# The Computational Content of the Brouwer Fixed Point Theorem Revisited 

## Vasco Brattka

Universität der Bundeswehr München, Germany
University of Cape Town, South Africa
joint work with

## Stéphane Le Roux <br> Joseph S. Miller Arno Pauly

## Outline

1 The Brouwer Fixed Point Theorem

2 The Weihrauch Lattice

3 The Classification

4 Lipschitz Continuity

The Brouwer Fixed Point Theorem

## The Brouwer Fixed Point Theorem

## Theorem (Brouwer 1911)

Every continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ has a fixed point $x$, i.e., a point $x \in[0,1]^{n}$ with $f(x)=x$.


Luitzen E.J. Brouwer (1881-1966)

## The Brouwer Fixed Point Theorem

## Theorem (Brouwer 1911)

Every continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ has a fixed point $x$, i.e., a point $x \in[0,1]^{n}$ with $f(x)=x$.

- By $\mathcal{C}_{n}:=\mathcal{C}\left([0,1]^{n},[0,1]^{n}\right)$ we denote the set of continuous functions $f:[0,1]^{n} \rightarrow[0,1]^{n}$.



## Theorem (Brouwer 1911)

Every continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ has a fixed point $x$, i.e., a point $x \in[0,1]^{n}$ with $f(x)=x$.

- By $\mathcal{C}_{n}:=\mathcal{C}\left([0,1]^{n},[0,1]^{n}\right)$ we denote the set of continuous functions $f:[0,1]^{n} \rightarrow[0,1]^{n}$.
- By $\mathrm{BFT}_{n}: \mathcal{C}_{n} \rightrightarrows[0,1]^{n}$ we denote the operation defined by $\operatorname{BFT}_{n}(f):=\left\{x \in[0,1]^{n}: f(x)=x\right\}$ for $n \in \mathbb{N}$.


## Theorem (Orevkov 1963, Baigger 1985)

There exists a computable function $f:[0,1]^{2} \rightarrow[0,1]^{2}$ that has no computable fixed point $x \in[0,1]^{2}$
$\qquad$ (equivalently, to the existence of two computably inseparable c.e. sets)

## Theorem (Brouwer 1911)

Every continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ has a fixed point $x$, i.e., a point $x \in[0,1]^{n}$ with $f(x)=x$.

- By $\mathcal{C}_{n}:=\mathcal{C}\left([0,1]^{n},[0,1]^{n}\right)$ we denote the set of continuous functions $f:[0,1]^{n} \rightarrow[0,1]^{n}$.
- By $\mathrm{BFT}_{n}: \mathcal{C}_{n} \rightrightarrows[0,1]^{n}$ we denote the operation defined by $\operatorname{BFT}_{n}(f):=\left\{x \in[0,1]^{n}: f(x)=x\right\}$ for $n \in \mathbb{N}$.


## Theorem (Orevkov 1963, Baigger 1985)

There exists a computable function $f:[0,1]^{2} \rightarrow[0,1]^{2}$ that has no computable fixed point $x \in[0,1]^{2}$.


## Theorem (Brouwer 1911)

Every continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ has a fixed point $x$, i.e., a point $x \in[0,1]^{n}$ with $f(x)=x$.

- By $\mathcal{C}_{n}:=\mathcal{C}\left([0,1]^{n},[0,1]^{n}\right)$ we denote the set of continuous functions $f:[0,1]^{n} \rightarrow[0,1]^{n}$.
- By $\mathrm{BFT}_{n}: \mathcal{C}_{n} \rightrightarrows[0,1]^{n}$ we denote the operation defined by $\operatorname{BFT}_{n}(f):=\left\{x \in[0,1]^{n}: f(x)=x\right\}$ for $n \in \mathbb{N}$.


## Theorem (Orevkov 1963, Baigger 1985)

There exists a computable function $f:[0,1]^{2} \rightarrow[0,1]^{2}$ that has no computable fixed point $x \in[0,1]^{2}$.

- The proof is essentially based on a reduction to a Kleene tree (equivalently, to the existence of two computably inseparable c.e. sets).


## Reverse Mathematics

Theorem (Simpson 1999)
Over $\mathrm{RCA}_{0}$ the following are equivalent in second order arithmetic:

- Weak Kőnig's Lemma WKL .
- The Brouwer Fixed Point Theorem.
- Neither uniform nor resource sensitive!


## Reverse Mathematics

Theorem (Simpson 1999)
Over $\mathrm{RCA}_{0}$ the following are equivalent in second order arithmetic:

- Weak Kőnig's Lemma WKL .
- The Brouwer Fixed Point Theorem.
- Neither uniform nor resource sensitive!

> Theorem (Shihara 2006)
> Using intuitionistic logic the following are equivalent:
> - Weak Kőnig's Lemma WKL.
> - The Lesser Limited Principle of Omniscience LLPO
> - The Intermediate Value Theorem.
> - The Brouwer Fixed Point Theorem (Hendtlass 2012)

## Reverse Mathematics

Theorem (Simpson 1999)
Over $\mathrm{RCA}_{0}$ the following are equivalent in second order arithmetic:

- Weak Kőnig's Lemma WKL .
- The Brouwer Fixed Point Theorem.
- Neither uniform nor resource sensitive!


## Theorem (Ishihara 2006)

Using intuitionistic logic the following are equivalent:

- Weak Kőnig's Lemma WKL.
- The Lesser Limited Principle of Omniscience LLPO.
- The Intermediate Value Theorem.
- The Brouwer Fixed Point Theorem (Hendtlass 2012).
- Very uniform, but even less resource sensitive!


## Reverse Mathematics

Theorem (Simpson 1999)
Over $\mathrm{RCA}_{0}$ the following are equivalent in second order arithmetic:

- Weak Kőnig's Lemma WKL .
- The Brouwer Fixed Point Theorem.
- Neither uniform nor resource sensitive!


## Theorem (Ishihara 2006)

Using intuitionistic logic the following are equivalent:

- Weak Kőnig's Lemma WKL.
- The Lesser Limited Principle of Omniscience LLPO.
- The Intermediate Value Theorem.
- The Brouwer Fixed Point Theorem (Hendtlass 2012).
- Very uniform, but even less resource sensitive!

The Weihrauch Lattice

## Mathematical Problems

- We consider partial multi-valued functions $f: \subseteq X \rightrightarrows Y$ as mathematical problems.
- We assume that the underlying spaces $X$ and $X$ are represented spaces, hence notions of computability and continuity are well-defined.
- Every theorem of the form

$$
(\forall x \in X)(\exists y \in Y)(x \in D \Longrightarrow P(x, y))
$$

can be identified with $F: \subseteq X \rightrightarrows Y$ with $\operatorname{dom}(F):=D$ and $F(x):=\{y \in Y: P(x, y)\}$ is the mathematical problem

$$
W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}, T \mapsto[T]
$$



## Mathematical Problems

- We consider partial multi-valued functions $f: \subseteq X \rightrightarrows Y$ as mathematical problems.
- We assume that the underlying spaces $X$ and $X$ are represented spaces, hence notions of computability and continuity are well-defined.
- Every theorem of the form

$$
(\forall x \in X)(\exists y \in Y)(x \in D \Longrightarrow P(x, y))
$$

can be identified with $F: \subseteq X \rightrightarrows Y$ with $\operatorname{dom}(F):=D$ and $F(x):=\{y \in Y: P(x, y)\}$.

$$
\mathrm{WKL}: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}, T \mapsto[T]
$$

## Mathematical Problems

- We consider partial multi-valued functions $f: \subseteq X \rightrightarrows Y$ as mathematical problems.
- We assume that the underlying spaces $X$ and $X$ are represented spaces, hence notions of computability and continuity are well-defined.
- Every theorem of the form

$$
(\forall x \in X)(\exists y \in Y)(x \in D \Longrightarrow P(x, y))
$$

can be identified with $F: \subseteq X \rightrightarrows Y$ with $\operatorname{dom}(F):=D$ and $F(x):=\{y \in Y: P(x, y)\}$.

- Weak Kőnig's Lemma is the mathematical problem

$$
W K L: \subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}, T \mapsto[T]
$$

with $\operatorname{dom}(W W K L):=\{T \in \operatorname{Tr}: T$ infinite $\}$.

## Weihrauch Reducibility

Let $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$ be two mathematical problems.


## Weihrauch Reducibility

Let $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$ be two mathematical problems.


- $f$ is called Weihrauch reducible to $g$, in symbols $f \leq_{W} g$, if there are computable $H: \subseteq X \times W \rightrightarrows Y$ and $K: \subseteq X \rightrightarrows Z$ such that $H(\mathrm{id}, g K) \subseteq f$ and $\operatorname{dom}(f) \subseteq \operatorname{dom}(H(\mathrm{id}, g K))$.


## Weihrauch Reducibility

Let $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$ be two mathematical problems.


- $f$ is called Weihrauch reducible to $g$, in symbols $f \leq_{W} g$, if there are computable $H: \subseteq X \times W \rightrightarrows Y$ and $K: \subseteq X \rightrightarrows Z$ such that $H(\mathrm{id}, g K) \subseteq f$ and $\operatorname{dom}(f) \subseteq \operatorname{dom}(H(\mathrm{id}, g K))$.
- $f$ is called strongly Weihrauch reducible to $g$, in symbols $f \leq_{\mathrm{sW}} g$, if there are computable $H: \subseteq W \rightrightarrows Y$ and $K: \subseteq X \rightrightarrows Z$ such that $H g K \subseteq f$ and $\operatorname{dom}(f) \subseteq \operatorname{dom}(H g K)$.


## Algebraic Operations in the Weihrauch Lattice

## Definition

Let $f, g$ be two mathematical problems. We consider:

- $f \times g$ : both problems are available in parallel
- $f \sqcup g$ : both problems are available, but for each instance one has to choose which one is used (Coproduct)
- $f \sqcap g$ : given an instance of $f$ and $g$, only one of the solutions will be provided
- $f * g: f$ and $g$ can be used consecutively (Comp. Product)
- $g \rightarrow f$ : this is the simplest problem $h$ such that $f$ can be reduced to $g * h$
(Implication)
- $f^{*}: f$ can be used any given finite number of times in parallel (Star)
- $\widehat{f}$ : $f$ can be used countably many times in parallel (Parallelization)
- $f^{\prime}: f$ can be used on the limit of the input


## Some Formal Definitions

## Definition

For $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq W \rightrightarrows Z$ we define:

- $f \times g: \subseteq X \times W \rightrightarrows Y \times Z,(x, w) \mapsto f(x) \times g(w)$ (Product)
- $f \sqcup g: \subseteq X \sqcup W \rightrightarrows Y \sqcup Z, z \mapsto\left\{\begin{array}{l}f(z) \text { if } z \in X \\ g(z) \text { if } z \in W\end{array}\right.$
(Coproduct)
- $f \sqcap g: \subseteq X \times W \rightrightarrows Y \sqcup Z,(x, w) \mapsto f(x) \sqcup g(w)$
- $f^{*}: \subseteq X^{*} \rightrightarrows Y^{*}, f^{*}=\bigsqcup_{i=0}^{\infty} f^{i}$
- $\widehat{f}: \subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}, \widehat{f}=X_{i=0}^{\infty} f$
(Parallelization)
- Weihrauch reducibility induces a lattice with the coproduct $\sqcup$ as supremum and the sum $\Pi$ as infimum.
- Parallelization and star operation are closure operators in the Weihrauch lattice.
- With $\sqcup, \times,{ }^{*}$ one obtains a Kleene algebra.
- The Weihrauch lattice is neither a Brouwer nor a Heyting algebra (Higuchi und Pauly 2012).


## Some Formal Definitions

## Definition

For $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq W \rightrightarrows Z$ we define:

- $f \times g: \subseteq X \times W \rightrightarrows Y \times Z,(x, w) \mapsto f(x) \times g(w)$ (Product)
- $f \sqcup g: \subseteq X \sqcup W \rightrightarrows Y \sqcup Z, z \mapsto\left\{\begin{array}{l}f(z) \text { if } z \in X \\ g(z) \text { if } z \in W\end{array}\right.$ (Coproduct)
- $f \sqcap g: \subseteq X \times W \rightrightarrows Y \sqcup Z,(x, w) \mapsto f(x) \sqcup g(w)$
- $f^{*}: \subseteq X^{*} \rightrightarrows Y^{*}, f^{*}=\bigsqcup_{i=0}^{\infty} f^{i}$
- $\widehat{f}: \subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}, \widehat{f}=X_{i=0}^{\infty} f$
- Weihrauch reducibility induces a lattice with the coproduct $\sqcup$ as supremum and the sum $\Pi$ as infimum.
- Parallelization and star operation are closure operators in the Weihrauch lattice.
- With $\sqcup, \times$, ${ }^{*}$ one obtains a Kleene algebra.
- The Weihrauch lattice is neither a Brouwer nor a Heyting algebra (Higuchi und Pauly 2012).


## Definition

By $C_{X}$ we denote the choice problem of a space $X$, i.e., the problem given a closed subset $A \subseteq X$ to find a point in $A$.
$\Rightarrow C_{X}$ is the $C_{X}$ restricted to connected sets. $\mathrm{PWCC}_{x}$ is $C_{x}$ restricted to

## Definition

By $C_{X}$ we denote the choice problem of a space $X$, i.e., the problem given a closed subset $A \subseteq X$ to find a point in $A$.

- $C_{X}$ is the $C_{X}$ restricted to connected sets.
- PWCC $_{X}$ is $C_{X}$ restricted to pathwise connected sets. - $X C_{X}$ is $C_{X}$ restricted to


## Definition

By $C_{X}$ we denote the choice problem of a space $X$, i.e., the problem given a closed subset $A \subseteq X$ to find a point in $A$.

- $C_{X}$ is the $C_{X}$ restricted to connected sets.
- $\mathrm{PWCC}_{X}$ is $\mathrm{C}_{X}$ restricted to pathwise connected sets.



## Definition

By $C_{X}$ we denote the choice problem of a space $X$, i.e., the problem given a closed subset $A \subseteq X$ to find a point in $A$.

- $C_{X}$ is the $C_{X}$ restricted to connected sets.
- $\mathrm{PWCC}_{X}$ is $\mathrm{C}_{X}$ restricted to pathwise connected sets.
- $X C_{X}$ is $C_{X}$ restricted to convex sets.
- $P C_{X}$ is $C_{X}$ restricted to sets of posit
rample
- $C_{2} \equiv_{\text {sW }}$ LLPO,
WKL $\equiv_{\text {sW }} C_{2 N} \equiv_{\text {sW }} C_{[0,1]} \equiv_{\text {sW }} \overline{\text { LLPO }}$ $W W K L \equiv \equiv_{\mathrm{sW}} \mathrm{PC}_{2^{\mathrm{I}}}$


## Definition

By $C_{X}$ we denote the choice problem of a space $X$, i.e., the problem given a closed subset $A \subseteq X$ to find a point in $A$.

- $C_{X}$ is the $C_{X}$ restricted to connected sets.
- $\mathrm{PWCC}_{X}$ is $\mathrm{C}_{X}$ restricted to pathwise connected sets.
- $X C_{X}$ is $C_{X}$ restricted to convex sets.
- $\mathrm{PC}_{X}$ is $\mathrm{C}_{X}$ restricted to sets of positive measure.
$\mathrm{C}_{2} \equiv_{\mathrm{sW}}$ LLPO,
$\mathrm{WKL} \equiv_{\mathrm{sW}} \mathrm{C}_{2 \mathbb{N}} \equiv_{\mathrm{s} W} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}}$ LLPO,
WWKL $\equiv_{\mathrm{sW}} \mathrm{PC}_{2} \mathrm{~N}$


## Choice

## Definition

By $\mathrm{C}_{X}$ we denote the choice problem of a space $X$, i.e., the problem given a closed subset $A \subseteq X$ to find a point in $A$.

- $C_{X}$ is the $C_{X}$ restricted to connected sets.
- $\mathrm{PWCC}_{X}$ is $\mathrm{C}_{X}$ restricted to pathwise connected sets.
- $X C_{X}$ is $C_{X}$ restricted to convex sets.
- $\mathrm{PC}_{X}$ is $\mathrm{C}_{X}$ restricted to sets of positive measure.


## Example

- $\mathrm{C}_{2} \equiv_{\mathrm{sW}}$ LLPO,
- WKL $\equiv_{\mathrm{sW}} \mathrm{C}_{2^{\mathbb{N}}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}} \widehat{\text { LLPO, }}$
- WWKL $\equiv_{s W} \mathrm{PC}_{2^{\mathrm{N}}}$.


## Basic Complexity Classes and Reverse Mathematics



## The Classification

## The Brouwer Fixed Point Theorem

## Theorem

$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}}$ for all $n \in \mathbb{N}$.
Proof. (Sketch) " $\geq$ sw"

- Given a connected closed set $\emptyset \neq A \subseteq[0,1]^{n}$ we determine a continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ that has exactly $A$ as its set of fixed points.
- We use a compactly decreasing sequence $\left(A_{i}\right)$ of bi-computable, effectively path-connected closed sets $A_{i}$ such that $A=\bigcap_{i=0}^{\infty} A_{i}$.
- We use the sequence $\left(A_{i}\right)$ to construct functions
$g_{i}:[0,1]^{n} \rightarrow[0,1]^{n}$ and $f:=\mathrm{id}+2^{-4} \sum_{i=0}^{\infty} g_{i}$ with the property that $A$ is the set of fixed points of $f$.
- Note: with a lot of careful extra calculations one can even construct $f$ such that it has Lipschitz constant $L=6$.


## Theorem

$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}}$ for all $n \in \mathbb{N}$.
Proof. (Sketch) " $\geq_{s W}$ ".

- Given a connected closed set $\emptyset \neq A \subseteq[0,1]^{n}$ we determine a continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ that has exactly $A$ as its set of fixed points.
- We use a compactly decreasing sequence $\left(A_{i}\right)$ of bi-computable, effectively path-connected closed sets $A_{i}$ such that $A=\bigcap_{i=0}^{\infty} A_{i}$.
- We use the sequence $\left(A_{i}\right)$ to construct functions $g_{i}:[0,1]^{n} \rightarrow[0,1]^{n}$ and $f:=\mathrm{id}+2^{-4} \sum_{i=0}^{\infty} g_{i}$ with the property that $A$ is the set of fixed points of $f$.
- Note: with a lot of careful extra calculations one can even construct $f$ such that it has Lipschitz constant $L=6$.


## Theorem

$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}}$ for all $n \in \mathbb{N}$.
Proof. (Sketch) " $\leq_{s W}$ ".

- Given $f$ we can compute $A=\left(f-\mathrm{id}_{[0,1]^{n}}\right)^{-1}\{0\}$.
- It is sufficient to find a connectedness component of $A$.
- Using a tree of rational complexes we can find such a component since $\operatorname{ind}(f, R)$ is computable for rational complexes $R$ (Joe S. Miller 2002).


## The Brouwer Fixed Point Theorem

## Theorem <br> $\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}}$ for all $n \in \mathbb{N}$.

- How does this equivalence class depend on $n \in \mathbb{N}$ ?


## Proposition (Intermediate Value Theorem)

$\mathrm{BFT}_{1} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]} \equiv_{\mathrm{sW}}$ IVT

## The Brouwer Fixed Point Theorem

## Theorem

$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}}$ for all $n \in \mathbb{N}$.

- How does this equivalence class depend on $n \in \mathbb{N}$ ?


## Proposition (Intermediate Value Theorem)

$\mathrm{BFT}_{1} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]} \equiv_{\mathrm{sW}}$ IVT.

- It is clear that

$$
\mathrm{CC}_{[0,1]^{0}}<_{\mathrm{sW}} \mathrm{CC}_{[0,1]}<_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n+2}} \leq_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n+3}} \leq_{\mathrm{sW}} \mathrm{C}_{[0,1]}
$$

holds for all $n \in \mathbb{N}$.

- Is this reduction chain strictly increasing?


## The Brouwer Fixed Point Theorem

## Theorem

$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}}$ for all $n \in \mathbb{N}$.

- How does this equivalence class depend on $n \in \mathbb{N}$ ?


## Proposition (Intermediate Value Theorem)

$\mathrm{BFT}_{1} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]} \equiv_{\mathrm{sW}}$ IVT.

- It is clear that

$$
\mathrm{CC}_{[0,1]^{0}}<_{\mathrm{sW}} \mathrm{CC}_{[0,1]}<_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n+2}} \leq_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n+3}} \leq_{\mathrm{sW}} \mathrm{C}_{[0,1]}
$$

holds for all $n \in \mathbb{N}$.

## - Is this reduction chain strictly increasing?

## The Brouwer Fixed Point Theorem

## Theorem

$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}}$ for all $n \in \mathbb{N}$.

- How does this equivalence class depend on $n \in \mathbb{N}$ ?


## Proposition (Intermediate Value Theorem)

$\mathrm{BFT}_{1} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]} \equiv_{\mathrm{sW}}$ IVT.

- It is clear that

$$
\mathrm{CC}_{[0,1]^{0}}<_{\mathrm{sW}} \mathrm{CC}_{[0,1]}<_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n+2}} \leq_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n+3}} \leq_{\mathrm{sW}} \mathrm{C}_{[0,1]}
$$

holds for all $n \in \mathbb{N}$.

- Is this reduction chain strictly increasing?


## A Geometric Construction

## Theorem <br> $\mathrm{CC}_{[0,1]^{n}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]}$ for all $n \geq 3$.

Proof. The map

$$
A \mapsto(A \times[0,1] \times\{0\}) \cup(A \times A \times[0,1]) \cup([0,1] \times A \times\{1\})
$$

is computable and maps any non-empty closed $A \subseteq[0,1]$ to a connected non-empty closed $B \subseteq[0,1]^{3}$. Given a point $(x, y, z) \in B$, one can find a point in $A$, in fact, $x \in A$ or $y \in A$ and which one is true can be determined with $z$.

## Corollary

$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}} \equiv_{\mathrm{sW}}$ PWCC $_{[0,1]^{n}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}} \mathrm{WKL}$ for all $n \geq 3$

## A Geometric Construction

Theorem
$\mathrm{CC}_{[0,1]^{n}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]}$ for all $n \geq 3$.
Proof. The map

$$
A \mapsto(A \times[0,1] \times\{0\}) \cup(A \times A \times[0,1]) \cup([0,1] \times A \times\{1\})
$$

is computable and maps any non-empty closed $A \subseteq[0,1]$ to a connected non-empty closed $B \subseteq[0,1]^{3}$. Given a point $(x, y, z) \in B$, one can find a point in $A$, in fact, $x \in A$ or $y \in A$ and which one is true can be determined with $z$.

## A Geometric Construction

Theorem
$\mathrm{CC}_{[0,1]^{n}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]}$ for all $n \geq 3$.
Proof. The map

$$
A \mapsto(A \times[0,1] \times\{0\}) \cup(A \times A \times[0,1]) \cup([0,1] \times A \times\{1\})
$$

is computable and maps any non-empty closed $A \subseteq[0,1]$ to a connected non-empty closed $B \subseteq[0,1]^{3}$. Given a point $(x, y, z) \in B$, one can find a point in $A$, in fact, $x \in A$ or $y \in A$ and which one is true can be determined with $z$.

Corollary
$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}} \equiv_{\mathrm{sW}}$ PWCC $_{[0,1]^{n}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}}$ WKL for all $n \geq 3$.

- Open Problem: Is there such a geometric construction for dimension 2?


## A Geometric Construction

Theorem
$\mathrm{CC}_{[0,1]^{n}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]}$ for all $n \geq 3$.
Proof. The map

$$
A \mapsto(A \times[0,1] \times\{0\}) \cup(A \times A \times[0,1]) \cup([0,1] \times A \times\{1\})
$$

is computable and maps any non-empty closed $A \subseteq[0,1]$ to a connected non-empty closed $B \subseteq[0,1]^{3}$. Given a point $(x, y, z) \in B$, one can find a point in $A$, in fact, $x \in A$ or $y \in A$ and which one is true can be determined with $z$.

Corollary
$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}} \equiv_{\mathrm{sW}}$ PWCC $_{[0,1]^{n}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}}$ WKL for all $n \geq 3$.

- Open Problem: Is there such a geometric construction for dimension 2?


## A Geometric Construction

## Corollary (Orevkov 1963, Baigger 1985)

There exists a computable function $f:[0,1]^{2} \rightarrow[0,1]^{2}$ that has no computable fixed point $x \in[0,1]^{2}$.

Proof. The map

$$
A \mapsto(A \times[0,1]) \cup([0,1] \times A)
$$

is computable and maps any non-empty closed $A \subseteq[0,1]$ to a connected non-empty closed $B \subseteq[0,1]^{2}$ and given $(x, y) \in B$ we have $x \in A$ or $y \in A$ (but we cannot say which one holds).
$\square$
There exists a non-empty connected co-c.e. closed subset
$\square$

## A Geometric Construction

## Corollary (Orevkov 1963, Baigger 1985)

There exists a computable function $f:[0,1]^{2} \rightarrow[0,1]^{2}$ that has no computable fixed point $x \in[0,1]^{2}$.

Proof. The map

$$
A \mapsto(A \times[0,1]) \cup([0,1] \times A)
$$

is computable and maps any non-empty closed $A \subseteq[0,1]$ to a connected non-empty closed $B \subseteq[0,1]^{2}$ and given $(x, y) \in B$ we have $x \in A$ or $y \in A$ (but we cannot say which one holds).

Corollary
There exists a non-empty connected co-c.e. closed subset $A \subseteq[0,1]^{2}$ without computable point.

## A Geometric Construction

## Corollary (Orevkov 1963, Baigger 1985)

There exists a computable function $f:[0,1]^{2} \rightarrow[0,1]^{2}$ that has no computable fixed point $x \in[0,1]^{2}$.

Proof. The map

$$
A \mapsto(A \times[0,1]) \cup([0,1] \times A)
$$

is computable and maps any non-empty closed $A \subseteq[0,1]$ to a connected non-empty closed $B \subseteq[0,1]^{2}$ and given $(x, y) \in B$ we have $x \in A$ or $y \in A$ (but we cannot say which one holds).

## Corollary

There exists a non-empty connected co-c.e. closed subset $A \subseteq[0,1]^{2}$ without computable point.

## An Inverse Limit Construction for Dimension 2

## Theorem

$$
\mathrm{CC}_{[0,1]^{2}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]}
$$

Proof. (Sketch) In fact we use $\mathrm{C}_{[0,1]} \equiv_{\text {sw }} \overline{\text { LLPO }}$ and given an instance $p$ of this problem, we construct a connected set

$$
\begin{aligned}
A & =\left\{x \in B_{0}:(V n \in \mathbb{N}) f_{n-1}^{-1} \circ \ldots \circ f_{0}^{-1}(x) \in E_{n}(p)\right\} \subseteq[0,1]^{2} \\
& =\bigcap_{n=0}^{\infty}\left(f_{0} \circ \ldots \circ f_{n-1}\right)\left(E_{n}(p)\right)
\end{aligned}
$$

so that a point $x \in A$ allows us to compute a solution to $\widehat{\operatorname{LLPO}}(p)$.
Here the $f_{n}: B_{n+1} \hookrightarrow S_{n}$ are computable embeddings of certain blocks $B_{n}$ into certain "snakes" $S_{n} \subseteq B_{n}$. The set $E_{n}(p) \subseteq B_{n}$ reflects the information given in a certain portion of $p$.

Since $A$ is given as an intersection of a decreasing chain of non-empty compact connected sets, it is compact and connected again.

## An Inverse Limit Construction for Dimension 2

Theorem

$$
\mathrm{CC}_{[0,1]^{2}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]}
$$

Proof. (Sketch) In fact we use $\mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}} \widehat{\text { LLPO }}$ and given an instance $p$ of this problem, we construct a connected set

$$
\begin{aligned}
A & =\left\{x \in B_{0}:(\forall n \in \mathbb{N}) f_{n-1}^{-1} \circ \ldots \circ f_{0}^{-1}(x) \in E_{n}(p)\right\} \subseteq[0,1]^{2} \\
& =\bigcap_{n=0}^{\infty}\left(f_{0} \circ \ldots \circ f_{n-1}\right)\left(E_{n}(p)\right)
\end{aligned}
$$

so that a point $x \in A$ allows us to compute a solution to $\widehat{\operatorname{LLPO}}(p)$.
Here the $f_{n}: B_{n+1} \hookrightarrow S_{n}$ are computable embeddings of certain blocks $B_{n}$ into certain "snakes" $S_{n} \subseteq B_{n}$. The set $E_{n}(p) \subseteq B_{n}$ reflects the information given in a certain portion of $p$.

Since $A$ is given as an intersection of a decreasing chain of non-empty compact connected sets, it is compact and connected again.

## An Inverse Limit Construction for Dimension 2



## An Inverse Limit Construction for Dimension 2



## An Inverse Limit Construction for Dimension 2



## An Inverse Limit Construction for Dimension 2

> Corollary
> $\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}} \mathrm{WKL}$ for all $n \geq 2$.
> - The set $A$ constructed by the inverse limit construction is not pathwise connected in general.

## Question

## An Inverse Limit Construction for Dimension 2

## Corollary

$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}}$ WKL for all $n \geq 2$.

- The set $A$ constructed by the inverse limit construction is not pathwise connected in general.


## Question

PMNCC $[0,1]^{2}<$ sW PWCC $[0,1]^{3}$ ?

## An Inverse Limit Construction for Dimension 2

## Corollary

$\mathrm{BFT}_{n} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}} \mathrm{WKL}$ for all $n \geq 2$.

- The set $A$ constructed by the inverse limit construction is not pathwise connected in general.


## Question

PWCC $_{[0,1]^{2}}<_{s W}$ PWCC $_{[0,1]]^{3}}$ ?

## Lipschitz Continuity

## Lipschitz Continuity

## Definition

A function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ is Lipschitz continuous with constant $L>0$ if $\|f(x)-f(y)\| \leq L \cdot\|x-y\|$ for all $x, y \in[0,1]^{n}$.

By $\mathrm{BFT}_{n, L}$ we denote the Brouwer Fixed Point Theorem restricted to maps that are Lipschitz continuous with constant $L$.

- $\mathrm{BFT}_{n, 1}$ with $L<1$ is the Banach Fixed Point Theorem (for contractions $\left.f:[0,1]^{n} \rightarrow[0,1]^{n}\right)$ and hence computable.
- $\mathrm{BFT}_{n, L}$ with $L=1$ is the Browder-Göhde-Kirk Fixed Point Theorem (for non-expansive $f:[0,1]^{n} \rightarrow[0,1]^{n}$ )


## Theorem

$\mathrm{BFT}_{n, 1}=\ldots \mathrm{mFT}_{n}$ for all $n \in \mathbb{N}$ and $L>1$

## Lipschitz Continuity

## Definition

A function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ is Lipschitz continuous with constant $L>0$ if $\|f(x)-f(y)\| \leq L \cdot\|x-y\|$ for all $x, y \in[0,1]^{n}$.

By $\mathrm{BFT}_{n, L}$ we denote the Brouwer Fixed Point Theorem restricted to maps that are Lipschitz continuous with constant $L$.

- $\mathrm{BFT}_{n, L}$ with $L<1$ is the Banach Fixed Point Theorem (for contractions $f:[0,1]^{n} \rightarrow[0,1]^{n}$ ) and hence computable.
- $\mathrm{BFT}_{n, L}$ with $L=1$ is the Browder-Göhde-Kirk Fixed Point Theorem (for non-expansive $f:[0,1]^{n} \rightarrow[0,1]^{n}$ ).


## Theorem

$\mathrm{BFT}_{n, L} \equiv_{\mathrm{sW}} \mathrm{BFT}_{n}$ for all $n \in \mathbb{N}$ and $L>1$.


## Lipschitz Continuity

## Definition

A function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ is Lipschitz continuous with constant $L>0$ if $\|f(x)-f(y)\| \leq L \cdot\|x-y\|$ for all $x, y \in[0,1]^{n}$.

By $\mathrm{BFT}_{n, L}$ we denote the Brouwer Fixed Point Theorem restricted to maps that are Lipschitz continuous with constant $L$.

- $\mathrm{BFT}_{n, L}$ with $L<1$ is the Banach Fixed Point Theorem (for contractions $f:[0,1]^{n} \rightarrow[0,1]^{n}$ ) and hence computable.
- $\mathrm{BFT}_{n, L}$ with $L=1$ is the Browder-Göhde-Kirk Fixed Point Theorem (for non-expansive $f:[0,1]^{n} \rightarrow[0,1]^{n}$ ).


## Theorem

$\mathrm{BFT}_{n, L} \equiv_{\mathrm{sW}} \mathrm{BFT}_{n}$ for all $n \in \mathbb{N}$ and $L>1$.
Proof. Given Lipschitz continuous $f$ with constant $L>0$ and $\varepsilon<1$, we can compute $g=\mathrm{id}+\frac{\varepsilon}{1+L}(f-\mathrm{id})$ that has the same

## Lipschitz Continuity

## Definition

A function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ is Lipschitz continuous with constant $L>0$ if $\|f(x)-f(y)\| \leq L \cdot\|x-y\|$ for all $x, y \in[0,1]^{n}$.

By $\mathrm{BFT}_{n, L}$ we denote the Brouwer Fixed Point Theorem restricted to maps that are Lipschitz continuous with constant $L$.

- $\mathrm{BFT}_{n, L}$ with $L<1$ is the Banach Fixed Point Theorem (for contractions $f:[0,1]^{n} \rightarrow[0,1]^{n}$ ) and hence computable.
- $\mathrm{BFT}_{n, L}$ with $L=1$ is the Browder-Göhde-Kirk Fixed Point Theorem (for non-expansive $f:[0,1]^{n} \rightarrow[0,1]^{n}$ ).


## Theorem

$\mathrm{BFT}_{n, L} \equiv_{\mathrm{sW}} \mathrm{BFT}_{n}$ for all $n \in \mathbb{N}$ and $L>1$.
Proof. Given Lipschitz continuous $f$ with constant $L>0$ and $\varepsilon<1$, we can compute $g=\mathrm{id}+\frac{\varepsilon}{1+L}(f-\mathrm{id})$ that has the same fixed points as $f$ but Lipschitz constant $1+\varepsilon$.

## The Browder-Göhde-Kirk Fixed Point Theorem

Theorem (Eike Neumann 2015)
$\mathrm{BFT}_{n, 1} \equiv \mathrm{~W} \mathrm{XC}_{[0,1]^{n}}$ for all $n \geq 1$.
Theorem (Le Roux and Pauly 2015)
$\mathrm{CC}_{[0,1]} \equiv{ }_{W} \mathrm{XC}_{[0,1]}<\mathrm{W} \mathrm{XC}_{[0,1]^{n+2}}<\mathrm{W} \mathrm{XC}_{[0,1]^{n+3}}<\mathrm{W}_{[0,1]}$ for $n \in \mathbb{N}$.
Hence we have a trichotomy for the Brouwer Fixed Point Theorem depending on the Lipschitz constant for $n \geq 2$

For $L<1$ it is computable
For $L=1$ it gets increasingly more difficult with increasing dimension $n$.

For $L>1$ it is equivalent to $C_{[0,1]} \equiv \mathrm{W} W K L$ independently of the dimension

In dimension $n=1$ there is only a dichotomy since the second and the third case fall together with IVT

## The Browder-Göhde-Kirk Fixed Point Theorem

Theorem (Eike Neumann 2015)
$\mathrm{BFT}_{n, 1} \equiv{ }_{\mathrm{W}} \mathrm{XC}_{[0,1]^{n}}$ for all $n \geq 1$.
Theorem (Le Roux and Pauly 2015)
$\mathrm{CC}_{[0,1]} \equiv \mathrm{WX}_{[0,1]}<\mathrm{W} \mathrm{XC}_{[0,1]^{n+2}}<\mathrm{W} \mathrm{XC}_{[0,1]^{n+3}}<\mathrm{W} \mathrm{C}_{[0,1]}$ for $n \in \mathbb{N}$.
Hence we have a trichotomy for the Brouwer Fixed Point Theorem depending on the Lipschitz constant for $n \geq 2$ :

- For $L<1$ it is computable.
- For $L=1$ it gets increasingly more difficult with increasing dimension $n$.
- For $L>1$ it is equivalent to $C_{[0,1]} \equiv \mathrm{W}$ WKL independently of the dimension.

In dimension $n=1$ there is only a dichotomy since the second and the third case fall together with IVT

## The Browder-Göhde-Kirk Fixed Point Theorem

## Theorem (Eike Neumann 2015)

$$
\mathrm{BFT}_{n, 1} \equiv{ }_{\mathrm{W}} \mathrm{XC}_{[0,1]^{n}} \text { for all } n \geq 1
$$

## Theorem (Le Roux and Pauly 2015)

$\mathrm{CC}_{[0,1]} \equiv{ }_{\mathrm{W}} \mathrm{XC}_{[0,1]}<\mathrm{W} \mathrm{XC}_{[0,1]^{n+2}}<\mathrm{W} \mathrm{XC}_{[0,1]^{n+3}}<\mathrm{W} \mathrm{C}_{[0,1]}$ for $n \in \mathbb{N}$.
Hence we have a trichotomy for the Brouwer Fixed Point Theorem depending on the Lipschitz constant for $n \geq 2$ :

- For $L<1$ it is computable.
- For $L=1$ it gets increasingly more difficult with increasing dimension $n$.
- For $L>1$ it is equivalent to $C_{[0,1]} \equiv{ }_{W}$ WKL independently of the dimension.

In dimension $n=1$ there is only a dichotomy since the second and the third case fall together with IVT.

## Fixed Point Theorems in the Weihrauch Lattice

$$
\begin{aligned}
& \mathrm{BFT}_{n+2} \equiv_{\mathrm{sW}} \mathrm{BFT}_{n+2, L>1} \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]^{n+2}} \\
& \equiv_{\mathrm{sW}} \mathrm{WKL} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}} \overline{\mathrm{LLPO}}
\end{aligned}
$$



Brouwder-Göhde-Kirk Fixed Point Theorem

$$
\begin{aligned}
& \mathrm{BFT}_{1} \equiv_{\mathrm{sW}} \mathrm{BFT}_{1, L \geq 1} \equiv_{\mathrm{sW}} \text { IVT } \\
& \equiv_{\mathrm{sW}} \mathrm{CC}_{[0,1]}=\mathrm{XC}_{[0,1]}
\end{aligned}
$$

Intermediate Value Theorem


## References

- Vladimir P. Orevkov,

A constructive mapping of the square onto itself displacing every constructive point, Doklady Akademii Nauk 152 (1963) 55-58

- Günter Baigger,

Die Nichtkonstruktivität des Brouwerschen Fixpunktsatzes, Archive for Mathematical Logic 25 (1985) 183-188

- Matthew Hendtlass

Fixed point theorems in constructive analysis, Journal of Logic and Analysis 4:10 (2012) 20

- Eike Neumann

Computational problems in metric fixed point theory and their Weihrauch degrees,
Logical Methods in Computer Science 11:4 (2015) 20,44

- Stéphane Le Roux and Arno Pauly

Finite choice, convex choice and finding roots, Logical Methods in Computer Science 11:4 (2015) 6,31

- Vasco Brattka, Stéphane Le Roux, Joseph S. Miller and Arno Pauly Connected choice and the Brouwer fixed point theorem, https://arxiv.org/abs/1206. 4809 (2016)

