
Chapter 6

Phase transitions in quantum spin
systems

Let A =
S

⇤2F(�)

A
⇤

be the C*-algebra of a quantum spin system.

Definition 17. An interaction on A is a map defined on F(�) such that for X 2 F(�),
�(X) = �(X)⇤ 2 AX . Furthermore, for any non-negative function ⇠ : F(�) ! [0,1),

B⇠ :=

(
� : k�k⇠ := sup

x2�

X
X3x

k�(X)k⇠(X) < 1
)
.

is a Banach space of interactions. Finally, an N -body interaction is defined by the condition
�(X) = 0 if |X| 6= N .

In the case of a N body interaction, one writes �(x
1

, . . . , xN ), xi 2 �. A simple example is
⇠(X) = 1 implying an integrable decay. We shall use the following: Let D be the maximal
degree in � and diam(X) := max{d(x, y) : x, y 2 X} for any X 2 F(�). For any � > 0, denote

B� := B⇠
�

, ⇠�(X) := |X|D2|X|e�diam(X).

Now, for ⇤ 2 F(�), the Hamiltonian is the sum of interactions within ⇤, namely

H
⇤

:=
X
X⇢⇤

�(X)

and for A 2 A,
⌧�,⇤
t (A) = eitH⇤Ae�itH

⇤

is a strongly continuous one parameter group of *-automorphisms of A. Let {⇤n}n2N be a
sequence in F(�) such that ⇤n ⇢ ⇤m is n  m and for any x 2 � there exists n

0

such that
x 2 ⇤n for all n � n

0

.

Theorem 40. Let � > 0 and � 2 B�. There exists a strongly continuous one parameter group
of *-automorphisms {⌧�t : t 2 R} of A such that, for any A 2 A,

lim
n!1 k⌧�,⇤

n

t (A)� ⌧�t (A)k = 0,

for all t 2 R. The convergence is uniform for t in a compact set and the limit is independent of
the sequence {⇤n}n2N.
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The theorem is an immediate consequence of the Lieb-Robinson bound : For � 2 B� there is
v� > 0, such that for any A 2 AX , B 2 AY , and X [ Y 2 ⇤,

k[⌧�,⇤
t (A), B]k  CkAkkBkmin{|X|, |Y |} exp(��(d(X,Y )� v�|t|))

where the constant C is independent of ⇤. This is a propagation estimate: up to exponentially
small corrections, the support of A grows linearly with time, with velocity v�. Since, for n � m
with A 2 A

⇤

,⇤ ⇢ ⇤m,

⌧�,⇤
n

t (A)� ⌧�,⇤
m

t (A) =

Z t

0

d

ds

⇣
⌧�,⇤

n

s � ⌧�,⇤
m

t�s (A)
⌘
ds =

Z t

0

⌧�,⇤
n

s (��,⇤
n � ��,⇤

m)⌧�,⇤
m

t�s (A)ds

and ��,⇤
n � ��,⇤

m =
P

X:X\(⇤
n

\⇤
m

) 6=;[�(X), ·], we have

k⌧�,⇤
n

t (A)� ⌧�,⇤
m

t (A)k 
Z t

0

X
x2⇤

n

\⇤
m

X
X3x

k[�(X), ⌧�,⇤
m

t�s (A)]kds

 C|⇤|kAk
X

x2⇤
n

\⇤
m

X
X3x

k�(X)k exp(��(d(X,⇤)� v�|t|)

 C̃|⇤|kAkk�k� exp(��d(� \ ⇤m,⇤)) exp(�v�|t|).

This vanishes uniformly as m ! 1 for t in a compact interval, and {⌧�,⇤
n

t (A)}n2N is Cauchy.
A typical example is the Heisenberg models. Here � = Zd, and Hx = C2s+1 is the rep-

resentation space of SU(2) with generator S1, S2, S3. The Heisenberg Hamiltonian is given
by

H
⇤,J,h =

X
{x,y}2⇤⇥⇤

3X
i=1

J i
xyS

i
xS

i
y � h

X
x2⇤

S3

x, h > 0,

with some decay on |J i
xy| in d(x, y). This defines a translation invariant Hamiltonian if J i

xy = J i

for all {x, y} 2 �⇥ � and an SU(2)-invariant interaction if J i
xy = Jxy for i = 1, 2, 3.

6.1 The theorem of Mermin & Wagner

We now apply Theorem 39 to the concrete case of low dimensional quantum spin systems and
obtain a general form of the theorem of Mermin and Wagner. Note that this only one version
of the theorem, namely about the absence of symmetry breaking, which does not necessarily
exclude other types of phase transitions. The original proof in the generality given here is due
to Fröhlich-Pfister. For simplicity, we consider Hx = H for all x 2 �.

LetG be a compact connected Lie group and letG 3 g 7! Ug be a strongly continuous unitary

representation of G on H. This induces a group of *-automorphisms of A{x} by ↵{x}
g (A) =

U⇤
gAUg, and the tensor product representation ⌦x2⇤Ug induces the tensor action ↵⇤

g on A
⇤

,
for any ⇤ 2 F(�). Hence, this defines a strongly continuous group of *-automorphisms on A

loc

which extends by continuity to {↵g : g 2 G} on A. Note that the complete system is rotated by
the same element g, a ‘global gauge transformation’. A typical example is H = C2s+1 carrying
the spin-s representation of G = SU(2), namely Ug = exp(2⇡ig · S), where g is an element of
the unit ball and S is the vector of spin matrices.

Theorem 41. Let A be as above with � = Z2, {↵g : g 2 G} the action of the compact connected
Lie group G, and � a G-invariant two-body interaction, namely

↵g(�(x, y)) = �(x, y), for all x, y 2 Z2, g 2 G.
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If

sup
x2Z2

X
y2Z2

k�(x, y)kd(x, y)2 < 1

then for any 0 < � < 1 and any (⌧�,�)-KMS state !,

! � ↵g = !, for all g 2 G.

For a translation and rotation invariant interaction, the sharp condition is k�(x, y)k  Cd(x, y)�4:
there are models with an interaction decaying as d(x, y)�4+✏ for which phase transitions are
known to occur.

Proof. We consider a one dimensional subgroupH of G, and since G is compact, H ' R/Z = S1.
We consider the generator S = S⇤ 2 L(H), namely U� = exp(i�S) for � 2 [0, 2⇡).

For m 2 N, let ⇤m = [�m,m] \ Z2. Let � be fixed, and let 'm : Z2 ! [0, 2⇡) be given by

'm(x) =

8><>:
� x 2 ⇤m

�(2�max{|x
1

|, |x
2

|}/m) x = (x
1

, x
2

) 2 ⇤
2m \ ⇤m

0 otherwise

and finally

U�(m) :=
O

x2⇤
2m

Ux('m(x)) 2 A
⇤

2m

⇢ D(�),

which slowly interpolates between a full rotation on ⇤m and no rotation outside of ⇤
2m.

Let A 2 A
loc

and m
0

:= min{m 2 N : A 2 A
⇤

m

}. We have U�(m)⇤AU�(m) = ↵�(A) for all
m � m

0

, so that Assumption (A) of Theorem 39 holds. We now claim that Assumption (Bii)
also holds. Noting that for A 2 A

⇤

, �(A) = i
P

{x,y}\⇤ 6=;[�(x, y), A], we compute

U�(m)⇤�(U�(m)) = i
X

{x,y}2Z2\N
m

U�(m)⇤�(x, y)U�(m)� �(x, y)

where Nm = {{x, y} : x, y 2 ⇤m or x, y 2 Z2 \⇤
2m} by the symmetry of the interaction and the

support of Um(�). Denote U�(m)⇤�(U�(m)) + U�(m)�(U�(m)⇤) = i
P

x,y �m(x, y). Note that

'm(x)Sx+'m(y)Sy =
'm(x) + 'm(y)

2
(Sx+Sy)+

'm(x)� 'm(y)

2
(Sx�Sy) := Em(x, y)+Om(x, y)

with [Em(x, y), Om(x, y)] = 0 since [Sx, Sy] = 0. Since, moreover, Em(x, y) generates the same
rotation by ('m(x) + 'm(y))/2 at both x and y, and by the symmetry of the interaction,

U�(m)⇤�(x, y)U�(m) = e�iO
m

(x,y)e�iE
m

(x,y)�(x, y)eiEm

(x,y)eiOm

(x,y) = e�iO
m

(x,y)�(x, y)eiOm

(x,y).

which has the commutator expansion

U�(m)⇤�(x, y)U�(m)� �(x, y) =
X
k�1

ik

k!
adkO

m

(x,y)(�(x, y)).

Noting that U�(m)�(U�(m)⇤) = U��(m)⇤�(U��(m)) and Om(x, y) is odd under � ! ��, all
odd terms in the series of �m(x, y) cancel, yielding the estimate

k�m(x, y)k  2
X
k�1

1

(2k)!

1

22k
|'m(x)� 'm(y)|2kkad2kS

x

�S
y

(�(x, y))k.
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It remains to observe that |'m(x)� 'm(y)|  |�|min{1, d(x, y)/m}, so that

|'m(x)� 'm(y)|2k  |�|2k
✓
d(x, y)

m

◆
2

and to carry out the spatial sum to obtainX
{x,y}2Z2\N

m

k�m(x, y)k  4e2kSk|�|

m2

X
x2⇤

2m

X
y2Z2

k�(x, y)kd(x, y)2 =: M < 1

which is finite by assumption after estimating the sum by (2m+ 1)2 supx2Z2

P
y2Z2

(· · · ).
For any n 2 N, we claim that ! � ↵⇡/2n = !. This follows from a recursive application of

Theorem 39 starting with the observation that ↵2

⇡ = id. Finally, the set D := {� 2 S1 : � =PN
n=0

an(⇡/2n), an 2 Z, N 2 N} is dense in S1. For any A 2 A, the function � 7! ⇠A(�) :=
!(↵�(A)�A) is continuous and ⇠A(�) = 0 if � 2 D. Hence ⇠A(�) = 0 for all � 2 S1.

Possible extensions following the same ideas with adapted assumptions include one-dimensional
models, short range N -body interactions, and non-translation invariant models with possibly
di↵erent representations of G at di↵erent points of �.

6.2 Existence of a phase transition in the Heisenberg model

In this section, we shall prove the existence of a phase transition at positive temperature for the
antiferromagnetic Heisenberg model, following the original proof of Dyson-Lieb-Simon (1978).
The proof relies on a spectral property of the Hamiltonian, reflection positivity which fails for the
ferromagnetic model. Although a proof of phase transition in that case is still an open problem,
recent progress has been made by Corregi, Giuliani and Seiringer (2013), who compute the free
energy at low temperature.

We consider ⇤ := {�L/2, · · · , L/2}d, L 2 2N understood with periodic boundary conditions,
and let E

⇤

be the set of nearest neighbour pairs. The translation invariant, spin-S Heisenberg
Hamiltonian is written as

H(u)
⇤

:= �2
X

{x,y}2E
⇤

�
S1

xS
1

y + uS2

xS
2

y + S3

xS
3

y

�
, u 2 [�1, 1].

The case u = 1 is the ferromagnet, u = 0 the ‘XY model’, while u = �1 locally unitarily
equivalent to the antiferromagnet on a bipartite lattice. Indeed, assume that ⇤ = ⇤A [ ⇤B,
with {x, y} 2 E

⇤

implies x 2 ⇤A, y 2 ⇤B or x 2 ⇤B, y 2 ⇤A and note that local rotations by
⇡ along the 2 axis, generated by S2

x, yield exp(�i⇡S2

x)S
j
x exp(i⇡S2

x) = (�1)jSj
x. It follows that

conjugation U⇤
⇤

H(�1)

⇤

U
⇤

with the unitary U
⇤

:=
Q

x2⇤
A

exp(i⇡S2

x) yields the antiferromagnet.

Given the Gibbs state !(u)
�,⇤, we are interested proving the existence of long-range order

lim
|x|!1

lim inf
⇤!Zd

!(u)
�,⇤(S

3

0

S3

x) > 0, d � 3, (6.1)

for � su�ciently large1. This implies for the the magnetisation M
⇤

:= |⇤|�1

P
x2⇤ S3

x that

lim inf
⇤!Zd

!(u)
�,⇤(M

2

⇤

) > 0, d � 3, � su�ciently large

1

In the case of the antiferromagnet,

(�1)

d(0,x)!antiferro

�,⇤

(S3

0

S3

x

) = (�1)

d(0,x)!(�1)

�,⇤

(U⇤
⇤

S3

0

S3

x

U
⇤

) = !(�1)

�,⇤

(S3

0

S3

x

)

which remains uniformly bounded away from 0. This is called ‘Néel ordering’.
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which corresponds to the intuition of macroscopic fluctuations in the bulk magnetisation and the
presence of multiple phases. In fact, a little more abstract nonsense would show that long-range
order is inconsistent with the invariance of any extremal KMS state.

Theorem 42. Consider H(u)
⇤

for u 2 [�1, 0] and spin S. Then,

1

|⇤|
X
x2⇤

!(u)
�,⇤(S

3

0

S3

x) �
1

3
S(S + 1)� 1p

2|⇤|
X

k2⇤⇤\{0}

s
E(u)(k)

E(k)
� 1

2�|⇤|
X

k2⇤⇤\{0}

1

E(k)
(6.2)

where ⇤⇤ is the lattice dual to ⇤ and

E(k) := 2
dX

i=1

(1�cos(ki)), E(u)(k) :=
dX

i=1

(1�u cos(ki))!
(u)
�,⇤(S

1

0

S1

e
i

)+(u�cos(ki))!
(u)
�,⇤(S

2

0

S2

e
i

).

Note that for any state ⌫, |⌫(Sj
xS

j
y)|  ⌫((Sj

x)2)1/2⌫((S
j
y)2)1/2  ⌫(~S2) = S(S + 1) so that

|E(u)(k)|  4dS(S + 1). Furthermore, 1 � cos(x) = (1/2)x2 + O(x4) as x ! 0 so that E(k)�1

is integrable if d � 3, and E(k)�1/2 is integrable if d � 2. Hence, if d � 3, there exist
0 < Cd,d < 1 such that

lim inf
⇤!Zd

1

|⇤|
X
x2⇤

!(u)
�,⇤(S

3

0

S3

x) �
1

3
S(S + 1)� d

p
S(S + 1)� Cd

�

and the lower bound is strictly positive for S large enough and all � � �c = �c(d, S). In turn,
this implies long-range order, (6.1). Note that improved estimates allow to extend the statement
to d � 3 and all S 2 (1/2)N.

Let v : Zd ! R and h := �v, namely hx :=
P

y:{x,y}2E
⇤

(vy � vx). In l2(⇤),

hf,��gi =
X

{x,y}2E
⇤

(fy � fx)(gy � gx),

and in particular hv,��vi = khk2.
Let

H(u)
⇤

(v) := H(u)
⇤

�
X
x2⇤

hxS
3

x,

to which we associate the partition function Z(u)
�,⇤(v) = Tr

⇣
exp(��H(u)

⇤

(v))
⌘
and

Z̃(u)
�,⇤(v) := Z(u)

�,⇤(v)e
� 1

4

�hv,��vi

Let R be a reflection map of ⇤ and let ⇤ = ⇤
1

[ ⇤
2

with ⇤
2

= R⇤
1

. Furthermore, v
1

:= v �
⇤

1

, v
2

:= v �
⇤

2

and we shall write v = v
1

|v
2

.
We now exhibit the full structure of the proof.

Lemma 43. If u  0, then for any reflection R,

Z̃(u)
�,⇤(v1|v2)2  Z̃(u)

�,⇤(v1|Rv
1

)Z̃(u)
�,⇤(Rv

2

|v
2

)

Lemma 44. If u  0,

Z(u)
�,⇤(v)  Z(u)

�,⇤(0)e
1

4

�hv,��vi
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Lemma 45. If u  0, and for any k 2 ⇤⇤ \ {0},

\
(S3

0

, S3· )
(u)
� (k)  (2�E(k))�1

where (·, ·)� denotes Duhamel’s two-point function,

(A,B)(u)� :=
1

Z(u)
�,⇤

Z
1

0

Tr
⇣
e��sH

(u)

⇤ Ae��(1�s)H
(u)

⇤ B
⌘
ds

Lemma 46. For any k 2 ⇤⇤ \ {0} such that
\

(S3

0

, S3

x)
(u)
� (k)  (2�E(k))�1,

\
!(u)
�,⇤(S

3

0

S3· )(k) 
s

E(u)(k)

2E(k)
+

1

2�E(k)
.

Proof of Theorem 42. Let C
⇤

(x) := !(u)
�,⇤(S

3

0

S3

x). We have

1

|⇤|
X
x2⇤

!(u)
�,⇤(S

3

0

S3

x) = cC
⇤

(0) = C
⇤

(0)�
X

k2⇤⇤\{0}
cC
⇤

(k).

Furthermore, we note that C
⇤

(0) = !(u)
�,⇤((S

3

0

)2) = (1/3)!(u)
�,⇤(

~S2) = (1/3)S(S + 1), which
concludes the proof with Lemma 46.

We should remark that in finite volume, the Gibbs state has all symmetries of the Hamil-

tonian since its density matrix is a function of the Hamitonian. In particular, !(u)
�,⇤(S

3

0

) = 0

or !(u)
�,⇤(M⇤

) = 0 and their respective limits likewise. The limiting state must be a non-trivial
superposition of extremal KMS states which break the SU(2) symmetry. Here, we consider

m
sp

:= lim inf
⇤!Zd

!(u)
�,⇤(|M⇤

|), namely the spontaneous magnetisation. One could also add a

‘transverse magnetic field’ to the Hamiltonian, namely h
P

x2⇤ S3

x and study either the residual

magnetisation, m
res

:= limh!0

+ lim inf
⇤!Zd

!(u)
�,h,⇤(M⇤

), namely whether the system ‘remem-
bers’ an external magnetic field which breaks the symmetry. It turns out that m

res

� m
sp

and

m
sp

= 0 if and only if lim inf
⇤!Zd

!(u)
�,⇤(M

2

⇤

) = 0, see exercises.

Proof of Lemma 43. Let H = K⌦K, with dimK < 1, and let A,B,C
1

, . . . Cl, D1

, . . . Dl 2 L(K)
be real matrices and h

1

, . . . hl 2 R. Then,

Tr
h
eA⌦1+1⌦B�P

l

k=1

(C
k

⌦1�1⌦D
k

�h
k

)

2

i
2

 Tr
h
eA⌦1+1⌦A�P

l

k=1

(C
k

⌦1�1⌦C
k

)

2

i
Tr

h
eB⌦1+1⌦B�P

l

k=1

(D
k

⌦1�1⌦D
k

)

2

i
(6.3)

Indeed (in the case l = 1), we first apply Trotter’s product formula

eA⌦1+1⌦B�(C⌦1�1⌦D�h)2 = lim
n!1

⇣
e

1

n

A⌦1e
1

n

1⌦Be�
1

n

(C⌦1�1⌦D�h)2
⌘n

and the operator identity

e�M2

= (4⇡)�1/2
Z
R
e�s2/4eisMds
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to write the trace as

(4⇡)�n/2
Z

ds
1

· · · dsnTr
h⇣

e
1

n

A⌦1e
i

s

1p
n

C⌦1 · · · e 1

n

A⌦1e
i

s

np
n

C⌦1

⌘i
Tr

h⇣
e

1

n

1⌦Be
i

s

1p
n

1⌦D · · · e 1

n

1⌦Be
i

s

np
n

1⌦D
⌘i

e
i

h

P
n

i=1

s

ip
n e�

P
n

i=1

s

2

i

4

where we noted that matrices acting on di↵erent factors commute, that Tr(M ⌦ 1)(1 ⌦ N) =
Tr(M ⌦ 1)Tr(1 ⌦ N), and the reality of the matrices to take the complex conjugate (not the
adjoint) without reversing the order of the matrices. Cauchy-Schwarz’s inequality for the s-
integrals now yields

| · |2  1

(4⇡)n/2

Z
Tr

nY
i=1

e
1

n

A⌦1e
i

s

ip
n

C⌦1

Tr
nY

i=1

e
1

n

1⌦Ae
i

s

ip
n

1⌦C
e�

P
n

i=1

s

2

i

4 · 1

(4⇡)n/2

Z
(A $ B).

Reversing the above steps yields the claim.
We now write the Heisenberg Hamiltonian as

H(u)
⇤

(v) =
X

{x,y}2E
⇤

�
(S1

x � S1

y)
2 + (

p
uS2

x �
p
uS2

y)
2 + ((S3

x + vx/2)� (S3

y + vy/2))
2

�
+ E

⇤

� 1

4

X
{x,y}2E

⇤

(vx � vy)
2.

where E
⇤

= �d
P

x2⇤
�
(S1

x)
2 + u(S1

x)
2 + (S3

x)
2

�
, and the remaing term is removed in the defi-

nition of Z̃(u)
�,⇤(v). The lemma now follows from (6.3) with H

⇤

= H
⇤

1

⌦H
⇤

2

and

A = ��
X

{x,y}2E
⇤

1

�
(S1

x � S1

y)
2 + (

p
uS2

x �
p
uS2

y)
2 + ((S3

x + vx/2)� (S3

y + vy/2))
2

�� �E
⇤

1

B = ��
X

{x,y}2E
⇤

2

�
(S1

x � S1

y)
2 + (

p
uS2

x �
p
uS2

y)
2 + ((S3

x + vx/2)� (S3

y + vy/2))
2

�� �E
⇤

2

C1

i =
p

�S1

x
i

, D1

i =
p

�S1

y
i

, C2

i =
p

�uS2

x
i

, D1

i =
p
�uS2

y
i

,

C3

i =
p

�(S3

x
i

+ vx
i

/2), D3

i =
p

�(S3

y
i

+ vy
i

/2)

where {xi, yi} denote the edges crossing the boundary between ⇤
1

and ⇤
2

. Note that S1, S3 are
real and S2 is imaginary, so that the above matrices are real for u  0.

Proof of Lemma 44. We prove the equivalent statement Z̃(u)
�,⇤(v)  Z̃(u)

�,⇤(0), which can be inter-

preted as a variational problem, namely v = 0 is a maximiser of the functional v 7! Z̃(u)
�,⇤(v).

Since Z̃(u)
�,⇤ : l1(⇤) ! R is continuous, bounded and limkvk1!1 Z̃(u)

�,⇤(v) = 0, there is a max-

imiser. Let v̄ be a maximiser and Z̄ = Z̃(u)
�,⇤(v̄). If Z̃(u)

�,⇤(v̄1|Rv̄
1

) < Z̄, then Lemma 43 yields

Z̄2 < Z̄Z̃(u)
�,⇤(Rv̄

2

|v̄
2

), namely Z̃(u)
�,⇤(Rv̄

2

|v̄
2

) > Z̄, which is a contradiction. Hence, if v̄ is a max-
imiser, so is v̄

1

|Rv̄
1

. Since this holds for any reflection R, this implies inductively that the con-

stant field is a maximiser, and in fact any constant field is so, since Z̃(u)
�,⇤(v+const) = Z̃(u)

�,⇤(v).

Proof of Lemma 45. Lemma 44 implies that @2/@�2Z̃(u)
�,⇤(�v)|�=0

 0, or equivalently

⇣
Z(u)
�,⇤(0)

⌘�1 @2

@�2

Z(u)
�,⇤(�v)

����
�=0

 �

2
hv,��vi.
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Since Z(u)
�,⇤(�v) = Tr exp(��(H(u)

⇤

��hS3,�vi)), Duhamel’s formula (exp(F (t))0 =
R
1

0

exp(sF )F 0 exp((1�
s)F )ds yields

@2

@�2

Z(u)
�,⇤(�v)

����
�=0

= �2

Z
1

0

Tr
⇣
e��sH

(u)

⇤ hS3,�vie��(1�s)H
(u)

⇤ hS3,�vi
⌘
ds,

namely

2�
�hS3,��vi, hS3,��vi�(u)

�
 hv,��vi,

for any field v. Let vx(k) = cos(kx), k 2 ⇤⇤ \ {0} for which ��v(k) = E(k)v(k). Hence,

2�E(k)
X
x,y2⇤

cos(kx) cos(ky)(S3

x, S
3

y)
(u)
� 

X
x2⇤

cos2(kx).

It remains to use the translation invariance of (S3

x, S
3

y)
(u)
� to express the right hand side asX

x

cos2(kx)
X
z

cos(kz)(S3

0

, S3

z )
(u)
� +

X
x

cos(kx) sin(kz)
X
z

sin(kz)(S3

0

, S3

z )
(u)
� .

The second term vanishes as (S3

0

, S3

z )
(u)
� = (S3

z , S
3

0

)(u)� . Similarly, the sum over z in the first one

equals the Fourier transform of (S3

0

, S3· )
(u)
� , which yields the claim.

Proof of Lemma 46. This follows from ‘Falk-Bruch’s inequality’, namely

!(u)
�,⇤(A

⇤A+AA⇤) 
q
(A⇤, A)(u)� !(u)

�,⇤([A
⇤, [H,A]) + 2(A⇤, A)(u)�

applied to A = |⇤|�1

P
x exp(�ikx)S3

x. Indeed

!(u)
�,⇤(A

⇤A+AA⇤) = 2
\

!(u)
�,⇤(S

3

0

, S3· )
(u)
� (k)

!(u)
�,⇤([A

⇤[H,A]) = 4�E(u)(k)

(A⇤, A)(u)� =
\

(S3

0

, S3· )
(u)
� (k)

and we conclude by the bound on
\

(S3

0

, S3· )
(u)
� (k).
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