SoSE 2017 Mathematical Statistical Physics 28.04.2017

Problem Sheet 2

Hand-in deadline: 10.05.2017 before 12:15 in the designated MSP box (1st floor, next to the library).

Ex. 1: Let \mathcal{A} be a C*-algebra with a unit, denoted 1, and ω be a state, i.e. a positive linear functional over \mathcal{A} such that $\omega(1) = 1$.

(i) Prove the following identities:

$$\omega(A^*) = \overline{\omega(A)}, \qquad |\omega(A^*B)|^2 \le \omega(A^*A)\omega(B^*B), |\omega(A^*BA)| \le \omega(A^*A) ||B||$$

(Hint: consider the quadratic form $\lambda \mapsto \omega((A + \lambda B)^*(A + \lambda B)))$

- (ii) Let $\mathcal{N} := \{A \in \mathcal{A} : \omega(A^*A) = 0\}$. Prove that $A \in \mathcal{A}, N \in \mathcal{N}$ implies $AN \in \mathcal{N}$, i.e. \mathcal{N} is a left ideal
- (iii) Let $h := \mathcal{A}/\mathcal{N}$, and denote ψ_A the equivalence class of $A \in \mathcal{A}$, namely $\psi_A := \{\tilde{A} \in \mathcal{A} : \exists N \in \mathcal{N} : \tilde{A} = A + N\}$. Prove that the bilinear form over h

$$(\psi_A, \psi_B) \longmapsto \langle \psi_A, \psi_B \rangle := \omega(A^*B)$$

is well-defined (i.e. the r.h.s. is independent of the chosen representative of the classes ψ_A, ψ_B) and defines a scalar product

(iv) Hence h equipped with $\langle \cdot, \cdot \rangle$ is a pre-Hilbert space. Let \mathcal{H} denote its completion. Prove that the linear map $\pi : \mathcal{A} \to \mathcal{L}(h)$ defined by

$$\pi(A)\psi_B := \psi_{AB}$$

is bounded, and that it is a *-homomorphism, namely

$$\pi(A^*) = \pi(A)^*, \qquad \pi(AB) = \pi(A)\pi(B).$$

(v) Finally, let $\mathcal{H} \ni \Omega := \psi_1$, where $1 \in \mathcal{A}$. Prove that

$$\omega(A) = \langle \Omega, \pi(A)\Omega \rangle.$$

The triple $(\mathcal{H}, \pi, \Omega)$ is the GNS representation of \mathcal{A} associated with ω .

SoSE 2017 Mathematical Statistical Physics 28.04.2017

Ex. 2: Same assumptions as in Ex. 1

- (i) Prove that the GNS representation is unique up to unitary equivalence. More precisely, prove that, given any two representations $(\mathcal{H}_i, \pi : i, \Omega_i)$, i = 1, 2, the map $U : \mathcal{H}_1 \to \mathcal{H}_2$, given by $U\pi_1(A)\Omega_1 := \pi_2(A)\Omega_2$ for any $A \in \mathcal{A}$ (and extended by linearity and density to all of \mathcal{H}_1) is unitary.
- (ii) Let α be a *-automorphism of \mathcal{A} and suppose that $\omega \circ \alpha = \omega$. Prove that there is a unique unitary operator U on the GNS Hilbert space \mathcal{H}_{ω} such that $U\pi_{\omega}(A) = \pi_{\omega}(\alpha(A))U$ for $A \in \mathcal{A}$ and $U\Omega_{\omega} = \Omega_{\omega}$.

Ex. 3: Consider the C^* -algebra $\mathcal{A} = \mathcal{L}(\mathcal{H})$ of bounded linear operators on a given Hilbert space \mathcal{H} . Let $\rho : \mathcal{H} \to \mathcal{H}$ be a strictly positive density matrix, i.e. $\rho = \rho^*, 0 < \rho \leq \mathbf{1}, \operatorname{Tr}_{\mathcal{H}} \rho = 1$. Let $\omega : \mathcal{A} \to \mathbb{C}$ be the state realised by ρ , i.e. $\omega(A) := \operatorname{Tr}(\rho A)$ for $A \in \mathcal{A}$. Consider the triple $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ defined as follows:

- $\mathcal{H}_{\omega} := \mathcal{I}^2(\mathcal{H}) \equiv \{\text{Hilbert-Schmidt operators on } \mathcal{H}\}$ with the scalar product $\langle T, S \rangle_{\mathcal{H}_{\omega}} := \text{Tr}_{\mathcal{H}}(T^*S).$
- For each $A \in \mathcal{A}$, let $\pi_{\omega}(A) : \mathcal{H}_{\omega} \to \mathcal{H}_{\omega}$ be defined by $\pi_{\omega}(A)T := AT$ for $T \in \mathcal{H}_{\omega}$.
- $\Omega_{\omega} := \rho^{1/2}$.
- (i) Prove that Ω_{ω} is a unit vector in \mathcal{H}_{ω} .
- (ii) Prove that π_{ω} is a faithful reresentation of the C*-algebra \mathcal{A} into $\mathcal{L}(\mathcal{H}_{\omega})$, i.e. that $\operatorname{Ker}(\pi_{\omega}) = \{0\}$.
- (iii) Prove that Ω_{ω} is a cyclic vector for the representation π_{ω} , i.e. that the set $\{\pi_{\omega}(A)\Omega_{\omega} : A \in \mathcal{A}\}$ is dense in \mathcal{H}_{ω} .
- (iv) Prove that $\omega(A) = \langle \Omega_{\omega}, \pi_{\omega}(A) \Omega_{\omega} \rangle$ for all $A \in \mathcal{A}$.

Ex. 4: Let \mathcal{H} be a Hilbert space and $A \in \mathcal{L}(\mathcal{H})$.

- (i) Prove that the linear subspace of $\mathcal{F}_{s/a}(\mathcal{H})$ consisting of vectors $\psi = (\psi^N)_{N \in \mathbb{N}_0}$ with a finite number of nonzero components ψ_N is dense in $\mathcal{F}_{s/a}(\mathcal{H})$.
- (ii) Prove that $\Gamma(A)b(A^*\varphi) = b(\varphi)\Gamma(A)$ for all $\varphi \in \mathcal{H}$, where $b(\varphi)$ are the annihilation operators on $\mathcal{F}_{s/a}(\mathcal{H})$.
- (iii) Assume in addition that $A = A^*$. Prove that $\Gamma(e^{itA}) = e^{itd\Gamma(A)}$.