WISE 2015/16 Mathematical Quantum Mechanics 09.12.2015

Problem Sheet 10

Hand-in deadline: 22.12.2015 before 12:00 in the designated MQM box (1st floor, next to the library).

Ex. 1: (i) Let $\phi \in C^{\infty}(\mathbb{R}^d)$ be a real-valued phase function, let $a \in C_c^{\infty}(\mathbb{R}^d)$, and define

$$I(\lambda) := \int_{\mathbb{R}^d} e^{-i\pi\lambda\phi(x)} a(x) \, \mathrm{d}x, \quad \lambda > 0.$$

Let $p \in \mathbb{R}^d$, and assume $\nabla \phi(p) \neq 0$. Prove: If *a* is supported in a small neighborhood of *p*, then for any $k \in \mathbb{N}$ and N > 0,

$$\left|\frac{\mathrm{d}^k I(\lambda)}{\mathrm{d}\lambda^k}\right| \le C_{k,N}\lambda^{-N}$$

(ii) Assume that $\nabla \phi(p) = 0$ and that $H_{\phi}(p)$ (the Hessian of ϕ) is nondegenerate. Prove: If *a* is supported in a small neighborhood of *p*, then for any $k \in \mathbb{N}$,

$$\left|\frac{\mathrm{d}^k}{\mathrm{d}\lambda^k}(\mathrm{e}^{\mathrm{i}\pi\lambda\phi(p)}I(\lambda))\right| \le C_k\lambda^{-\frac{d}{2}-k}.$$

Hint: Use the stationary phase formula:

$$I(\lambda) = e^{-i\pi\lambda\phi(p)} e^{-i\pi\frac{\sigma}{4}} 2^{\frac{d}{2}} (\det H_{\phi}(p))^{-\frac{1}{2}} \lambda^{-\frac{d}{2}} \left(a(p) + \sum_{j=1}^{N} \lambda^{-j} \mathcal{D}_{j} a(p) + \mathcal{O}(\lambda^{-(N+1)}) \right).$$

Here, σ is the signature of $H_{\phi}(p)$, and \mathcal{D}_j are certain differential operators of order $\leq 2j$ with smooth coefficients.

(iii) Let S^{d-1} be the unit sphere in \mathbb{R}^d , and let σ be the induced Lebesgue measure on S^{d-1} . Define the Fourier transform of this measure by

$$\widehat{\sigma}(k) := \int_{S^{d-1}} e^{-2\pi i k \cdot x} d\sigma(x), \quad k \in \mathbb{R}^d.$$

Prove that $|\widehat{\sigma}(k)| \leq C(1+|k|)^{-\frac{d-1}{2}}$.

WISE 2015/16 Mathematical Quantum Mechanics 09.12.2015

(iv) (optional!) Let $\chi_{B(0,1)}$ be the characteristic function of the unit ball $B(0,1) \subset \mathbb{R}^d$. Prove that $|\widehat{\chi_{B(0,1)}}| \leq C(1+|k|)^{-\frac{d+1}{2}}$.

Remark: (iv) can be used to prove the following result on the distribution of lattice points in \mathbb{R}^d : $|B(0,\lambda) \cap \mathbb{Z}^d| = |B(0,1)|\lambda^d + \mathcal{O}(\lambda^{d-2+2/(d+1)}).$

Ex. 2: Let $\phi \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ be real-valued, $a \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$, and consider the operator $T_{\lambda} : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ given by

$$(T_{\lambda}f)(x) := \int_{\mathbb{R}^d} e^{-i\pi\lambda\phi(x,y)} a(x,y)f(y) \,\mathrm{d}y.$$

Moreover, assume that the 'mixed Hessian' $(\partial^2 \phi / \partial_{x_i} \partial_{y_j})$ is non-degenerate on the support of a.

(i) Show that $T_{\lambda}^*T_{\lambda}$ is an integral operator, and compute its kernel $K_{\lambda}(x, y)$. Prove that $|K_{\lambda}(x, y)| \leq C_N (1 + \lambda |x - y|)^{-N}$ for any N > 0.

(ii) Prove that $||T_{\lambda}||_{L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)} \leq C\lambda^{-\frac{d}{2}}$. *Hint:* Apply Schur's test (Sheet 6, Ex. 2 (i)) to $T_{\lambda}^*T_{\lambda}$.

(iii) By a scaling argument, prove that (ii) implies the boundedness of the Fourier transform on $L^2(\mathbb{R}^d)$. (Hence, (ii) may be viewed as a variable coefficient version of Plancherel's theorem.)

(iv) In the same vein, prove that (ii) implies the Hausdorff-Young inequality: For $1 \le p \le 2$, there exists $C_p > 0$ such that $\|\widehat{f}\|_{p'} \le C_p \|f\|_p$. (*Hint:* Interpolate (Riesz-Thorin!) (ii) with the trivial estimate for p = 1).

Ex. 3: In the following, the Hilbert spaces \mathcal{H}_A , \mathcal{H}_B are assumed to be finitedimensional.

(i) Let ρ_A a density matrix in \mathcal{H}_A . Prove that there exists another Hilbert space \mathcal{H}_B (what is its minimal dimension?) and a unit vector $\psi \in \mathcal{H}_A \otimes \mathcal{H}_B$ such that

$$\rho = \operatorname{tr}_B |\psi\rangle \langle \psi|.$$

(ii) Prove that for any matrix a in \mathcal{H}_A and for any density matrix ρ in $\mathcal{H}_A \otimes \mathcal{H}_B$, we have

$$\operatorname{tr}(\rho(a \otimes \operatorname{id})) = \operatorname{tr}_A(a(\operatorname{tr}_B \rho)).$$

(iii) Let ρ be a density matrix in $\mathcal{H}_A \otimes \mathcal{H}_B$. Assume that the reduced density $\operatorname{tr}_B \rho$ is pure, i.e. $\operatorname{tr}_B \rho = |\psi\rangle\langle\psi|$ for some unit vector $\psi \in \mathcal{H}_A$. Prove that there exists a density matrix σ in \mathcal{H}_B such that

$$\rho = |\psi\rangle\langle\psi|\otimes\sigma.$$

Jean-Claude Cuenin