WISE 2015/16 Mathematical Quantum Mechanics 13.10.2015

Problem Sheet 1

Hand-in deadline: 20.10.2015 before 12:00 in the designated MQM box (1st floor, next to the library).

Ex. 1: Let \mathcal{H} be a complex Hilbert space with scalar product $\langle \cdot, \cdot \rangle$.

(i) Let \mathcal{H} be a dense subspace of \mathcal{H} , and let P and Q be two operators on \mathcal{H} mapping \mathcal{H} into itself and such that $\langle \phi, P\psi \rangle = \langle P\phi, \psi \rangle$ and $\langle \phi, Q\psi \rangle = \langle Q\phi, \psi \rangle$ for all $\phi, \psi \in \mathcal{H}$. Fix $\psi \in \mathcal{H}$, $\|\psi\|_2 = 1$, and define

$$\langle P \rangle = \langle \psi, P \psi \rangle, \quad \Delta P := \sqrt{\langle (P - \langle P \rangle)^2 \rangle},$$
 (1)

and similarly for Q. Prove that

$$(\Delta Q)(\Delta P) \geq \frac{1}{2} |\langle [Q, P] \rangle|$$

where [Q, P] := QP - PQ is the commutator.

- (ii) Prove that equality holds in (1) if and only if $(Q \langle Q \rangle)\psi = i\lambda(P \langle P \rangle)\psi$ for some $\lambda \in \mathbb{R}$.
- (iii) Assume that $[Q, P] = i\mathbb{1}$ (as an identity on $\widetilde{\mathcal{H}}$). Prove that P, Q cannot both be bounded operators on $\widetilde{\mathcal{H}}$. (*Hint:* Compute $[Q^n, P]$ for $n \in \mathbb{N}$.)

Now let $\mathcal{H} = L^2(\mathbb{R})$ and $\widetilde{\mathcal{H}} = \mathcal{S}(\mathbb{R})$ (the class of Schwartz functions¹). Moreover, let Q be the multiplication operator with the independent variable x, and $P = -i\frac{\partial}{dx}$.

(iv) Deduce from (1) that

$$(\Delta Q)(\Delta P) \ge \frac{1}{2}$$
 (Heisenberg's uncertainty relation).

(v) Prove that equality in Heisenberg's uncertainty relation holds if and only if ψ is a function that, apart from translation and modulation by a phase, has the form $\psi(x) = ce^{-ax^2}$ for some $c \in \mathbb{R}$ and a > 0.

¹Recall that $\mathcal{S}(\mathbb{R}) = \{ \psi \in C^{\infty}(\mathbb{R}) : \sup_{x \in \mathbb{R}} \left| x^n \frac{\mathrm{d}^m}{\mathrm{d}x^m} \psi(x) \right| < \infty \text{ for all } n, m \in \mathbb{N} \}.$

WISE 2015/16 Mathematical Quantum Mechanics 13.10.2015

(vi) Prove that there is no upper bound for

$$\langle \psi, (Q - \langle \psi, Q, \psi \rangle)^2 \psi \rangle \langle \psi, (P - \langle \psi, P, \psi \rangle)^2 \psi \rangle$$

uniformly in $\psi \in L^2(\mathbb{R}), \|\psi\|_2 = 1.$

- **Ex. 2:** Set [A, B] := AB BA.
 - (i) Verify that $\frac{2}{|x|} = \sum_{j=1}^{3} [\partial_j, \frac{x_j}{|x|}]$, and use it to prove the inequality

$$\int_{\mathbb{R}^3} \frac{|\varphi(x)|^2}{|x|} \, \mathrm{d}x \le \|\nabla\varphi\|_2 \|\varphi\|_2, \quad (\varphi \in C_0^\infty(\mathbb{R}^3)).$$

- (ii) Extend the inequality in (i) to all $\varphi \in H^1(\mathbb{R}^3)$.² You may use without proof that $C_0^{\infty}(\mathbb{R}^3)$ is dense in $H^1(\mathbb{R}^3)$.
- (iii) Prove that for all $Z \ge 0$,

$$\int_{\mathbb{R}^3} |\nabla \varphi(x)|^2 \, \mathrm{d}x - Z \int_{\mathbb{R}^3} \frac{|\varphi(x)|^2}{|x|} \, \mathrm{d}x \ge -\frac{1}{4} Z^2 \|\varphi\|_2^2, \quad (\varphi \in H^1(\mathbb{R}^3)),$$

and find $\varphi \in H^1(\mathbb{R}^3)$ which saturates the inequality.

Ex. 3: Let \mathcal{H} be a Hilbert space and $M \subset \mathcal{H}$ a subset. Prove the following statements.

- (i) M^{\perp} is a closed subspace of \mathcal{H} ,
- (ii) $M^{\perp\perp} = \overline{\operatorname{span}(M)},$
- (iii) If M is a subspace, then $M^{\perp \perp} = \overline{M}$.

Ex. 4: Let $\{\phi_n\}_{n \in \mathbb{N}}$ be a sequence in a Hilbert space \mathcal{H} and let $\phi \in \mathcal{H}$. Prove that the following are equivalent:

- (i) ϕ_n converges to ϕ in the norm of \mathcal{H} .
- (ii) ϕ_n converges weakly to ϕ and $\lim_{n\to\infty} \|\phi_n\| = \|\phi\|$.

Show that, in general, weak convergence does not imply norm convergence.

Jean-Claude Cuenin

 $[\]overline{ ^2 \text{Recall that } H^1(\mathbb{R}^3) = \{ f \in L^2(\mathbb{R}^3) : \partial_j f \in L^2(\mathbb{R}^3) \text{ for } j = 1, 2, 3 \} \text{ where } \partial_j f \text{ is the weak derivative. The norm in } H^1(\mathbb{R}^3) \text{ is given by } \|f\|_{H^1(\mathbb{R}^3)}^2 = \|f\|_2^2 + \sum_{j=1}^3 \|\partial_j f\|_2^2.$