
Problem Sheet 8: Solution

(No responsibility is taken for the correctness of the solutions.)

Ex. 1: We take for granted that −∆ is self-adjoint on H2,2(R3) and essenti-
ally self-adjoint on C∞c (R3). The claim will follow from the Kato-Rellich theo-
rem once we prove that V is relatively −∆ bounded with relative bound < 1.
We will in fact prove that the relative bound is 0. Without loss of generality
we may assume V2 = 0 and we write V instead of V1. By Sobolev embedding,

‖ψ‖L∞ ≤ Cs‖ψ‖Hs,2 , ψ ∈ Hs,2(R3),

for any s > 3/2. We fix s ∈ (3/2, 2) and estimate1 for ξ ∈ R3

(1 + |ξ|2)s ≤ (1 + λ2)s +
(1 + λ2)s

λ4
|ξ|4,

where λ > 1 is arbitrary and will be fixed momentarily. We then have for
ψ ∈ H2,2(R3),

‖ψ‖2Hs,2 =

∫
(1 + |ξ|2)s|ψ̂(ξ)|2 dξ ≤ (1 + λ2)s‖ψ‖2L2 +

(1 + λ2)s

λ4
‖∆ψ‖2L2

Given ε > 0, choose λ such that

C2
s‖V ‖2L2

(1 + λ2)s

λ4
< ε2.

Note that this is possible since s < 2. Then

‖V ψ‖2L2 ≤ ‖V ‖2L2ψ‖2L∞ ≤ C2
s‖V ‖2L2‖ψ‖2Hs,2 ≤ C2

s‖V ‖2L2(1 + λ2)s‖ψ‖2L2 + ε2‖∆ψ‖2L2 .

Since ε is arbitrary, the claim is proved.

Ex. 2: (i) We have for every λ ∈ C

0 ≤ ω((A+ λB)∗(A+ λB)) = ω(A∗A) + λω(B∗A) + λω(A∗B) + |λ|2ω(B∗B).
(1)

For λ = 1 and for λ = i, this becomes

0 ≤ ω(A∗A) + ω(B∗A) + ω(A∗B) + ω(B∗B),

0 ≤ ω(A∗A)− iω(B∗A) + iω(A∗B) + ω(B∗B),

1Write (1 + λ2)s = 1{|ξ| ≤ λ}(1 + λ2)s + 1{|ξ| > λ}(1 + λ2)s.

1



respectively. This implies that

Imω(B∗A) + Imω(A∗B) = 0,

Reω(B∗A)− Reω(A∗B) = 0,

and this is equivalent to ω(B∗A) = ω(A∗B). Setting B = 1 yields

ω(A) = ω(A∗). (2)

Next, let λ ∈ R. Then (1) and the result just proved imply that the
discriminant of the polynomial on the right, i.e. of

λ 7→ ω(A∗A) + 2λRe (ω(A∗B)) + ω(B∗B)

must be nonpositive; equivalently,

Re (ω(A∗B))2 ≤ ω(A∗A)ω(B∗B).

Similarly, using (1) with λ replaced by cλ, where |c| = 1 and λ ∈ R, we get

Re (cω(A∗B))2 ≤ ω(A∗A)ω(B∗B).

We may choose c such that |ω(A∗B)| = cω(A∗B), in which case Re (cω(A∗B))2 =
|ω(A∗B)|2. This proves that

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B). (3)

Since2

B∗B − ‖B‖21 ≤ 0 =⇒ A∗B∗BA− ‖B‖2A∗A ≤ 0,

it follows from the positivity of ω that

ω((BA)∗BA) ≤ ‖B‖2ω(A∗A). (4)

Combining (2)–(4) gives

|ω(A∗BA)|2 ≤ ω(A∗BB∗A)ω(A∗A) ≤ ω(A∗A)2‖B‖2.

(ii) Let A ∈ A, N ∈ N . Then by (4),

ω((AN)∗AN) ≤ ω(N∗N)‖A‖2 = 0.

2The first inequality follows from σ(B∗B − ‖B‖21) = σ(B∗B) − ‖B‖2 ⊆
[−r(B∗B), r(B∗B)] − ‖B‖2 = [−2‖B‖2, 0]. The second follows from the fact that
C ≥ 0 ⇐⇒ ∃D s.t. C = D∗D (take −C = B∗B − ‖B‖21).
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(iii) By (2) N is closed under taking adjoints. Then (abusing notation)

ω((A+N )∗(B +N )) = ω(A∗B) + ω(A∗N ) + ω(N ∗B) + ω(N ∗N ) = ω(A∗B).

Hence the bilinear form is well-defined. Positivity immediately follows from
positivity of ω. Symmetry follows from (2).

(iv) By the same argument following (3) we have

ω(A∗A) ≤ ‖A‖2. (5)

Let A ∈ A, ψB ∈ h. By (4) and (5),

‖π(A)ψB‖2H = 〈ψAB, ψAB〉 = ω((AB)∗AB) ≤ ‖A‖2ω(B∗B).

Since h is dense in H (by definition) this implies that

‖π(A)‖L(H) ≤ ‖A‖,

i.e. π is bounded. Moreover,

〈ψB, π(A∗)ψC〉 = 〈ψB, ψA∗C〉 = ω(B∗A∗C) = 〈ψAB, ψC〉 = 〈π(A)ψB, ψC〉

shows that ψ(A∗) = π(A)∗, and

π(AB)ψC = ψABC = π(A)π(B)ψC

shows that π(AB) = π(A)π(B).

We have

ω(A) = 〈ψ1, ψA〉 = 〈Ω, π(A)Ω〉.

Ex. 3: It suffices to compute

N = {A ∈ A : ω(A∗A) = 0} =



{(
0 ∗
0 ∗

)}
if α = 0,

{0} if α ∈ (0, 1),{(
∗ 0

∗ 0

)}
if α = 1.

One easily checks that the GNS representation is irreducible iff α ∈ {0, 1}
(pure states). Any state is a vector state in its own GNS representation.
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