Mathematical Quantum Mechanics

Problem Sheet 4

Hand-in deadline: 11/17/2016 before noon in the designated MQM box (1st floor, next to the library).

Exercise 1: Banach-Alaoglu theorem for separable Hilbert spaces. Let \mathfrak{H} be a separable Hilbert space. Prove that every bounded sequence in \mathfrak{H} has a weakly convergent subsequence. Proceed as follows:

(a) Let $\{e_j\}_{j\in\mathbb{N}}$ be an orthonormal basis of \mathfrak{H} . Prove that for any bounded sequence $\{h^n\}_{n\in\mathbb{N}}$ in \mathfrak{H} there is a subsequence $\{h^{n_m}\}_{m\in\mathbb{N}}$ such that the limit $\lim_{m\to\infty} \langle e_j, h^{n_m} \rangle$ exists for each $j \in \mathbb{N}$. *Hint:* Cantor diagonal process.

(b) Denote $k^m := h^{n_m}$ and $a_j := \lim_{m \to \infty} \langle e_j, k^m \rangle$. Prove that $\sum_{j=1}^{\infty} |a_j|^2$ is convergent. *Hint:* Prove that

$$\sum_{j=1}^{N} |a_j|^2 = \lim_{m \to \infty} \left\langle k^m, \sum_{j=1}^{N} a_j e_j \right\rangle$$

and estimate the limit by the Schwarz inequality.

(c) Prove that $h := \sum_{j=1}^{\infty} a_j e_j$ exists as an element in \mathfrak{H} and that k^m converges weakly to h as $m \to \infty$.

Exercise 2: The Foldy-Wouthuysen transformation. Let D_0 be the free Dirac operator on $L^2(\mathbb{R}^3; \mathbb{C}^4)$ with domain $\mathcal{D}(D_0) = H^1(\mathbb{R}^3; \mathbb{C}^4)$ (see the lecture). Find a unitary operator U_{FW} on $L^2(\mathbb{R}^3; \mathbb{C}^4)$ that diagonalizes D_0 , v.i.z.

$$U_{FW}D_0U_{FW}^* = \begin{pmatrix} \sqrt{-\Delta + m^2} \otimes \mathbf{1}_{2\times 2} & 0_{2\times 2} \\ 0_{2\times 2} & -\sqrt{-\Delta + m^2} \otimes \mathbf{1}_{2\times 2} \end{pmatrix}.$$

Exercise 3: The Schrödinger operator for Helium. Let Z > 0. Prove that the Schrödinger operator

$$H_Z := -\frac{1}{2}\Delta_x - \frac{1}{2}\Delta_y - \frac{Z}{|x|} - \frac{Z}{|y|} + \frac{1}{|x-y|}$$

is selfadjoint on the domain $\mathcal{D}(H_Z) := H^2(\mathbb{R}^3 \times \mathbb{R}^3)$. Here, H_2 is the Hamiltonian for a Helium atom. Can this be generalized to other atoms or molecules?