Mathematical Quantum Mechanics

Problem Sheet 4

Hand-in deadline: 15.11.2017 before 12:00 in the designated MQM box (1st floor, next to the library).

Exercise 1: Let $A = A^* \in BL(\mathcal{H})$ and $0 \neq \psi \in \mathcal{H}$, and define the corresponding spectral measure $\mu_{\psi} := \langle \psi, \mathbf{1}_{\bullet}(A)\psi \rangle$. Prove that $\psi \in \mathcal{H}_{ac}(A)$ if and only if $\mu_{\psi} = \mu_{\psi,ac}$ (i.e. μ_{ψ} is absolutely continuous with respect to Lebesgue measure).

Exercise 2: Let $A = A^*$ and $a, b \in \mathbb{R}$ with a < b. Show that the following are equivalent:

- (i) $(a,b) \subset \rho(A)$,
- (ii) $||2A\psi (a+b)\psi|| \ge (b-a)||\psi||$ for all $\psi \in \mathcal{D}(A)$,
- (iii) $(A bI)(A aI) \ge 0.$

Exercise 3: Let $H = H^*$, $f \in \mathcal{H}$ and $\omega \in \mathbb{R}$. Consider the initial-value problem

$$i\partial_t u + Hu = -f e^{i\omega t}, \quad u(0) = 0 \tag{1}$$

for $u \in C^1(\mathbb{R}; \mathcal{H})$. Define the energy $E(t) := ||u(t)||^2$.

(a) Show that (1) has a unique solution $u \in C^1(\mathbb{R}; \mathcal{H})$ given by

$$u(t) = (\mathrm{e}^{\mathrm{i}\omega t} - \mathrm{e}^{\mathrm{i}Ht})(\omega - H)^{-1}f.$$

- (b) Suppose that $\omega \in \rho(H)$. Show that $E(\cdot)$ is bounded.
- (c) Suppose that $Hf = \omega f$. Show that $E(t) = t^2$.
- (d) Suppose that $\omega \in \sigma_{\rm ac}(H)$ and that $f \in \mathcal{H}_{\rm ac}$ has a density that is continuous at ω . Show that there exists c > 0 such that $\lim_{t\to\infty} E(t)/t = c$.

Exercise 4: Let $H = -\Delta$, $\mathcal{D}(H) = H^{2,2}(\mathbb{R}^d)$.

- (a) Determine the spectral measure $\mathbf{1}_{\bullet}(H)$.
- (b) Prove that $\sigma(H) = \sigma_{\text{ess}}(H) = \sigma_{\text{ac}}(H) = [0, \infty)$.