Mathematical Quantum Mechanics

Problem Sheet 5

Hand-in deadline: 22.11.2017 before 12:00 in the designated MQM box (1st floor, next to the library).

Exercise 1: (a) Let A be a self-adjoint operator on a Hilbert space \mathcal{H} and let $\lambda \in \mathbb{R}$. Prove that the following assertions are equivalent:

- (i) $\lambda \in \sigma_{\text{ess}}(A)$,
- (ii) There exists a sequence $(\psi)_{n \in \mathbb{N}} \subset \mathcal{D}(A)$ such that

$$\liminf_{n \to \infty} \|\psi_n\| > 0, \quad \mathrm{w-}\lim_{n \to \infty} \psi_n = 0, \quad \lim_{n \to \infty} \|(\mathbf{A} - \lambda)\psi_n\| = 0.$$

Here w-lim denotes the weak limit.

Exercise 2: Prove Theorem 2.11 (a) from the lecture, using Corollary 2.3. *Hint:* First replace $C(H + i)^{-1}$ by a finite rank operator. Then use an approximation argument.

Exercise 3: Let A be a self-adjoint operator on a Hilbert space \mathcal{H} and assume that $\varphi \in \mathcal{H}, \psi \in \mathcal{H}_{ac}(A)$. Prove that there exists a density $h \in L^1(\mathbb{R})$ such that

$$\mu_{\varphi,\psi}(B) = \int_B \mathrm{d}\lambda h(\lambda), \quad B \in \mathfrak{B}(\mathbb{R}).$$

Hint: Use polarization and the Radon-Nikodym theorem for (non-negative) measures.

Exercise 4: Consider the Laplacian on the torus, i.e. $-\Delta$ in $L^2([0,1]^d)$ with periodic boundary conditions. Prove that $(-\Delta + 1)^{-1} \in \mathcal{T}^p(L^2([0,1]^d))$ if and only if p > d/2.

¹also called a Weyl sequence or singular sequence (for the essential spectrum); compare Exercise 4 on Sheet 2.