WISE 2015/16 Mathematical Quantum Mechanics 26.10.2015

Problem Sheet 3

Hand-in deadline: 03.11.2015 before 12:00 in the designated MQM box (1st floor, next to the library).

Ex. 1: Let $\{\chi_j\}_{j=1^m}$ be a family of bounded functions in $C^{\infty}(\mathbb{R}^3)$ such that $\sum_{j=1}^m \chi_j(x)^2 = 1$ for all $x \in \mathbb{R}^3$. Prove the following identity (known as the IMS localization formula ¹):

$$-\Delta \psi = \sum_{j=1}^{m} \chi_j(-\Delta)(\chi_j \psi) - \sum_{j=1}^{m} |\nabla \chi_j|^2 \psi, \quad \text{for all } \psi \in \mathcal{S}(\mathbb{R}^3).$$
(1)

Ex. 2: Consider the two Hamiltonians

$$H = -\Delta - \frac{1}{|x|}, \quad H^{(x_0)} = -\Delta - \frac{1}{|x|} - \frac{1}{|x - x_0|}$$

acting on wave functions of the variable $x \in \mathbb{R}^3$. Here, $x_0 \in \mathbb{R}^3 \setminus \{0\}$ is a parameter. Define the respective ground state energies as

$$\mathcal{E}_{\mathrm{GS}} := \inf_{\substack{\psi \in \mathcal{M} \\ \|\psi\|=1}} \langle \psi, H\psi \rangle, \quad \mathcal{E}_{\mathrm{GS}}^{(x_0)} := \inf_{\substack{\psi \in \mathcal{M} \\ \|\psi\|=1}} \langle \psi, H^{(x_0)}\psi \rangle$$

where $\mathcal{M} := \{ \psi \in L^2(\mathbb{R}^3) : \nabla \psi, |\cdot|^{-1} \psi \in L^2(\mathbb{R}^3) \}$. Recall that $\mathcal{E}_{\text{GS}} = -\frac{1}{4}$ (the ground state being $\psi(x) = C e^{-\frac{|x|}{2}}$).

(i) Prove that

$$\mathcal{E}_{\mathrm{GS}}^{(x_0)} \leq \mathcal{E}_{\mathrm{GS}} - \frac{1}{2} \mathrm{e}^{-|x_0|} \quad \text{for all } x_0 \in \mathbb{R}^3.$$

(*Hint:* Choose a suitable trial function.)

(ii) Prove that there exist constants c, R > 0 such that

$$\mathcal{E}_{\mathrm{GS}}^{(x_0)} \ge \mathcal{E}_{\mathrm{GS}} - \frac{c}{|x_0|}, \quad |x_0| \ge R.$$

(*Hint:* Use the IMS formula (1).)

¹IMS stands for Ismagilov, Morgan, Simon. Incidentally, its importance in the context of atomic Schrödinger operators was discovered by I.M. Sigal.

WISE 2015/16 Mathematical Quantum Mechanics 26.10.2015

Ex. 3: (i) Let $\mathcal{H} := L^2([-1,1])$, and let $\mathcal{H} \ni \psi = |\cdot|$ (i.e. $\psi(x) = |x|$). Compute the weak derivative $\varphi = \psi'$ and show that it can be represented as

$$\varphi[v] = \int_{-1}^{1} \varphi(x)v(x) \,\mathrm{d}x, \quad \text{for all } v \in C_0^{\infty}([-1,1])$$

with $\varphi \in L^2([-1,1])$.

(ii) Compute the weak derivative $\xi = \varphi'$ and show that there is no function in $L^2([-1,1])$ representing ξ . (*Hint:* Test ξ against functions $v \in C_0^{\infty}([-1,1])$ with $\operatorname{supp}(v) \cap \{0\} = \emptyset$.)

Ex. 4: Let $\mathcal{H} := L^2([0,1])$, and let P_0 , \widetilde{P} , P_α ($|\alpha| = 1$) be defined as in the lecture. Recall that $P_0^* = \widetilde{P}$.

- (i) Let $\mathcal{D}_{\pm} := \ker(P_0^* \mp i)$. Show that dim $\mathcal{D}_{\pm} = 1$ and exhibit two vectors $\psi_{\pm} \in \mathcal{D}_{\pm}$ with $\|\psi_{\pm}\| = \|\psi_{\pm}\|$.
- (ii) Show that 2

$$\mathcal{D}(P_0) \dotplus{}{+} \mathcal{D}_+ \dotplus{}{+} \mathcal{D}_- = \mathcal{D}(P_0^*).$$

(iii) Let $U_e : \mathcal{D}_+ \to \mathcal{D}_-$ be a unitary map, and let $\mathcal{D}_e := (I + U_e)\mathcal{D}_+$. We define $P_e : \mathcal{D}(P_e) \to \mathcal{H}$ by

$$\mathcal{D}(P_e) := \mathcal{D}(P_0) \dotplus \mathcal{D}_e,$$
$$\varphi + \varphi_+ + U_e \varphi_+ \mapsto P_0 \varphi + \mathrm{i} \varphi_+ - \mathrm{i} U_e \varphi_+.$$

Show that

$$P_0 \subsetneq P_e \subseteq P_e^* \subsetneq P_0^*$$
.

- (v) Conclude that $P_e = P_e^*$ (*Hint:* Count dimensions.)
- (vi) Show that for any choice of U_e in (iii) there exists $\alpha \in \mathbb{C}$, $|\alpha| = 1$, such that

$$\psi \in \mathcal{D}_e \iff \psi \in \mathcal{D}(P_\alpha).$$

Jean-Claude Cuenin

²Here, for two subspaces M, N of \mathcal{H} , the subspace $M \dotplus N$ denotes the algebraic direct sum, i.e. $M \dotplus N = \{\psi + \chi \in \mathcal{H} : \psi \in M, \chi \in N\}$ and $M \cap N = \{0\}$.