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The Brouwer Fixed Point Theorem



The Brouwer Fixed Point Theorem

Theorem (Brouwer 1911)

Every continuous function f : [0, 1]n → [0, 1]n has a fixed point x,
i.e., a point x ∈ [0, 1]n with f (x) = x.

Luitzen E.J. Brouwer (1881-1966)



The Brouwer Fixed Point Theorem

Theorem (Brouwer 1911)

Every continuous function f : [0, 1]n → [0, 1]n has a fixed point x,
i.e., a point x ∈ [0, 1]n with f (x) = x.

I By Cn := C([0, 1]n, [0, 1]n) we denote the set of continuous
functions f : [0, 1]n → [0, 1]n.

I By BFTn : Cn ⇒ [0, 1]n we denote the operation defined by
BFTn(f ) := {x ∈ [0, 1]n : f (x) = x} for n ∈ N.

Theorem (Orevkov 1963, Baigger 1985)

There exists a computable function f : [0, 1]2 → [0, 1]2 that has no
computable fixed point x ∈ [0, 1]2.

I The proof is essentially based on a reduction to a Kleene tree
(equivalently, to the existence of two computably inseparable
c.e. sets).
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Reverse Mathematics

Theorem (Simpson 1999)

Over RCA0 the following are equivalent in second order arithmetic:

I Weak Kőnig’s Lemma WKL0.

I The Brouwer Fixed Point Theorem.

I Neither uniform nor resource sensitive!

Theorem (Ishihara 2006)

Using intuitionistic logic the following are equivalent:

I Weak Kőnig’s Lemma WKL.

I The Lesser Limited Principle of Omniscience LLPO.

I The Intermediate Value Theorem.

I The Brouwer Fixed Point Theorem (Hendtlass 2012).

I Very uniform, but even less resource sensitive!
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I Weak Kőnig’s Lemma WKL.

I The Lesser Limited Principle of Omniscience LLPO.

I The Intermediate Value Theorem.

I The Brouwer Fixed Point Theorem (Hendtlass 2012).

I Very uniform, but even less resource sensitive!



Reverse Mathematics

Theorem (Simpson 1999)

Over RCA0 the following are equivalent in second order arithmetic:
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The Weihrauch Lattice



Mathematical Problems

I We consider partial multi-valued functions f :⊆ X ⇒ Y as
mathematical problems.

I We assume that the underlying spaces X and X are
represented spaces, hence notions of computability and
continuity are well-defined.

I Every theorem of the form

(∀x ∈ X )(∃y ∈ Y )(x ∈ D =⇒ P(x , y))

can be identified with F :⊆ X ⇒ Y with dom(F ) := D and
F (x) := {y ∈ Y : P(x , y)}.

I Weak Kőnig’s Lemma is the mathematical problem

WKL :⊆ Tr⇒ 2N,T 7→ [T ]

with dom(WWKL) := {T ∈ Tr : T infinite}.
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Weihrauch Reducibility

Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be two mathematical problems.

K Hg

f

x f (x)

I f is called Weihrauch reducible to g , in symbols f ≤W g , if
there are computable H :⊆ X ×W ⇒ Y and K :⊆ X ⇒ Z
such that H(id, gK ) ⊆ f and dom(f ) ⊆ dom(H(id, gK )).

I f is called strongly Weihrauch reducible to g , in symbols
f ≤sW g , if there are computable H :⊆W ⇒ Y and
K :⊆ X ⇒ Z such that HgK ⊆ f and dom(f ) ⊆ dom(HgK ).
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Algebraic Operations in the Weihrauch Lattice

Definition

Let f , g be two mathematical problems. We consider:

I f × g : both problems are available in parallel (Product)

I f t g : both problems are available, but for each instance one
has to choose which one is used (Coproduct)

I f u g : given an instance of f and g , only one of the solutions
will be provided (Sum)

I f ∗ g : f and g can be used consecutively (Comp. Product)

I g → f : this is the simplest problem h such that f can be
reduced to g ∗ h (Implication)

I f ∗: f can be used any given finite number of times in parallel
(Star)

I f̂ : f can be used countably many times in parallel
(Parallelization)

I f ′: f can be used on the limit of the input (Jump)



Some Formal Definitions

Definition

For f :⊆ X ⇒ Y and g :⊆W ⇒ Z we define:

I f × g :⊆ X ×W ⇒ Y × Z , (x ,w) 7→ f (x)× g(w) (Product)

I f t g :⊆ X tW ⇒ Y t Z , z 7→
{

f (z) if z ∈ X
g(z) if z ∈W

(Coproduct)

I f u g :⊆ X ×W ⇒ Y t Z , (x ,w) 7→ f (x) t g(w) (Sum)

I f ∗ :⊆ X ∗ ⇒ Y ∗, f ∗ =
⊔∞

i=0 f i (Star)

I f̂ :⊆ XN ⇒ Y N, f̂ = X∞i=0 f (Parallelization)

I Weihrauch reducibility induces a lattice with the coproduct t
as supremum and the sum u as infimum.

I Parallelization and star operation are closure operators in the
Weihrauch lattice.

I With t,×,∗ one obtains a Kleene algebra.
I The Weihrauch lattice is neither a Brouwer nor a Heyting

algebra (Higuchi und Pauly 2012).
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Choice

Definition

By CX we denote the choice problem of a space X , i.e., the
problem given a closed subset A ⊆ X to find a point in A.

I CCX is the CX restricted to connected sets.

I PWCCX is CX restricted to pathwise connected sets.

I XCX is CX restricted to convex sets.

I PCX is CX restricted to sets of positive measure.

Example

I C2≡sW LLPO,

I WKL≡sW C2N ≡sW C[0,1]≡sW L̂LPO,

I WWKL≡sW PC2N .



Choice

Definition

By CX we denote the choice problem of a space X , i.e., the
problem given a closed subset A ⊆ X to find a point in A.

I CCX is the CX restricted to connected sets.

I PWCCX is CX restricted to pathwise connected sets.

I XCX is CX restricted to convex sets.

I PCX is CX restricted to sets of positive measure.

Example

I C2≡sW LLPO,

I WKL≡sW C2N ≡sW C[0,1]≡sW L̂LPO,

I WWKL≡sW PC2N .



Choice

Definition

By CX we denote the choice problem of a space X , i.e., the
problem given a closed subset A ⊆ X to find a point in A.

I CCX is the CX restricted to connected sets.

I PWCCX is CX restricted to pathwise connected sets.

I XCX is CX restricted to convex sets.

I PCX is CX restricted to sets of positive measure.

Example

I C2≡sW LLPO,

I WKL≡sW C2N ≡sW C[0,1]≡sW L̂LPO,

I WWKL≡sW PC2N .



Choice

Definition

By CX we denote the choice problem of a space X , i.e., the
problem given a closed subset A ⊆ X to find a point in A.

I CCX is the CX restricted to connected sets.

I PWCCX is CX restricted to pathwise connected sets.

I XCX is CX restricted to convex sets.

I PCX is CX restricted to sets of positive measure.

Example

I C2≡sW LLPO,

I WKL≡sW C2N ≡sW C[0,1]≡sW L̂LPO,

I WWKL≡sW PC2N .



Choice

Definition

By CX we denote the choice problem of a space X , i.e., the
problem given a closed subset A ⊆ X to find a point in A.

I CCX is the CX restricted to connected sets.

I PWCCX is CX restricted to pathwise connected sets.

I XCX is CX restricted to convex sets.

I PCX is CX restricted to sets of positive measure.

Example

I C2≡sW LLPO,

I WKL≡sW C2N ≡sW C[0,1]≡sW L̂LPO,

I WWKL≡sW PC2N .



Choice

Definition

By CX we denote the choice problem of a space X , i.e., the
problem given a closed subset A ⊆ X to find a point in A.

I CCX is the CX restricted to connected sets.

I PWCCX is CX restricted to pathwise connected sets.

I XCX is CX restricted to convex sets.

I PCX is CX restricted to sets of positive measure.

Example

I C2≡sW LLPO,

I WKL≡sW C2N ≡sW C[0,1]≡sW L̂LPO,

I WWKL≡sW PC2N .



Basic Complexity Classes and Reverse Mathematics

limN≡sW CN

KN≡sW C∗2≡sW LLPO∗

WWKL≡sW PC2N

WKL≡sW C2N ≡sW Ĉ2≡W L̂LPO

CR≡sW CN × C2N

lim≡sW ĈN≡sW L̂PO

CNN

C1 RCA0

BΣ0
1

IΣ0
1

ACA0

ATR0

WKL0

WKL0 + IΣ0
1

WWKL0



The Classification



The Brouwer Fixed Point Theorem

Theorem

BFTn≡sW CC[0,1]n for all n ∈ N.

Proof. (Sketch) “≥sW”.

I Given a connected closed set ∅ 6= A ⊆ [0, 1]n we determine a
continuous function f : [0, 1]n → [0, 1]n that has exactly A as
its set of fixed points.

I We use a compactly decreasing sequence (Ai ) of
bi-computable, effectively path-connected closed sets Ai such
that A =

⋂∞
i=0 Ai .

I We use the sequence (Ai ) to construct functions
gi : [0, 1]n → [0, 1]n and f := id + 2−4

∑∞
i=0 gi with the

property that A is the set of fixed points of f .

I Note: with a lot of careful extra calculations one can even
construct f such that it has Lipschitz constant L = 6.
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The Brouwer Fixed Point Theorem

Theorem

BFTn≡sW CC[0,1]n for all n ∈ N.

Proof. (Sketch) “≤sW”.

I Given f we can compute A = (f − id[0,1]n)−1{0}.
I It is sufficient to find a connectedness component of A.

I Using a tree of rational complexes we can find such a
component since ind(f ,R) is computable for rational
complexes R (Joe S. Miller 2002).

�



The Brouwer Fixed Point Theorem

Theorem

BFTn≡sW CC[0,1]n for all n ∈ N.

I How does this equivalence class depend on n ∈ N?

Proposition (Intermediate Value Theorem)

BFT1≡sW CC[0,1]≡sW IVT.

I It is clear that

CC[0,1]0 <sW CC[0,1]<sW CC[0,1]n+2 ≤sW CC[0,1]n+3 ≤sW C[0,1]

holds for all n ∈ N.
I Is this reduction chain strictly increasing?
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A Geometric Construction

Theorem

CC[0,1]n ≡sW C[0,1] for all n ≥ 3.

Proof. The map

A 7→ (A× [0, 1]× {0}) ∪ (A× A× [0, 1]) ∪ ([0, 1]× A× {1})

is computable and maps any non-empty closed A ⊆ [0, 1] to a
connected non-empty closed B ⊆ [0, 1]3. Given a point
(x , y , z) ∈ B, one can find a point in A, in fact, x ∈ A or y ∈ A
and which one is true can be determined with z . �

Corollary

BFTn≡sW CC[0,1]n ≡sW PWCC[0,1]n ≡sW C[0,1]≡sW WKL for all
n ≥ 3.

I Open Problem: Is there such a geometric construction for
dimension 2?
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A Geometric Construction

Corollary (Orevkov 1963, Baigger 1985)

There exists a computable function f : [0, 1]2 → [0, 1]2 that has no
computable fixed point x ∈ [0, 1]2.

Proof. The map

A 7→ (A× [0, 1]) ∪ ([0, 1]× A)

is computable and maps any non-empty closed A ⊆ [0, 1] to a
connected non-empty closed B ⊆ [0, 1]2 and given (x , y) ∈ B we
have x ∈ A or y ∈ A (but we cannot say which one holds). �

Corollary

There exists a non-empty connected co-c.e. closed subset
A ⊆ [0, 1]2 without computable point.
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An Inverse Limit Construction for Dimension 2

Theorem

CC[0,1]2 ≡sW C[0,1].

Proof. (Sketch) In fact we use C[0,1]≡sW L̂LPO and given an
instance p of this problem, we construct a connected set

A = {x ∈ B0 : (∀n ∈ N) f −1n−1 ◦ ... ◦ f −10 (x) ∈ En(p)} ⊆ [0, 1]2

=
⋂∞

n=0(f0 ◦ ... ◦ fn−1)(En(p))

so that a point x ∈ A allows us to compute a solution to L̂LPO(p).

Here the fn : Bn+1 ↪→ Sn are computable embeddings of certain
blocks Bn into certain “snakes” Sn ⊆ Bn. The set En(p) ⊆ Bn

reflects the information given in a certain portion of p.

Since A is given as an intersection of a decreasing chain of
non-empty compact connected sets, it is compact and connected
again.



An Inverse Limit Construction for Dimension 2

Theorem

CC[0,1]2 ≡sW C[0,1].

Proof. (Sketch) In fact we use C[0,1]≡sW L̂LPO and given an
instance p of this problem, we construct a connected set

A = {x ∈ B0 : (∀n ∈ N) f −1n−1 ◦ ... ◦ f −10 (x) ∈ En(p)} ⊆ [0, 1]2

=
⋂∞

n=0(f0 ◦ ... ◦ fn−1)(En(p))

so that a point x ∈ A allows us to compute a solution to L̂LPO(p).

Here the fn : Bn+1 ↪→ Sn are computable embeddings of certain
blocks Bn into certain “snakes” Sn ⊆ Bn. The set En(p) ⊆ Bn

reflects the information given in a certain portion of p.

Since A is given as an intersection of a decreasing chain of
non-empty compact connected sets, it is compact and connected
again.



An Inverse Limit Construction for Dimension 2

01

00

S0

11

10

0111

01100011

0010

S1f0f0(S1)



An Inverse Limit Construction for Dimension 2

0021

0020

001121

001120001021

001020

0121

0120

011121

011120011021

011020

1021

1020

100121

100120100021

100020

1121

1120

110121

110120110021

110020

20

21



An Inverse Limit Construction for Dimension 2

0021

0020

001121

001120001021

001020

0121

0120

011121

011120011021

011020

1021

1020

100121

100120100021

100020

1121

1120

110121

110120110021

110020

20

21

S2

S1 0010

0011 0110

0111

10

11

...

f1



An Inverse Limit Construction for Dimension 2

Corollary

BFTn≡sW CC[0,1]n ≡sW C[0,1]≡sW WKL for all n ≥ 2.

I The set A constructed by the inverse limit construction is not
pathwise connected in general.

Question

PWCC[0,1]2 <sW PWCC[0,1]3?
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Lipschitz Continuity

Definition

A function f : [0, 1]n → [0, 1]n is Lipschitz continuous with
constant L > 0 if ||f (x)− f (y)|| ≤ L · ||x − y || for all x , y ∈ [0, 1]n.

By BFTn,L we denote the Brouwer Fixed Point Theorem restricted
to maps that are Lipschitz continuous with constant L.

I BFTn,L with L < 1 is the Banach Fixed Point Theorem (for
contractions f : [0, 1]n → [0, 1]n) and hence computable.

I BFTn,L with L = 1 is the Browder-Göhde-Kirk Fixed Point
Theorem (for non-expansive f : [0, 1]n → [0, 1]n).

Theorem

BFTn,L≡sW BFTn for all n ∈ N and L > 1.

Proof. Given Lipschitz continuous f with constant L > 0 and
ε < 1, we can compute g = id + ε

1+L(f − id) that has the same
fixed points as f but Lipschitz constant 1 + ε. �
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The Browder-Göhde-Kirk Fixed Point Theorem

Theorem (Eike Neumann 2015)

BFTn,1≡W XC[0,1]n for all n ≥ 1.

Theorem (Le Roux and Pauly 2015)

CC[0,1]≡W XC[0,1]<W XC[0,1]n+2 <W XC[0,1]n+3 <W C[0,1] for n ∈ N.

Hence we have a trichotomy for the Brouwer Fixed Point Theorem
depending on the Lipschitz constant for n ≥ 2:

I For L < 1 it is computable.

I For L = 1 it gets increasingly more difficult with increasing
dimension n.

I For L > 1 it is equivalent to C[0,1]≡W WKL independently of
the dimension.

In dimension n = 1 there is only a dichotomy since the second and
the third case fall together with IVT.
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Fixed Point Theorems in the Weihrauch Lattice

KN ≡sW C∗
2 ≡sW LLPO∗

BFT1 ≡sW BFT1,L≥1 ≡sW IVT
≡sW CC[0,1] = XC[0,1]

BFT2,L=1 ≡W XC[0,1]2

BFT3,L=1 ≡W XC[0,1]3

...

BFTn+2 ≡sW BFTn+2,L>1 ≡sW CC[0,1]n+2

≡sW WKL≡sW C[0,1] ≡sW L̂LPO

BFTn,L<1 ≡W C1 Banach Fixed Point Theorem

Brouwer Fixed Point Theorem

Brouwder-Göhde-Kirk Fixed Point Theorem

Intermediate Value Theorem
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