13.04.2016

SOSE 2016 Pseudodifferentialoperatoren

Problem Sheet 1

To be discussed on Wednesday, 20.4.2016.

Ex. 1: Prove Theorem 2.1 from the lecture.

Ex. 2: (a) Let $f \in C^k(\mathbb{R}^n)$ be such that $\partial^{\alpha} f \in L^1(\mathbb{R}^n)$ for $|\alpha| \leq k$. Prove that $|\widehat{f}(\xi)| \leq C(1+|\xi|)^{-k}$ for some constant C (depending on f).

(b) Assume that $(1 + |\cdot|)^k f \in L^1(\mathbb{R}^n)$. Prove that $\widehat{f} \in C^k(\mathbb{R}^n)$.

Ex. 3: Let $f, g \in L^1(\mathbb{R}^n)$. Prove that $\mathcal{F}[f * g](\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$ for all $\xi \in \mathbb{R}^n$.

Ex. 4: (a) Prove that $\mathcal{S}(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$ for all $1 \leq p \leq \infty$.

(b) Prove that $\mathcal{S}(\mathbb{R}^n)$, together with the family of semi-norms $|\cdot|_{m,\mathcal{S}}, m \in \mathbb{N}$, defined by

$$|f|_{m,\mathcal{S}} := \sup_{|\alpha|+|\beta| \le m} \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial_x^{\beta} f(x)|, \quad f \in \mathcal{S}(\mathbb{R}^n),$$
(1)

is a Fréchet space. (*Hint:* You may use without proof that $C_b^k(\mathbb{R}^n)$ is complete for any $k \in \mathbb{N}_0$.)

(c) Show that the semi-norms $|\cdot|'_{\mathcal{S},m}, m \in \mathbb{N}$, defined by

$$|f|'_{\mathcal{S},m} := \sup_{k+|\alpha| \le m} \sup_{x \in \mathbb{R}^n} (1+|x|)^k |\partial_x^{\alpha} f(x)|, \quad f \in \mathcal{S}(\mathbb{R}^n),$$

are equivalent to the semi-norms (1). More precisely, prove that for every $m \in \mathbb{N}$ there exist constants C_m, c_m such that

$$c_m |f|_{\mathcal{S},m} \le |f|'_{\mathcal{S},m} \le C_m |f|_{\mathcal{S},m}.$$

Ex. 5: (a) Prove that for every $\alpha \in \mathbb{N}_0^n$ and $m \in \mathbb{N}$ there are constants $C_{m,\alpha}, C_{m,\alpha'} > 0$ such that

$$|x^{\alpha}f|_{\mathcal{S},m} \le C_{m,\alpha}|f|_{\mathcal{S},m+|\alpha|}, \quad |\partial_x^{\alpha}f|_{\mathcal{S},m} \le C'_{m,\alpha}|f|_{\mathcal{S},m+|\alpha|}$$

DR. J.-C. CUENIN

SoSe 2016 Pseudodifferentialoperatoren	13.04.2016
--	------------

uniformly in $f \in \mathcal{S}(\mathbb{R}^n)$. Conclude that for every $\alpha, \beta \in \mathbb{N}_0^n$ and $m \in \mathbb{N}$, there is a constants $C_{m,\alpha,\beta} > 0$ such that

$$\left|\partial_x^{\alpha}(x^{\beta}f)\right| \le C_{m,\alpha,\beta}|f|_{\mathcal{S},m+|\alpha|+|\beta|}$$

uniformly in $f \in \mathcal{S}(\mathbb{R}^n)$.

(b) Recall that $g \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$ if and only if for each $\alpha \in \mathbb{N}^n_0$ there exist $C_{\alpha} > 0$ and $m(\alpha) \in \mathbb{N}_0$ such that

$$|\partial_x^{\alpha}g(x)| \le C_{\alpha}(1+|x|)^{m(\alpha)}, \quad x \in \mathbb{R}^n.$$
(2)

Let $f \in \mathcal{S}(\mathbb{R}^n)$, $g \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$. Prove that $fg \in \mathcal{S}(\mathbb{R}^n)$, with

 $|fg|_{\mathcal{S},m} \le C_{m,g}|f|_{\mathcal{S},m+\max_{|\delta| \le m} m(\delta)}, \quad m \in \mathbb{N}^n_0,$

where the constant $C_{m,g}$ depends on m and g only. Conclude that the multiplication operator $M_g: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n), (M_g f)(x) := g(x)f(x)$, is bounded. (c) Prove that the differential operator

$$Lu(x) = \sum_{|\alpha| \le m} c_{\alpha}(x) D_x^{\alpha} u(x), \quad u \in \mathcal{S}(\mathbb{R}^n),$$

with $c_{\alpha} \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$, defines a bounded linear operator $L : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$.

Jean-Claude Cuenin