\xi)| \leq C e^{R|\operatorname{Im} \xi|}$. Conclude that $\operatorname{supp} \widehat{f}$ cannot be compact unless $\widehat{f} \equiv 0$.

Ex. 3: (a) Let s > n/2. Prove that $H^s(\mathbb{R}^n) \hookrightarrow C^0_b(\mathbb{R}^n)$ (continuous embedding¹).

(b) Prove that $\delta_0 \in H^{-s}(\mathbb{R}^n)$ for any s > n/2. *Hint:* Use duality.

(c) Let s > n/2. Prove that $H^s(\mathbb{R}^n)$ is an algebra under pointwise addition and multiplication.

(d) Let $f \in C^{\infty}(\mathbb{C})$, f(0) = 0, and let $u \in H^s(\mathbb{R}^n)$ with s > n/2. Prove that $f \circ u \in H^s(\mathbb{R}^n)$.

Ex. 4: Let $p_j \in S_{1,0}^{m_j}(\mathbb{R}^n \times \mathbb{R}^n)$, $m_j \in \mathbb{R}$, j = 1, 2, and let $p(x,\xi) = p_1(x,\xi)p_2(x,\xi)$ for all $x,\xi \in \mathbb{R}^n$. Prove that $p \in S_{1,0}^{m_1+m_2}(\mathbb{R}^n \times \mathbb{R}^n)$ and that for every $k \in \mathbb{N}$ there exists C_k (depending only on k and n) such that

$$|p|_{k}^{(m_{1}+m_{1})} \leq C_{k}|p|_{k}^{(m_{1})}|p|_{k}^{(m_{2})}.$$

Ex. 5: Let $p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ be a smooth function which is homogeneous of degree $m \in \mathbb{R}$ for $|\xi| \ge 1$, in the sense that

$$p(x, r\xi) = r^m p(x, \xi)$$
 for $|\xi| \ge 1$, $r \ge 1$.

¹i.e. $H^s(\mathbb{R}^n) \subseteq C_b^0(\mathbb{R}^n)$ and $\|f\|_{C_b^0(\mathbb{R}^n)} \leq C_s \|f\|_{H^s(\mathbb{R}^n)}$ for all $f \in C_b^0(\mathbb{R}^n)$. Here we use the notation $H^s(\mathbb{R}^n) := H^{s,2}(\mathbb{R}^n)$.

SoSe 2016	Pseudodifferentialop	eratoren	20.04.2016
-----------	----------------------	----------	------------

Moreover, assume that $\partial_{\xi}^{\alpha} p(\cdot,\xi) \in C_b^{\infty}(\mathbb{R}^n)$ for all $\alpha \in \mathbb{N}_0^n$. Prove that $p \in S_{1,0}^m(\mathbb{R}^n \times \mathbb{R}^n)$.

Ex. 6: (a) Prove that $a \in S_{1,0}^m(\mathbb{R}^n \times \mathbb{R}^n)$ if and only if $\langle \xi \rangle^{-m} a \in S_{1,0}^0(\mathbb{R}^n \times \mathbb{R}^n)$. (b) Let $a \in S_{1,0}^0(\mathbb{R}^n \times \mathbb{R}^n)$ and $f \in C^{\infty}(\mathbb{C})$. Prove that $f \circ a \in S_{1,0}^0(\mathbb{R}^n \times \mathbb{R}^n)$.

Jean-Claude Cuenin