Mathematical Quantum Mechanics

Problem Sheet 3

Hand-in deadline: 08.11.2017 before 12:00 in the designated MQM box (1st floor, next to the library).

Exercise 1: (a) Suppose $A : \mathcal{H} \to \mathcal{H}$ is a bounded operator. Show that AA^* and A^*A are self-adjoint and that

$$\sigma(AA^*) \cup \{0\} = \sigma(A^*A) \cup \{0\}.$$
 (1)

(b) Suppose that $A : \mathcal{H} \supset \mathcal{D}(A) \to \mathcal{H}$ is densely defined and define an operator $Q : \mathcal{H} \oplus \mathcal{H} \supset \mathcal{D}(Q) \to \mathcal{H} \oplus \mathcal{H}$ by

$$Q := \begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix}, \quad \mathcal{D}(Q) := \mathcal{D}(A) \oplus \mathcal{D}(A^*).$$

Prove that Q is self-adjoint if and only if A is closed.

(c) Suppose that $A : \mathcal{H} \supset \mathcal{D}(A) \to \mathcal{H}$ is densely defined and closed. Prove that AA^* and A^*A are self-adjoint. (*Hint:* You may use without proof that if Q is self-adjoint, then Q^2 is self-adjoint.¹)

Exercise 2: Suppose A is closed and B bounded.

(a) Show that if ||B|| < 1, then I + B has a bounded inverse.

(b) Suppose that A has a bounded inverse. Show that if $||B|| < ||A^{-1}||^{-1}$, then A + B has a bounded inverse.

Exercise 3: Let P be the momentum operator for a partcle on the real axis, i.e.

$$P = -i\frac{\mathrm{d}}{\mathrm{d}x}, \quad \mathcal{D}(B) = H^{1,2}(\mathbb{R}).$$

Let $f : \mathbb{R} \to \mathbb{C}$ be a Borel-measurable function and define $f(P) : \mathcal{D}_f \to L^2(\mathbb{R})$ by

$$f(P)\psi = \mathcal{F}^{-1}(\widehat{f\psi}), \quad \mathcal{D}_f = \{\psi \in L^2(\mathbb{R}) : \widehat{f\psi} \in L^2(\mathbb{R})\}.$$

¹This follows from the spectral theorem.

Mathematical Quantum Mechanics

Prove the following:

(a) The map $f \mapsto f(P)$ is a *-homomorphism between the algebra of bounded measurable functions and the algebra of bounded linear operators on $\mathcal{H} = L^2(\mathbb{R})$ (denoted by $BL(\mathcal{H})$ in the following).

(b) The map

$$\mathcal{B}(\mathbb{R}) \to BL(\mathcal{H})$$
$$f \mapsto \mathbf{1}_B(P)$$

is a spectral measure. Here $\mathcal{B}(\mathbb{R})$ denotes the Borel sets.

(c)
$$\mathcal{D}_{id} = H^{1,2}(\mathbb{R})$$
 and $id(P) = P$.

(d) For $\psi \in L^2(\mathbb{R})$, $\|\psi\| = 1$,

$$\mu_{\psi} := \langle \psi, \mathbf{1}_{\bullet}(P)\psi \rangle$$

defines a probability measure on \mathbb{R} , and for $\psi \in \mathcal{D}_f$ it holds that

$$||f(P)\psi||^2 = \int_{\mathbb{R}} d\mu_{\psi}(p)|f(p)|^2.$$