Mathematical Quantum Mechanics

Problem Sheet 7

Hand-in deadline: 06.12.2017 before 12:00 in the designated MQM box (1st floor, next to the library).

Exercise 1: Let A be a closed operator in \mathcal{H} . Prove: If B is A-compact (i.e. relatively compact with respect to A), then it is A-bounded with relative bound 0.

Exercise 2: (a) Verify that $\frac{2}{|x|} = \sum_{j=1}^{3} [\partial_j, \frac{x_j}{|x|}]$ on smooth functions in \mathbb{R}^3 , and use it to prove the inequality

$$\int_{\mathbb{R}^3} \frac{|\varphi(x)|^2}{|x|} \, \mathrm{d}x \le \|\nabla \varphi\|_2 \|\varphi\|_2, \quad \text{for} \quad \varphi \in C_c^\infty(\mathbb{R}^3).$$

(b) Extend the inequality in (a) to all $\varphi \in H^1(\mathbb{R}^3)$.¹ You may use without proof that $C_c^{\infty}(\mathbb{R}^3)$ is dense in $H^1(\mathbb{R}^3)$.

(c) Prove that for all $Z \ge 0$,

$$\int_{\mathbb{R}^3} |\nabla \varphi(x)|^2 \,\mathrm{d}x - Z \int_{\mathbb{R}^3} \frac{|\varphi(x)|^2}{|x|} \,\mathrm{d}x \ge -\frac{1}{4} Z^2 \|\varphi\|_2^2, \quad \text{for} \quad \varphi \in H^1(\mathbb{R}^3),$$

and find $\varphi \in H^1(\mathbb{R}^3)$ which saturates the inequality.

(d) Prove that $|x|^{-1}$ is Δ -bounded. *Hint:* Use an argument analogous (a)–(b).

Exercise 3: Let $V : \mathbb{R}^n \to \mathbb{R}$ be a bounded potential such that $V(x) \to 0$ as $|x| \to \infty$. Prove that $\sigma_{\text{ess}}(-\Delta + V) = [0, \infty)$.

Exercise 4: Let A, B be operators on \mathcal{H} such that $\mathcal{D}(A) \subset \mathcal{D}(B)$. Show that the following statements are equivalent:

i) There exist $a, b \ge 0$ such that for all $\psi \in \mathcal{D}(A)$

$$||B\psi|| \le a||A\psi|| + b||\psi||. \tag{1}$$

 $[\]overline{ ^{1}\text{Recall that } H^{1}(\mathbb{R}^{3}) = \{f \in L^{2}(\mathbb{R}^{3}) : \partial_{j}f \in L^{2}(\mathbb{R}^{3}) \text{ for } j = 1, 2, 3\} \text{ where } \partial_{j}f \text{ is the weak derivative. The norm in } H^{1}(\mathbb{R}^{3}) \text{ is given by } \|f\|_{H^{1}(\mathbb{R}^{3})}^{2} = \|f\|_{2}^{2} + \sum_{j=1}^{3} \|\partial_{j}f\|_{2}^{2}.$

Mathematical Quantum Mechanics

ii) There exist $a', b' \ge 0$ such that for all $\psi \in \mathcal{D}(A)$

$$||B\psi||^2 \le a'^2 ||A\psi||^2 + b'^2 ||\psi||^2.$$
(2)

Moreover, show that

 $\inf\{b: \exists a \ge 0 \text{ such that } (1) \text{ holds}\} = \inf\{b': \exists a' \ge 0 \text{ such that } (2) \text{ holds}\}.$