SoSE 2017 Mathematical Statistical Physics 13.06.2017

Problem Sheet 5

Hand-in deadline: 21.06.2017 before 12:15 in the designated MSP box (1st floor, next to the library).

Ex. 1: Let $(\tau_t)_{t \in \mathbb{R}}$ be a weakly continuous group of *-automorphisms of a C^* -algebra \mathcal{A} with unit. Recall that this means that

- τ_t is a *-automorphisms of \mathcal{A} for each $t \in \mathbb{R}$ and $\tau_0 = 1$ (the identity)
- For each $t, s \in \mathbb{R}$:, $\tau_t \tau_s = \tau_{t+s}, \tau_{-t} = \tau_t^{-1}$,
- For every state ρ on \mathcal{A} and every $A \in \mathcal{A}$, $\lim_{t\to 0} \rho(\tau_t(A)) = \rho(A)$.

Assume now that there is a state $\omega \in \mathcal{A}$ that is invariant with respect to τ_t , namely such that

$$\omega(\tau_t(A)) = \omega(A), \quad A \in \mathcal{A}, t \in \mathbb{R}.$$

Denote by $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ the corresponding GNS representation. Prove that there exists a densely defined self-adjoint operator H on the Hilbert space \mathcal{H}_{ω} such that

$$\pi_{\omega}(\tau_t(A)) = e^{itH} \pi_{\omega}(A) e^{-itH}, \quad A \in \mathcal{A}, t \in \mathbb{R},$$

 Ω_{ω} is in the domain of H and $H\Omega_{\omega} = 0$.

Ex. 2: Let $(\tau_t^n)_{t\in\mathbb{R}}$, $n \in \mathbb{N}$, be a sequence of dynamics on a C^* -algebra \mathcal{A} with generators δ_n such that $\mathcal{D}(\delta_n) \subset \mathcal{D}$ for all $n \in \mathbb{N}$, where $\mathcal{D} \subset \mathcal{A}$ is dense. Assume that $\tau_t^n(A)$ has a limit $\tau_t(A)$ as $n \to \infty$, for each $A \in \mathcal{A}$ and $t \in \mathbb{R}$, and that τ_t is again a dynamics with generator δ and $\mathcal{D}(\delta) \subset \mathcal{D}$.

Let $(\omega^n)_{n\in\mathbb{N}}$ be a sequence of (τ^n, β) -KMS states. Prove the existence of a (τ, β) -KMS state.

Ex. 3: Let (\mathcal{A}, τ_t) be a C^* -dynamical system and let ω be a state on \mathcal{A} . For $\beta \in \mathbb{R}$ prove the equivalence of the following two statements:

(A) ω is a (τ, β) -KMS state.

SoSE 2017 Mathematical Statistical Physics 13.06.2017

(B) The relation

$$\int_{\mathbb{R}} f(t)\omega(A\tau_t(B))dt = \int_{\mathbb{R}} f(t+i\beta)\omega(\tau_t(B)A)dt$$

is valid for all $A, B \in \mathcal{A}$ and f with $\check{f} \in C_c^{\infty}(\mathbb{R})$.

Hint: Use the Paley-Wiener theorem which states that an entire analytic function g is the Fourier transform of a C_c^{∞} function with support in [-R, R] if and only if for each N there exists C_N such that

$$|g(\xi)| \le \frac{C_N e^{R|\operatorname{Im}\xi|}}{(1+|\xi|)^N}, \quad \xi \in \mathbb{C}.$$

Ex. 4: Let (\mathcal{A}, τ_0^t) be a C^* -dynamical system with generator δ_0 . Let V be a self-adjoint element of \mathcal{A} . Let $\delta_V = \delta_0 + i[V, \cdot]$, and let τ_V^t be the corresponding dynamics.

i) Prove that for any $t \in \mathbb{R}$ and $A \in \mathcal{A}$, the Dyson-Robinson expansion

$$\tau_V^t(A) = \tau_0^t(A) + \sum_{N=1}^\infty i^N \int_{0 \le t_1 \le \dots \le t_N \le t} [\tau_0^{t_1}(V), [\dots, [\tau_0^{t_n}(V), \tau_0^t(A)] \dots]] dt_1 \dots dt_n$$

holds, the series being norm-convergent.

ii) Let $\Gamma_V(t)$ be defined by the Ansatz $\tau_V^t(A)\Gamma_V(t) = \Gamma_V(t)\tau_0^t(A)$ for $A \in \mathcal{A}, t \in \mathbb{R}$. Prove that $\Gamma_V(t)$ solves the differential equation

$$-\mathrm{i}\dot{\Gamma}_V(t) = \Gamma_V(t)\tau_0^t(V), \quad \Gamma_V(0) = \mathbf{1}.$$

iii) Prove that $\Gamma_V(t)$ satisfies the cocycle relations

$$\Gamma_V(t+s) = \Gamma_V(t)\tau_0^t(\Gamma_V(s)) = \tau_V^t(\Gamma_V(s))\Gamma_V(t).$$