WISE 2015/16 Mathematical Quantum Mechanics

24.11.2015

Problem Sheet 8

Hand-in deadline: 01.12.2015 before 12:00 in the designated MQM box (1st floor, next to the library).

Ex. 1: Let

$$G(x,y) := \frac{1}{4\pi} \frac{1}{|x-y|},$$

and for $f \in C_c^{\infty}(\mathbb{R}^3)$, let

$$\Phi_f(x) := (G * f)(x) = \frac{1}{4\pi} \int_{\mathbb{D}} \frac{f(y)}{|x - y|}.$$

- (i) Show that $\Delta_x G(x,y) = 0$ if $x \neq y$.
- (ii) Prove that $\Phi_f \in C^{\infty}(\mathbb{R}^3)$.
- (iii) Prove that $f = \Phi_{-\Delta f}$ and conclude that Φ_f is a solution of

$$-\Delta u(x) = f(x), \qquad x \in \mathbb{R}^3.$$

(iv) Prove that

$$\lim_{|x|\to\infty} \Phi_f(x) \Big(\frac{\int_{\mathbb{R}^3} f(y) dy}{4\pi |x|}\Big)^{-1} = 1$$

(v) Reciprocally, let $u \in H^2(\mathbb{R}^3)$ be a solution of $-\Delta u(x) = f(x)$. Prove that $u(x) = \Phi_f(x)$ almost everywhere (Hint: Consider $\langle \varphi, u \rangle$ for an arbitrary $\varphi \in C_c^{\infty}(\mathbb{R}^3)$ and use the Fourier transform with Ex. 4, Sheet 5)

Ex. 2: Recall the definition of the Sobolev space $H^{\alpha}(\mathbb{R}^d)$ (where d is a positive integer and $\alpha > 0$):

$$H^{\alpha}(\mathbb{R}^d) := \left\{ f \in L^2(\mathbb{R}^d) : \|f\|_{H^{\alpha}}^2 := \int_{\mathbb{R}^d} (1 + |k|^2)^{\alpha} |\widehat{f}(k)|^2 \, \mathrm{d}k < \infty \right\}.$$

Assume that $\alpha > \frac{d}{2} + l$ for some non-negative integer l. Prove that $H^{\alpha}(\mathbb{R}^d) \subset C^l(\mathbb{R}^d)$.

Ex. 3: Let f_0, f_1, \ldots , with $f_i \in H^1(\mathbb{R}^3), \langle f_i, f_j \rangle_{L^2(\mathbb{R}^3)} = \delta_{ij}$, be the eigenfunctions of $-\Delta + V$ for the negative eigenvalues $-e_0 \leq -e_1 \leq \ldots$ This is

WISE 2015/16 Mathematical Quantum Mechanics

24.11.2015

understood in the weak sense: For any $\varphi \in C_c^{\infty}(\mathbb{R}^3)$,

$$\int_{\mathbb{R}^3} [(-\Delta + V(x))\varphi(x)] f_i(x) dx = -e_i \int_{\mathbb{R}^3} \varphi(x) f_i(x) dx.$$

Prove that

$$\int_{\mathbb{R}^3} \left[\overline{\nabla f_i(x)} \nabla f_j(x) + V(x) \overline{f_i(x)} f_j(x) \right] dx = -e_i \delta_{ij}.$$

(Hint: Use the density of $C_c^{\infty}(\mathbb{R}^3)$ in $H^1(\mathbb{R}^3)$)

Ex. 4: Consider the energy functional $E(\psi)$,

$$E(\psi) := \int_{\mathbb{R}} (|\psi'(x)|^2 + 9x^4(x^2 + 2)|\psi(x)|^2) dx, \qquad \psi \in \mathcal{S}(\mathbb{R}),$$

and let $E_0 := \inf_{\psi \in \mathcal{S}(\mathbb{R}), \|\psi\|_2 = 1} E(\psi)$.

- (i) Prove that $E(\psi) \geq 3\|\psi\|_2^2$ for all $\psi \in \mathcal{S}(\mathbb{R})$.
- (ii) Prove that $E_0=3$ and that there exists a unique minimizer (up to a global phase) ψ_0 , i.e. $E_0=E(\psi_0)$.

Jean-Claude Cuenin