Problem Sheet 6

Hand-in deadline: 28.06.2017 before 12:15 in the designated MSP box (1st floor, next to the library).

Ex. 1 [Structural stability]: Consider two self-adjoint operators H, V on the Hilbert space \mathcal{H} , such that $V \in \mathcal{L}(\mathcal{H})$ and $\exp(-H)$ is trace-class. Let τ_V^t , $t \in \mathbb{R}$, be the automorphism of the observable algebra $\mathcal{A} = \mathcal{L}(\mathcal{H})$ defined by

$$\tau_V^t(A) = \mathrm{e}^{\mathrm{i}t(H+V)}A\mathrm{e}^{-\mathrm{i}t(H+V)}$$

Let $\omega_{\beta,V}, \beta \in (0,\infty)$ be the Gibbs state associated with H+V.

The goal of this exercise is to derive a rigorous expansion of $\omega_{\beta,V}$ with respect to V,

$$\omega_{\beta,V}(A) = \omega_{\beta,0}(A) + \sum_{n=1}^{\infty} \nu_n(A), \qquad \beta \|V\| < \ln 2, \tag{1}$$

using the interaction picture propagator

$$U_V(t) = \mathrm{e}^{\mathrm{i}t(H+V)}\mathrm{e}^{-\mathrm{i}tH}.$$

1. Prove that $\exp(-\beta(H+V))$ is a trace-class operator so that $\omega_{\beta,V}$ is well-defined

Solution: Let $(\psi_k)_{k\in\mathbb{N}}$ be an ONB of \mathcal{H} . By the Golden-Thompson inequality (applied to operators on the finite-dimensional Hilbert space span $\{\psi_1, \ldots, \psi_N\}$), we have

$$\sum_{k=1}^{N} \langle \psi_k, e^{-\beta(H+V)} \psi_k \rangle \le \sum_{k=1}^{N} \langle \psi_k, e^{-\beta H} e^{-\beta V} \psi_k \rangle$$

for any $N \in \mathbb{N}$. Since $e^{-\beta H} \in \mathcal{J}_1(\mathcal{H})$ and $e^{-\beta V} \in \mathcal{L}(\mathcal{H})$, it follows that $e^{-\beta H}e^{-\beta V} \in \mathcal{J}_1(\mathcal{H})$. Hence, letting $N \to \infty$, we get

$$0 \le \operatorname{Tr}(e^{-\beta(H+V)}) \le \operatorname{Tr}(e^{-\beta H}e^{-\beta V}) < \infty.$$

Since $e^{-\beta(H+V)} \ge 0$, it is in $\mathcal{J}_1(\mathcal{H})$.

2. Check the following basic relations:

$$e^{it(H+V)} = U_V(t)e^{itH};$$

$$\tau_V^t(A) = U_V(t)\tau_0^t(A)U_V(t)^{-1};$$

$$U_V(t)^{-1} = U_V(t)^* = \tau_0^t(U_V(-t));$$

$$U_V(t+s) = U_V(s)\tau_0^s(U_V(t));$$

$$\dot{U}_V(t) = iU_V(t)\tau_0^t(V), \quad U_V(0) = 1.$$

Solution: Straightforward computation.

3. Use the fact that Dyson's expansion

$$U_V(t) = 1 + \sum_{k=1}^{\infty} (it)^k \int_{0 \le s_1 \le \dots \le s_k \le 1} \tau^{ts_1}(V) \cdots \tau^{ts_k}(V) \, ds_1 \cdots ds_k \quad (2)$$

is uniformly convergent on compact sets of $\mathbb C$ to show that

$$\omega_{\beta,V}(A) = \frac{\omega_{\beta,0}(AU_V(i\beta))}{\omega_{\beta,0}(U_V(i\beta))}.$$
(3)

Solution: We assume that V is analytic for τ_t (otherwise it is not clear how $U_V(i\beta)$ is defined). Then the uniform convergence of the series (2) on compact sets implies that $U_V(\cdot)$ has an analytic continuation to \mathbb{C} . A straightforward calculation gives

$$\omega_{\beta,V}(A) = \frac{\operatorname{Tr}(e^{-\beta(H+V)}A)}{\operatorname{Tr}(e^{-\beta(H+V)})} = \frac{\operatorname{Tr}(U_V(i\beta)e^{-\beta H}A)}{\operatorname{Tr}(U_V(i\beta)e^{-\beta H})} = \frac{\omega_{\beta,0}(AU_V(i\beta))}{\omega_{\beta,0}(U_V(i\beta))}$$

We used cyclicity of the trace and the fact that the normalizing factors cancel in the last identity.

4. Use Golden-Thomson's inequality

$$\operatorname{Tr}\left(\mathbf{e}^{A+B}\right) \leq \operatorname{Tr}\left(\mathbf{e}^{A}\mathbf{e}^{B}\right)$$

and Duhamel's formula to show that for any $\alpha \in \mathbb{C}$,

$$|\omega_{\beta,0}(U_{\alpha V}(\mathbf{i}\beta)) - 1| \le e^{|\alpha\beta| ||V||} - 1.$$
(4)

Solution: Without loss of generality we may assume $\text{Tr}(e^{-\beta H}) = 1$. Then

$$\omega_{\beta,0}(U_{\alpha V}(\mathbf{i}\beta)) - 1 = \mathrm{Tr}((U_V(\mathbf{i}\beta) - \mathbf{1})e^{-\beta H}).$$

Using Duhamel's formula, we have

$$(U_V(\mathbf{i}\beta) - \mathbf{1})e^{-\beta H} = -\int_0^\beta e^{-s(H+V)}Ve^{(s-\beta)H}ds,$$

so that

$$\begin{aligned} |\operatorname{Tr}((U_V(\mathrm{i}\beta) - \mathbf{1})e^{-\beta H})| &\leq \int_0^\beta |\operatorname{Tr}(e^{-s(H+V)}Ve^{(s-\beta)H})| ds \\ &\leq ||V|| \int_0^\beta ||e^{(s-\beta)H}|| \operatorname{Tr}(e^{-s(H+V)}) ds \\ &\leq ||V|| \int_0^\beta \operatorname{Tr}(e^{-sH}e^{-sV}) ds \\ &\leq ||V|| \int_0^\beta \operatorname{Tr}(e^{-sH})e^{s||V||} ds \\ &\leq ||V|| \int_0^\beta e^{s||V||} ds \\ &\leq ||V|| \int_0^\beta e^{s||V||} ds \\ &= e^{\beta||V||} - 1 \end{aligned}$$

The same of course holds for αV .

5. Use (3) and (4) to prove that $\alpha \mapsto \omega_{\beta,\alpha V}(A)$ is analytic at 0 with

$$\omega_{\beta,\alpha V}(A) = \sum_{n=0}^{\infty} \alpha^n \nu_n(A), \qquad |\alpha| < \frac{\log 2}{\beta \|V\|}.$$
 (5)

Solution: Analyticity of $\alpha \mapsto U_{\alpha V}(i\beta)$ follows from (2). Since by (4),

$$|\omega_{\beta,\alpha V}(U_{\alpha V}(i\beta))| \ge 1 - |\omega_{\beta,\alpha V}(U_{\alpha V}(i\beta)) - 1| \ge 1 - (e^{|\alpha|\beta ||V||} - 1),$$

the claim follows.

6. Use (2,3,5) to conclude that

$$\nu_0(A) = \omega_{\beta,0}(A),$$

$$\nu_1(A) = -\beta \int_0^1 \left[\omega_{\beta,0} \left(A \tau^{i\beta s}(V) \right) - \omega_{\beta,0}(A) \omega_{\beta,0} \left(\tau^{i\beta s}(V) \right) \right] ds.$$

Solution: This follows from analyticity and a first order Taylor expansion.

13.06.2017

Ex. 2 [Absence of symmetry breaking in 1D]: Consider a one-dimensional quantum spin chain. For each $x \in \mathbb{Z}$, let $\mathcal{H}_x \simeq \mathbb{C}^n$ for a fixed $n \ge 2$, and let $\mathcal{A}_{\mathbb{Z}}$ be the usual quasi-local algebra built upon $\mathcal{A}_{\{x\}} = \mathcal{L}(\mathcal{H}_x)$, namely:

$$\mathcal{A}_{\Lambda} = \otimes_{x \in \Lambda} \mathcal{A}_{\{x\}}, \qquad \mathcal{A}_{\mathrm{loc}} = igcup_{\Lambda \subset \mathbb{Z} : |\Lambda| < \infty} \mathcal{A}_{\Lambda}, \qquad \mathcal{A}_{\mathbb{Z}} = \overline{\mathcal{A}_{\mathrm{loc}}}^{\|\cdot\|}.$$

Let $(\Lambda_m)_{m \in \mathbb{N}}$ be the sequence $\Lambda_m = [-m, m] \cap \mathbb{Z}$. Consider:

• unitary elements $U_x \in \mathcal{A}_{\{x\}}$ and the associated map

$$\alpha_{\Lambda}(A) := \left(\otimes_{x \in \Lambda} U_x^* \right) A \left(\otimes_{y \in \Lambda} U_y \right), \qquad A \in \mathcal{A}_{\Lambda};$$

• the local Hamiltonian $H_{\Lambda} \in \mathcal{A}_{\Lambda}$, given by a two-body interaction

$$H_{\Lambda} = \sum_{x,y \in \Lambda} J(x,y) \Phi_{x,y} \,,$$

where $\Phi_{x,y} \in \mathcal{A}_{\{x\} \cup \{y\}}$ and $\|\Phi_{x,y}\| \leq 1$; we shall assume that the associated dynamics τ^t exists on $\mathcal{A}_{\mathbb{Z}}$.

1. Prove that there exists an automorphism α of $\mathcal{A}_{\mathbb{Z}}$ such that

$$\lim_{m \to \infty} \alpha_{\Lambda_m}(A) = \alpha(A), \qquad A \in \mathcal{A}_{\mathbb{Z}}.$$

Solution: Since \mathcal{A}_{loc} is dense in $\mathcal{A}_{\mathbb{Z}}$ (by definition) it is sufficient to prove the existence of the limit for $A \in \mathcal{A}_{\text{loc}}$. Hence let $A \in \mathcal{A}_{\text{loc}}$ and let $\epsilon > 0$ be arbitrary. There exists Λ^* such that $A \in \mathcal{A}_{\Lambda^*}$. Thus, if m_0 is so large that $[-m_0, m_0] \supset \Lambda^*$, it follows that

$$\alpha_{\Lambda_m}(A) = \left(\otimes_{x \in \Lambda^*} U_x^* \right) A \left(\otimes_{y \in \Lambda^*} U_y \right), \quad m \ge m_0.$$

Hence the sequence becomes constant for large m and the limit trivially exists.

2. Prove that if $\alpha(\Phi_{x,y}) = \Phi_{x,y}$ for all $(x, y) \in \mathbb{Z} \times \mathbb{Z}$, then α is a symmetry of the dynamics.

Solution:

3. Finally, assume that there exists $C < \infty$ such that

$$\sup_{x \in \mathbb{Z}} \sum_{y \in \mathbb{Z}} |J(x, y)| |x - y| = C.$$

Prove that if ω is a (τ, β) -KMS state for a $\beta \in (0, \infty)$, then $\omega \circ \alpha = \omega$. Solution: 1. First, we note that for any $\Lambda \in \mathcal{F}(\mathbb{Z})$, the map α_{Λ} is a *-automorphism of \mathcal{A}_{Λ} . Indeed, for any $A, B \in \mathcal{A}_{\Lambda}$,

- (a) Clearly, $\alpha_{\Lambda}(A + \lambda B) = \alpha_{\Lambda}(A) + \lambda \alpha(B)$
- (b) Since $\otimes_{x \in \Lambda} U_x$ is unitary, $\alpha_{\Lambda}(AB) = (\otimes_{x \in \Lambda} U_x)^* A(\otimes_{x \in \Lambda} U_x)(\otimes_{x \in \Lambda} U_x)^* B(\otimes_{x \in \Lambda} U_x) = \alpha_{\Lambda}(A)\alpha_{\Lambda}(B)$
- (c) Again by unitarity, we have that $\|\alpha_{\Lambda}(A)\| = \|A\|$
- (d) Finally, $\alpha_{\Lambda}(A^*) = \alpha_{\Lambda}(A)^*$

In particular, α_{Λ} is a bounded linear map on the dense subalgebra \mathcal{A}_{loc} with bound 1. Hence, it extends to a bounded linear map with the same bound on $\mathcal{A}_{\mathbb{Z}} = \overline{\mathcal{A}_{\text{loc}}}$. In particular, if $A \in \mathcal{A}_{\Lambda}$, there is m_0 such that $\forall m \geq m_0, \Lambda_m \supset \Lambda$ so that $\alpha_{\Lambda_m}(A) = \alpha_{\Lambda}(A) = \alpha(A)$ whenever $m \geq m_0$ and hence the convergence.

Points 2 and 4 above follow by density. We consider 4, point 2 follows similarly. For any $A \in \mathcal{A}_{\mathbb{Z}}$, there is a sequence $A_n \in \mathcal{A}_{\text{loc}}$ and $\Lambda^{(n)} \in \mathcal{F}(\mathbb{Z})$ such that $A_n \in \Lambda^{(n)}$ and $A_n \to A$ in the C* norm. We then have

$$\alpha(A^*) = \lim_{n \to \infty} \alpha(A_n^*) = \lim_{n \to \infty} \alpha_{\Lambda^{(n)}}(A_n^*) = \lim_{n \to \infty} \alpha_{\Lambda^{(n)}}(A_n)^* = \lim_{n \to \infty} \alpha(A_n)^* = \alpha(A)^*$$

where we used the continuity of $A \mapsto \alpha(A)$ in the first and last equalities.

2. We only need to check the conditions of the relevant theorem stated in class. By the above, the unitaries $U_m = \bigotimes_{x \in \Lambda_m} U_x \in \mathcal{A}_{\mathbb{Z}}$ are such that

$$\lim_{m \to \infty} \|\alpha(A) - U_m^* A U_m\| = 0, \quad \text{for all } A \in \mathcal{A}_{\mathbb{Z}}.$$

Now, for $A \in \mathcal{A}_{\Lambda}$, we have that $\delta(A) = i \sum_{\substack{(x,y) \in \mathbb{Z} \times \mathbb{Z}: \\ \{x,y\} \cap \Lambda \neq \emptyset}} J(x,y)[\Phi_{x,y},A],$ and since $\|\Phi_{x,y}\| \leq 1$,

$$\|\delta(A)\| \le 2\|A\| |\Lambda| \sup_{x \in \mathbb{Z}} \sum_{y \in \mathbb{Z}} |J(x,y)| < \infty$$

so that $\mathcal{A}_{\text{loc}} \subset D(\delta)$. In particular, $U_m \in \mathcal{A}_{\Lambda_m} \subset D(\delta)$. Since $\alpha(\Phi_{x,y}) = \Phi_{x,y}$, we have that $[\Phi_{x,y}, U_m] = (\Phi_{x,y} - U_m \Phi_{x,y} U_m^*)U_m = 0$ if $x, y \in \Lambda_m$ so that

$$\|\delta(U_m)\| \le \sum_{\substack{(x,y)\in\mathbb{Z}\times\mathbb{Z}:\\x\in\Lambda_m,y\in\Lambda_m^c}} |J(x,y)| \|[\Phi_{x,y},U_m]\| \le 2\sum_{\substack{(x,y)\in\mathbb{Z}\times\mathbb{Z}:\\x\in\Lambda_m,y\in\Lambda_m^c}} |J(x,y)|$$

where we used $||U_m|| = 1$. Reorganizing the sum, we obtain

$$\|\delta(U_m)\| \le 2\sum_{d\ge 2} \sum_{\substack{(x,y)\in\mathbb{Z}\times\mathbb{Z}:\\x\in\Lambda_m,y\in\Lambda_m^c, |x-y|=d}} |J(x,y)|$$

and it remains to note that there are exactly $2 \cdot \min\{(d-1), m\} \le 2d$ terms in the second sum to get the bound

$$\|\delta(U_m)\| \le 4\sum_{d\ge 2} (d-1) \sup_{(x,y):|x-y|=d} |J(x,y)| \le 4 \cdot \sup_{x\in\mathbb{Z}} \sum_{y\in\mathbb{Z}} |J(x,y)| |x-y| = 4C$$

Since this bound is uniform in m, the theorem ensures that for any (τ^t, β) -KMS state, $\omega \circ \alpha = \omega$.