WISE 2015/16 Mathematical Quantum Mechanics 17.11.2015 Problem Sheet 6

Hand-in deadline: 24.11.2015 before 12:00 in the designated MQM box (1st floor, next to the library).

Ex. 1: Let \mathcal{H} be a complex Hilbert space. Recall that for a bounded selfadjoint operator $A : \mathcal{H} \to \mathcal{H}$ we write $A \ge 0$ if $\langle \psi, A\psi \rangle \ge 0$ for every $\psi \in \mathcal{H}$. Similarly, we write $A \le B$ for two self-adjoint operators $A, B : \mathcal{H} \to \mathcal{H}$ whenever $B - A \ge 0$.

(i) Assume that $A \ge I$ (*I* being the identity on \mathcal{H}). Prove that *A* is invertible and that $0 \le A^{-1} \le I$.

(ii) Assume that $0 \le A \le B$. Show that for any $\lambda > 0$, the operators $A + \lambda I$ and $B + \lambda I$ are invertible and that $(B + \lambda I)^{-1} \le (A + \lambda I)^{-1}$.

(iii) Assume that $0 \le A \le B$. Show that $\sqrt{A} \le \sqrt{B}$. You may use the representation

$$\sqrt{A} = \int_0^\infty \frac{\mathrm{d}\lambda}{\sqrt{\lambda}} \left(I - \lambda (A + \lambda I)^{-1} \right)$$

where the integral is understood in the sense of Riemann integrals for operatorvalued functions.

(iv) Assume that $0 \le A \le B$. Show that in general this does neither imply $A^2 \le B^2$ nor $AB \ge 0$. (*Hint:* You might want to try the simplest possible counterexaples where A, B are 2×2 matrices.)

Ex. 2: (i) Let $k \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$. Prove that

$$(A\psi)(x) := \int_{\mathbb{R}^d} k(x, y)\psi(y) \,\mathrm{d}y, \quad \psi \in L^2(\mathbb{R}^d), \tag{1}$$

defines a bounded operator $A: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ with $||A|| \leq ||k||_{L^2(\mathbb{R}^d \times \mathbb{R}^d)}$.

(ii) Let $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ be a measurable function such that the functions k_1 and k_2 defined by $k_1(x) := \int_{\mathbb{R}^d} |k(x,y)| \, dy$ and $k_2(y) := \int_{\mathbb{R}^d} |k(x,y)| \, dx$ both belong to $L^{\infty}(\mathbb{R}^d)$. Show that (1) defines a bounded operator on $L^2(\mathbb{R}^d)$ with $||A|| \leq ||k_1||_{L^{\infty}(\mathbb{R}^d)}^{1/2} ||k_2||_{L^{\infty}(\mathbb{R}^d)}^{1/2}$. **Ex. 3:** For $\psi \in \bigwedge^N L^2(\mathbb{R}^3)$ with $\|\psi\| = 1$, we define its reduced k-particle density matrix by

$$\gamma_{\psi}^{(k)}(x_1, \dots, x_k, y_1, \dots, y_k) := \frac{N!}{(N-k)!} \times \int_{\mathbb{R}^{6(N-k)}} \psi(x_1, \dots, x_k, z_{k+1}, \dots, z_N) \overline{\psi(y_1, \dots, y_k, z_{k+1}, \dots, z_N)} dz_{k+1} \cdots dz_N$$

Let $\gamma_{\psi}^{(1)}$ be the integral operator on $L^2(\mathbb{R}^3)$ with kernel $\gamma_{\psi}^{(1)}(x, y)$, see Ex. 2.

(i) Let
$$\rho_{\psi}(x) := \gamma_{\psi}^{(1)}(x, x)$$
. Show that $\rho_{\psi} \in L^1(\mathbb{R}^3)$ with $\|\rho_{\psi}\|_1 = N$.

(ii) Prove that $0 \leq \langle \varphi, \gamma_{\psi}^{(1)} \varphi \rangle \leq \langle \varphi, \varphi \rangle$ for all $\varphi \in L^2(\mathbb{R}^3)$.

(iii) Assume that ψ is a Slater determinant, $\psi = f_1 \wedge \cdots \wedge f_N$, where $\{f_i\}_{i=1}^N$ is an orthonormal set in $L^2(\mathbb{R}^3)$. Show that

$$\gamma_{\psi}^{(1)}(x,y) = \sum_{i=1}^{N} f_i(x) \overline{f_i(y)}.$$

(iv) Let $H = \sum_{i=1}^{N} (-\Delta_{x_i}) + \sum_{1 \le i < j \le N} V(x_i, x_j)$ acting on $L^2(\mathbb{R}^{3N})$. Show that, for any $\psi \in \mathcal{D}(H) \cap \bigwedge^N L^2(\mathbb{R}^3)$,

$$\langle \psi, H\psi \rangle = \operatorname{Tr}((-\Delta)\gamma_{\psi}^{(1)}) + \frac{1}{2}\operatorname{Tr}(V\gamma_{\psi}^{(2)}),$$

where $Tr(A) := \int k(x, x) dx$ for an integral operator A with kernel k(x, y).

Ex. 4: [Virial theorem] Consider the Schrödinger operator $H = -\Delta + V$ in d dimensions. Assume that $U_{-t}VU_t = e^{-t}V$ for all $t \in \mathbb{R}$, where $U(t) : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is defined by $(U_t\psi)(x) := e^{-td/2}\psi(e^{-t}x)$.

(i) Prove that $\{U(t)\}_{t\in\mathbb{R}}$ is a strongly continuous unitary group.

(ii) Let $\psi \in L^2(\mathbb{R}^d)$, $\|\psi\| = 1$. Assume that $\Delta \psi \in L^2(\mathbb{R}^d)$, $V\psi \in L^2(\mathbb{R}^d)$ and $H\psi = E\psi$ (in L^2) for some $E \in \mathbb{R}$. Prove that

$$E = -\langle \psi, (-\Delta)\psi \rangle = \frac{1}{2} \langle \psi, V\psi \rangle$$

and therefore $E \leq 0$. (*Hint:* Compute the commutator of H and U_t .)

Jean-Claude Cuenin