1. FREE DYNAMICS ON FOCK SPACE

We start by introducing the non-interacting dynamics on Fock spaces. Let H be the one particle Hilbert
space and F4(H) the corresponding fermionic/bosonic Fock space. The one-particle dynamics is generated
by a self-adjoint operator H on H, and it can be lifted to a non-interacting dynamics on Fock space generated
by

AL(H) [yen=H®1--14+1QH®1---14---+1--- 10 H

which is closeable with a self-adjoint closure. The operator dI'(H) leaves the symmetric and antisymmetric
subspaces invariant and can therefore be restricted to Fi(#H). The tensor product structure indicates that
the particles do not interact. Note that with this notation, the number operator is N = dI'(1). Furthermore,

efitdF(H) _ F(efitH)
where
T(U) lyen=U - @,

and the Heisenberg dyanmics reads 7;(A) = T'(e™)ATl'(e ™). Its action on creation and annihilation
operators is given concretely by

Ti(b+(f)) = bx(exp(itH)f),  7(bi(f)) = bi(exp(itH)f),

which is a simple strongly continuous group of Bogoliubov automorphisms. This follows from

Tt(bj:<f))Q = F(eitH)(O? fvov e ) = (O,exp(itH)f,O, T )a

and

7 (b-(£)) = b-(F)l = [[b- (€7 = 1) )| = || = 1)f|| — 0,  (fermions)
(W (F) = W (F)]] = | (W () = W(£))]| — 0, (bosons)

as t — 0 by the strong continuity of the one-particle unitary group, and in the bosonic case the fact that the
Fock representation is regular.

2. THE IDEAL FERMI GAS

We now consider a gas of non-interacting fermions, first in a finite volume A C R? and then in the
thermodynamic limit A — R? with the density py — p > 0.
Let 0 < S <ooand peR.If

K, := dT'(H — 1) = dT'(H) — pN,

is such that exp(—K,,) is a trace-class operator, then the Gibbs grand canonical equilibrium state is the state
over the CAR algebra A_(H) given by

i —BK,)A
(2.1) WO (A) = rr_ () (exp(=BK,)A)
Trr_ () (exp(—BK,))
Note the slight notational abuse that A € A_(#) on the Lh.s, while it is it Fock space representation appearing

on the r.h.s. g is the inverse temperature and p the chemical potential. We denote z := exp(Su) and call it
the activity. We have

Proposition 2.1. exp(—8H) is trace-class on H iff exp(—BK,,) is trace-class on F_(H) for all p € R.
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Proof. If exp(—fK,) is trace-class then exp(—S8K,) [4= zexp(—FH) is in particular trace-class. Recipro-
cally, let {E,, }nen be the eigenvalues of H in increasing order. Then

Tr;f(H)e*BK“ = Z zmTer)e*ﬂH@m = Z zm Z e A= By — H (1 + ze*BE”")

m>0 m>0 0<ni1<...<nm, m>0
< H exp (zefﬁE’") = exp (2Tr(e ")),
m>0
concluding the proof. O

Calculations in the grand canonical ensemble are easily carried out using the following pull-through formula:
(2.2) e PRubr (f) = 2b* (e PH fle K.
In particular,

Proposition 2.2. Assume that exp(—SH) is trace-class, and let w?* denote the grand canonical ensemble
at 0 < B < oo, € R. Then

WM (f) =0 and WM (@ (fa-(9)) = (g,ze (1427 )7LF)
for any f,g € H.
Proof. By Definition (2.1) and the pull-though formula,

w[j’ﬂ(a’i(f)a_(g)) = Ty (H)(eip(—ﬁKﬂ))HF’(H)(bt(e_BHf)e_ﬁK“b_ (9)) = 2" (a_(g)a* (e PH f))

=~z (a” (e fla_(g)) + z(g,e " f)

by the CAR. Hence, w”*(a* (1 + ze#H) f)a_(g)) = (g, zePH f). The first statement follows analogously,
with Trz (3 (b* (e #H f)e=PKu) = 0 since K, preserves the particle number. O

With the same strategy, one could prove by induction that the expectation value of a product of n creation
and n annihilation operators can be expressed as a polynomial in the two-point functions W (a* (fi)a—(g95)),
namely

W@ (f) 0t (fr)a(g1) - a(gn)) = det [((gi, 2™ (14 ze= )71y ]

i,j=1

and that the expectation value of a product with a different number of creation and annihilation operators
vanish. Hence w™" is a gauge-invariant quasi-free state on A_ (H).

We also note that the only property we have used is that the map ¢ — 7/'(A) = exp(—itK,)Aexp(itK,)

has an analytic extension to the strip {z € C: 0 < ¥z < 8} which is continuous on its closure and that the

state w”* has the property that
Wl (a2 (f)A) = wDH (Arlh(a” (£)))

which is the so-called KMS condition at inverse temperature S. Note that this condition requires only the
self-adjointness of K, and no trace-class condition. In other words, the Gibbs state is the unique (7#, 5)-KMS
state whenever exp(—SH) is trace-class.
We now concentrate on the special case of H = —A defined on H = L?(R?) with domain D = H%(R%) =
W22(R?) and action given by
1

(@) = s | JE-Fe)ewag

This H having purely absolutely continuous spectrum exp(—SH) cannot be trace class, but the equilibrium
state corresponding to the dynamics 7 (a(f)) = a(exp(itH)f) can be obtained as a limit of finite volume
Gibbs states. For simplicity, we consider H;, = —A on L?([—L, L]%) with Dirichlet boundary conditions and
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denote the finite volume dynamics by 7 (a(f)) = a(exp(itHz)f). Note that Hj, has compact resolvent and
that exp(—BHL) is trace-class.

Theorem 2.3. Let wé’i denote the Gibbs grand canonical ensemble at 0 < B < oo, u € R associated to Hy,.
For any A € A_(L*([-L, L]%)),

lim W (A) = WP (A),

L—oo ’

B,

# is the gauge-invariant quasi-free state over A_(L?(R®)) with two-point function

Lo BIER
M (Do) = oy | IO (€.

Rd 1+ze

where w

Proof. Since z + ze~%(1 + ze~#7) is bounded function and H; — H in the strong resolvent sense,
<g, ze_ﬁHL(l + ze_ﬁHL)_1f> — <g, ze_ﬁH(l + ze_ﬁH)_1f>

as L — oo, proving the convergence of wé’i(ai(f)a_(g)) to w’*(a* (f)a—(g)) and thereby the weak-*

convergence of W™ to w*. U

It is essential to note here that the limit is unique (and the limit is in fact independent on the choice of

self-adjoint realisation of —A in finite volumes): the free Fermi gas in the infinite volume limit has a unique
equilibrium state for all 0 < 8 < oo, p € R. We also obtain the density of the gas as the limit

_ - . se—BIEP
p(B,p) = LII_{I;O(QL) d;wf’i(a_(fn)a,(fn)) = (27)11/2 /Rd md@

where (f,)nen is a basis of L2([—L, L]?). Since ¢ is the the quantum mechanical momentum, it is natural to

. -Blgl? . e .
interpret % as the momentum density distribution. Its zero-temperature limit

e—BUEP—1) 1 if|EP<p
lim —————— = .
B—oo 1 Jr-efﬁ(‘g‘ —n) 0 if |€|2 > u
is called the Fermi sea.

Since w”* has a finite density in infinite volume, it cannot be represented on Fock space. It is however
easy to check that the following Araki-Wyss representation is a GNS representation of A_ (L?(R%)) associated
with w’*:

Hy=F_(H)® F_(H), Q,=029Q,
mp(@ () == (1= p)' 21+ (1) @b (p'?f),

where 0 < p = zexp(—B(—A))(1 + exp(—B(—A)))~! < 1 as an operator on H = L?(R?). This has a natural
interpretation in the case of p = p?, namely at zero temperature. If f € Kerp, then 7,(a* (f)) creates a
particle upon the Fermi sea, while if f € Ranp, then m,(a* (f)) removes one from the Fermi sea — or in other
words creates a hole.

3. THE IDEAL BOSE GAS

The ideal Bose gas in finite volume is described on the bosonic Fock space Fy(H) constructed on a one-
particle Hilbert space H. As in the fermionic case, the dynamics corresponds to a group of Bogoliubov
transformations defined here by

(Wi (f)) = Wi (")
The Gibbs grand canonical ensemble is again defined in term of the operator K, and it is well-defined
whenever exp(—8K,,) is trace-class. We have:
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Proposition 3.1. Let 0 < 8 < co. Then exp(—fH) is trace-class on H and H — p > 0 iff exp(—BK,,) is
trace-class on Fy(H).

Proof. Let {E,}nen be the eigenvalues of H in increasing order. Then
-BK, _ m —-BH®™ _ m B Eny —B(Ex—p)n
(3.1) Trr, e "7 = Z z TrHi’")e = Z z Z e 1 = H Ze kTR
m>0 m>0 N yeney N, >0 k>0 n
and the series converges for all k since S(H — ) > 0, so that
Trz, (e P50 = H(l — ze PER)TL < exp(z ze B (1 — 27 PER) 1) < exp(2(1 — ze PE0) 1Ty (e~ PH))
k>0 k>0

where we used that 1 + 2 < exp(x). Reciprocally, if exp(—SK,,) is trace-class then exp(—fK,) [u=
exp(—B(H — 1)) is in particular trace-class. But then (3.1)) implies that S(E, — p) > 0 for all k, concluding
the proof. 0

In order to characterise explicitly the state over the CCR algabra
Tr exp(—0K,)A
Trz, (3)(exp(—=BK,))
it can first be extended to monomials in the unbounded creation and annihilation operators (which are not

in the algebra, but only in the Fock representation).

Lemma 3.2. Let F := (fi,...,f,) where f; € H, and let BPH(F) = by (fn)---by(f1)exp(—(B/2)K,).
Then BP*(F) has a bounded closure and B (F) € To(F(H)).

Proof. The condition H — y > 0 implies that there is C' > 0 such that H — -1 > C -1 so that K, > CN.
Since furthermore

b4 (fn) - by (SO < ™2 @[] fol] - [ £l
whenever ¥ € ’H,Srm), we have that
IBPH(F)W|| < m™2e” G2 1@ fo]] - || full,

proving the boundedness of B#(F) on the dense subspace Fi(#) since m — m™/2e~(5/2¢™ i hounded,
so that B##(F) has a bounded closure.

The creation and annihilation operators being bounded on Him), we have

* — @m m, n
Teyygor (B () B (F)) < Ty (@71 ) m Lo 1

(m)
HY

which can be summed as in the proof of Proposition (3.1 O

It follows that Tr(B%#(F)*B?*(G)) < oo and Tr(B»*(F)B’#(G)*) < oo for any F,G as above, so that
the Gibbs grand canonical state can be extended with the definition

IO 05 (F)be (gm) -+ b (91)) = Tep, ) (BPH(F)* BY#(Q)).

This extension is furthermore continuous since

| Ter, oy (BPH(E) BPH(@)] < CTT AN T T el
i i

Now, the pull-through formula (2.2]) remains valid in the bosonic case and yields the following:

Proposition 3.3. Let 0 < 8 < oo, € R. Assume that exp(—SH) is trace-class and that H — p > 0, and let
wfi’“ denote the Gibbs grand canonical ensemble. Then

WIMBL() =0 and WPHBL(Fbe(9) = (g.ze PP (1 - ze )7L
for any f,g € H.



Proof. By the definition (2.1)), the pull-though formula and its adjoint,

W07 (f)by(9)) = Trr, 30) (eip

- wﬁﬁu(bJr(efB(Hfu)/2g)b*+(efﬂ(Hfu)/2f))

“BH=1)/2 p)e=FRup  (e=PH=1/2g))

(K, 70U

_ wi’“(bi(e_ﬁ(H_”)/Qf)bJr (e—B(H—u)/Qg)) + (g, e—B(H—u)f>

by the CCR. This identity can be iterated n times to get

n

WO ()b (9) = W (B3 (e HT2 )b (7P 2g)) 4y " (g, e A=) )

m=1
Letting n — oo with
lim ||e—n/3(H—u)/2f|| =0,
n—oo

since B(H — p) > 0, and using the continuity of (f,g) — w+ H(0%(f)bs(g)), the first term vanishes while
the sum of the geometric series yields the two-point function. The first statement follows as in the fermionic

case. (]
Here again, an iteration of the argument would prove that wﬁ " 'is a bosonic gauge-invariant quasi-free
state, with
ﬁH
(3.3 WP (f) = o HEES ),

Now: the discussion of the thermodynamic limit in the case H — o > 0 follows closely the fermionic case
with the analogous result of a unique thermal equilibrium state in the infinite volume limit. We consider for
simplicity Hy, to be the Laplacian with Dirichlet boundary conditions with eigenvalues E,, (L) = (72/L?)(n}+

n2) for n € (N) and a ground state energy E1(L) — 0 as L — oo. For any p < 0, namely 0 < z < 1, we
have that Hy, — p > —p > 0 uniformly for all L.

Theorem 3.4. Let 0 < 8 < oo, < 0 and let w 1 denote the grand canonical ensemble. For any A €

A_(L*([-L/2,L/2]%)).

lim w (A) = wi"(A)

L—oo
where wﬁ’” is the gauge-invariant quasi-free state over A, (L*(R?)) with two-point function
1 2o BIER
Bip (3% — ___ §(&) —m——
(34) SO 9) = s | IO €

Proof. Tt suffices to prove the convergence of the state on the Weyl operators. For this it suffices to observe
that

1+ zeAHL
< {—opm; < coth(Bu/2),
which again implies the convergence of the matrix elements of % to those of Hze, o7 and thereby the
weak-* convergence of w+ BWL(f)), see . O

The situation is physically more interesting when the condition H — p > 0 is violated: this is the phenom-
enon of Bose-Einstein condensation, one of the prime example of a phase transition. As a motivation, let us
consider the density, which is in finite volume

2o~ BEn(L)

—d Bip (p —d
(35) PL Zw b fn b+ fn - Z 1— ze— BEn(L),
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where we used a basis (fn),ene of eigenvectors of the Laplacian, corresponding to the eigenvalues E,(L).
Note that

lim pL(ﬂvz) =00
p—0-

at fixed (8, L), as the first term of the series diverges. The map (0,1) 3 z — pr(8,2) € (0,00) being a
bijection, any given density p can be obtained at given 3, L by adjusting the chemical potential p.

This is however not true anymore in the thermodynamic limit, where the limit L — oo is taken first, since
the density given in the above theorem

1 e BlE
p(ﬁ,z) = (27T)d/2 /]Rd 1 _ Ze,B‘E‘z dgﬂ

which is again a monotone increasing unction of z € (0,1), has a finite limit as z — 1. If the physical density
is higher that the critical value p.(8) := p(8, 1), the excess particles will all gather in the single ground state
mode n = 1, respectively £ = 0, yielding an additional J-contribution to the density: This is the phenomenon
of Bose-FEinstein condensation.

Note that the above argument holds only if d > 3. Indeed at z = 1, the integrand is of order |£|72 as
|€] — 0, so that the integral is in fact divergent at £ = 0 in dimensions d = 1,2. Hence, there is no critical
density and therefore also no Bose-Einstein condensation in low dimensions.

To understand this further, we first note that at fixed activity z < 1, the single mode occupation numbers
are bounded,

1 1
Bip (px —
w-l—f[/(b-&-(fﬂ)b-l-(fﬂ)) - 2—1eBEL(L) _ 1 < —1_1

uniformly in L. Let us now consider the particular scaling z = z(L) = 1 — 1/(poL?), with 0 < py < 0o being
fixed, and we temporarily consider the Laplacian with periodic boundary conditions for simplicity, for which
the ground state energy is exactly Fo(L) =0 for all L € (0,00). Then

No.o(B) = W (63 ()b (f0) = 7= = poL + o(L),

as L — oo, while if n #£ 0,
1
e Bl (% _
NQ,L(/B) T w+,L(b+(fﬂ)b+(fﬂ)) - ZﬁleﬁEﬂ(L) 1 S BEQ(L>

In other words, in dimension d = 3, the ground state is the only macroscopically occupied state. It follows
that for any ¢ € C°(R3),

< const - 2

LT3 Non(B)e(m) — (2m)* | NL(B.©)e()ds

as L — oo, where

Ns(B,€) = N(B,€) + pod(8)

— 1 1

N(ﬂag) = (27‘1’)3 oBIEE _ 1"
Indeed, the d-contribution arises from the ground state term in the sum; For the others, we first note that
Na,L(B) = (2m)°N(B,n) = (1 — z7")e 2N, (BN (B,n). Furthermore, 2N, 1(8) < 1+ No2(8) <

const - L2, so that
)3 —
LY Was(8) — 2r)*N(8.n)| < (const 5 p1L> ((QLJ >N (ﬁ,m).
n#0 n#0

The second bracket is bounded above by fR3 N(B,€)d¢ which, once again, is finite in three dimensions (or
higher).

and




It follows in particular that, in the scaling limit,
pL(B,2(L)) — ps(B) = B(B) + po

where py denotes the condensate density and

o6 = [ N6

Instead of imposing a scaling of the activity, a more natural analysis can be also be carried out at fixed
density. The following proposition, in which we revert to the Dirichlet Laplacian, shows that the activity
indeed converges to 1 whenever the density is larger than the critical density. For this, we note that both
z— pr(B,2) and z — p(f, z) are strictly increasing, so that the equation p(8,z) = p has a unique solution z
for all 0 < p < p.(B) = p(B,1), and pr(B, z) = p has a unique solution zy, for all 0 < p.

Proposition 3.5. Let d > 3, with p >0 and 0 < 8 < co. For any p > 0, let z;, be the unique solution of

PL(B, ZL) = ﬁ)
and recall that p.(8) := p(5,1).
i. If p < pe(B) and z is such that p(B,z) = p, then im0 21, = Z
iil. If p> pe(B), then Uimp o0 2z = 1.

As can be expected from the discussion above, in case (ii), the surplus density p — p.(8) condensates into

the ground state, and indeed
zpe PELL)

. —d -
lim L m =p—pe(B)

L—oo

where E;(L) is the ground state energy of the Dirichlet Laplacian.
Proof. (i) From the convexity of z — pr(8, 2), we have that

%(ﬁ,zz) < pL(ﬁ:'Zl) _pL(szQ) < %(ﬁazl)

0z - z1 — 29 0z

whenever z5 < z1. Moreover, the explicit expression (3.5 implies that

pr(B,2) _ Opr
M A
z - 0z (8,7)
so that

(36) pL(’B7Z2) < pL(ﬁWZl) _PL(ﬁsz).

Z2 21 — 22

Noting that pr, (8, z) < p(8, z) by a Riemann approximation argument, and that both are increasing functions
of z, we have that z;, > Z. By ,
be oo P pu(6:2)
PL (ﬁa Z))
proving that limy_.,. 27, = Z.
(ii) Assume that z;, < 1. Then p.(8) < p = pr(B,21) < p(B,21) < pc(B), which is a contradiction. Hence
zr, > 1. But zp, < exp(BE1(L)), which converges to 1, so that limy,_, . 2z, = 1. O

With a little more effort, one can prove the following theorem, completely characterising the Gibbs grand
canonical equilibrium states in the thermodynamic limit.

Theorem 3.6. Let d > 3, with p > 0 and 0 < f < co. Let wi’ff be the Gibbs grand canonical equilibrium

state with py, chosen so that pr(B,zr) = p. Then the weak-* limit limy_, wf_”iL = wf_ exists and is a

gauge-invariant quasi-free state. Furthermore,



i. If p < pe(B) then the two-point function of wf_ is given by where z is the solution of p(8,z) = p
it. If p> pe(B), then the two-point function of wf is given by

-Blel®
e ~

T—omep /()¢

S BLb9) = ()= 0o AT + 57 | 5O
Note that by rescaling &, one obtains p.(3) = const - 3~%2 showing that the critical density is a strictly
increasing, convex function of the temperature. Hence the condensation regime is reached at fixed density p
by lowering the temperature below a critical value. In other words, Bose-Einstein condensation occurs in a
low temperature, high density regime.

Summarising the above discussion, the ‘normal regime’ is characterised by a unique equilibrium state for
any 3, u given by Theorem In the condensation regime, there are infinitely many equilibrium states,
all having the same temperature and chemical potential, and they are parametrised by the physical density
p € [pe(B),00). This ‘bifurcation’ from a unique to many equilibrium states is a characteristic property of a
thermal phase transition.

A proof of the existence of Bose-Einstein condensation for an interacting Bose gas is still missing. However,
progress has been made in the so-called Gross-Pitaevskii limit, a regime of very few but very strong interaction
(Lieb-Seiringer-Yngvason, Phys. Rev. A 61, 043602, 2000), or in a toy model of spins on a lattice where the
phenomenon of gauge symmetry breaking is clarified (Lieb-Seiringer-Yngvason, Rep. Math. Phys. 59(3), 389,
2007)
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