Mathematical Quantum Mechanics

Problem Sheet 12

Hand-in deadline: 24.01.2017 before 12:00 in the designated MQM box (1st floor, next to the library).

Exercise 1: Let $(A_k)_{k\in\mathbb{N}} \subset BL(\mathcal{H})$, and assume that A_k converge strongly to $A \in BL(\mathcal{H})$ as $k \to \infty$. Prove: If K is a compact operator on \mathcal{H} , then $\lim_{k\to\infty} ||A_kK - AK|| = 0$.

Exercise 2: Prove that the following limits hold strongly as $t \to \infty$:

- 1. $e^{-itH}W_+ e^{-itH_0}P_{M_0} \to 0;$
- 2. $e^{itH_0}e^{-itH}P_M \to W^*_+;$
- 3. $(W_+^* \mathbb{I})e^{-itH_0}P_{M_0} \to 0;$
- 4. $e^{itH_0}W_+^*e^{-itH_0}P_{M_0} \to P_{M_0};$

Here, the generalized wave operators $W_{\pm} := W_{\pm}(H, H_0; M_0)$ are defined for a given closed H_0 -reducing subspace $M_0 \subset \mathcal{D}(\Omega_{\pm(H,H_0)})$ by

$$W_{\pm}(H, H_0; M_0) := \mathrm{s} - \lim_{t \to \pm \infty} \mathrm{e}^{\mathrm{i} t \mathrm{H}} \mathrm{e}^{-\mathrm{i} t \mathrm{H}_0} \mathrm{P}_{\mathrm{M}_0}.$$

Moreover, $M := \operatorname{Ran} W_{\pm}(H, H_0; M_0) = \Omega_{\pm(H,H_0)})M_0$, and P_{M_0} , P_M are the orthogonal projections onto M_0 , M, representively.

Exercise 3: Let H_0, H, H' be self-adjoint operators, and let $M_0 \subset \mathcal{D}(\Omega_+(H, H_0))$ and $M \subset \mathcal{D}(\Omega_+(H', H))$ be closed subspaces that reduce H_0 and H, respectively. Prove: If

$$\operatorname{Ran}(W_{+}(H, H_{0}; M_{0})) = \Omega_{+}(H, H_{0})M_{0} \subset M,$$

then $M_0 \subset \mathcal{D}(\Omega_+(H', H_0))$ and

$$W_+(H', H_0; M_0) = W_+(H', H; M)W_+(H, H_0; M_0).$$