Mathematical Quantum Mechanics

Problem Sheet 2

Hand-in deadline: 11/03/2016 before 12:00 in the designated MQM box (1st floor, next to the library).

Exercise 1:

- 1. Let $\Omega = \mathbb{R}^d \setminus \{0\}$. Let $V \in L^1_{loc}(\Omega)$ and assume that there is a positive radial function $\omega \in C^2(\Omega)$ satisfying $-\Delta \omega + V\omega \ge 0$ in Ω . In addition, assume the following (technical) conditions:
 - lim_{ϵ→0} ^{ω'(ϵ)}/_{ω(ϵ)} ϵ^{d-1} = 0.
 r ↦ (^{ω'(r)}/_{ω(r)})² r^{d-1} is integrable at the origin.

Prove that

$$\int_{\mathbb{R}^d} (|\nabla \phi|^2 + V|\phi|^2) \mathrm{d}x \ge \int_{\mathbb{R}^d} |\nabla(\omega^{-1}\phi)|^2 \omega^2 \mathrm{d}x \quad \text{for all } \phi \in C_c^1(\mathbb{R}^d).$$

2. Let $d \ge 3$. Use the first part of the exercise to prove that

$$\int_{\mathbb{R}^d} \left| \nabla \phi(x) \right|^2 \mathrm{d}x \ge \left(\frac{d-2}{2} \right)^2 \int_{\mathbb{R}^d} \frac{\left| \phi(x) \right|^2}{|x|^2} \mathrm{d}x \quad \text{for all } \phi \in C_c^1(\mathbb{R}^d).$$

This is Hardy's inequality (quantum mechanical uncertainty principle).

3. Let $d \ge 2$. Use the first part of the exercise to prove that

$$\frac{d-1}{2} \int_{\mathbb{R}^d} \frac{\left|\phi(x)\right|^2}{|x|} \mathrm{d}x \le \left(\int_{\mathbb{R}^d} |\nabla \phi|^2 \mathrm{d}x\right)^{1/2} \left(\int_{\mathbb{R}^d} |\phi|^2 \mathrm{d}x\right)^{1/2}$$

for all $\phi \in C_c^1(\mathbb{R}^d)$. *Hint: Choose* $\omega(x) = \exp(-\alpha |x|)$ for some $\alpha > 0$.

Exercise 2:

1. Prove that

$$c \int_{\mathbb{R}^3} \frac{1}{|x|} \psi(x) dx = \int_{\mathbb{R}^3} \frac{1}{|k|^2} \widehat{\psi}(k) dk,$$
$$\int_{\mathbb{R}^3} \frac{1}{|x|^2} \psi(x) dx = c \int_{\mathbb{R}^3} \frac{1}{|k|} \widehat{\psi}(k) dk$$

for some constant c > 0 and for all $\psi \in \mathcal{S}(\mathbb{R}^3)$. Compute c.

Mathematical Quantum Mechanics

2. Prove that

$$\int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \mathrm{d}x \le C \langle \psi, |\mathbf{p}|\psi \rangle \quad \text{for all } \psi \in \mathcal{S}(\mathbb{R}^d)$$

for some constant C > 0. This inequality with the sharp constant is sometimes called *Kato's inequality*. Here, the operator $|\mathbf{p}|$ is defined as

$$\mathcal{F}\left(|\mathbf{p}|\psi\right)(k) := |k|\widehat{\psi}(k)$$

for $\psi \in \mathcal{S}(\mathbb{R}^3)$. (Remark: The sharp constant is $C = \pi/2$.)

Jean-Claude Cuenin