
The space of located subsets

Tatsuji Kawai

Universtà di Padova

Second CORE meeting, 27 January 2017, LMU

1 / 26



The space of located subsets

We are interested in a point-free topology on the located subsets of some
given structure.
Examples
I Extended Dedekind reals (L,U), i.e. extended with +∞,−∞.

I q ∈ U ⇐⇒ (∃q′ < q) q′ ∈ U,
I p ∈ L ⇐⇒ (∃p′ > p) p′ ∈ L,
I L ∩ U = ∅,
I p < q =⇒ p ∈ L ∨ q ∈ U.

An extended Dedekind reals (L,U) is equivalent to a located
(possibly unbounded) upper real U.

I q ∈ U ⇐⇒ (∃q′ < q) q′ ∈ U,
I (locatedness) p < q =⇒ p /∈ U ∨ q ∈ U.

I Compact (including ∅) subsets of a compact metric space (X, d)
with the Hausdorff metric whose values are in the extended reals.

d(A,B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
.
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Continuous covers (Continuous lattices)

An continuous cover is a structure S = (S, � ,wb) where
� ⊆ S× Pow(S) is a cover satisfying

a ∈ U
a � U

,
a � U U � V

a � V
,

U � V def⇐⇒ (∀a ∈ U) a � V,

and wb is function wb : S→ Pow(S) such that
1. a � wb(a),
2. (∀b ∈ wb(a)) b� a.

Here,� is the way-below relation

b� a def⇐⇒ ∀U ∈ Pow(S) [a � U→ (∃U0 ∈ Fin(U)) b � U0] .

Note that a� b ⇐⇒ (∃A ∈ Fin(S)) a � A & A ⊆ wb(b), so we
can safely use the notation� without compromising predicativity.

The Sat(S) def
= {AU | U ⊆ S} where AU = {a ∈ S | a � U} forms

a continuous lattice with a base {AB | B ∈ Fin(S)}.
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Located subsets of continuous covers

Fix a continuous cover S = (S, � ,wb). A subset V ⊆ S is splitting if

a � U & a ∈ V =⇒ (∃b ∈ U) b ∈ V.

Lemma. A subset V ⊆ S is splitting iff
1. a � {a0, . . . , an−1} & a ∈ V =⇒ (∃i < n) ai ∈ V ,
2. a ∈ V =⇒ (∃b� a) b ∈ V .

Proof. (⇒) 1 is trivial. 2 is by a � wb(a) and b ∈ wb(a) =⇒ b� a.
(⇐) Assume 1 & 2. Then a � U & a ∈ V by 2

==⇒(∃b�a) b∈ V def�
===⇒

(∃A ∈ Fin(U)) b � A by 1
==⇒ (∃a ∈ A) a ∈ V . �

A splitting subset V ⊆ S is a located if a� b =⇒ a /∈ V ∨ b ∈ V.

Lemma. A subset V ⊆ S is located iff a ∈ wb(b) =⇒ a /∈ V ∨ b ∈ V.

Proof. (⇐) Suppose a� b. Since
a� b ⇐⇒ (∃A ∈ Fin(S)) a � A ⊆ wb(b), either A ⊆ S \V or b ∈ V .
Hence, a /∈ V ∨ b ∈ V . �
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Examples of located subsets

Example (Scott topology on Pow(N))
Pω = (Fin(N), � ω,wb) where

A � ω U def⇐⇒ (∃B ∈ U)B ⊆ A,

wb(A) def
= {B ∈ Fin(S) | A ⊆ B} .

I V ⊆ Fin(N) is splitting iff it is closed downwards w.r.t. ⊆.
I A splitting subset V is located iff it is detachable (NB. A� A).

A splitting subset V corresponds to a subset
⋃

V ∈ Pow(N).
A located subset of Pω corresponds to a detachable subset of N.
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Examples of located subsets

Example (Scott topology on the bounded upper reals)
Ru = (Q, � u,wb) where

q � u U def⇐⇒ (∀p < q)
(
∃q′ ∈ U

)
p < q′,

wb(q) def
= {p ∈ Q | p < q} .

I V ⊆ Q is splitting iff it is an upper real, i.e.

q ∈ V ⇐⇒ (∃p < q) p ∈ V.

I A splitting subset V is located iff it is a located upper real
(extended real), i.e. p < q =⇒ p /∈ V ∨ q ∈ V .
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Examples of located subsets

Example (Binary tree C (Formal Cantor space))
C = ({0, 1}∗, � C ,wb) where

a � C U def⇐⇒ (∃k ∈ N) (∀c ∈ a[k]) (∃b ∈ U) b 4 c
⇐⇒ U is a uniform bar of a.

a[k] def
= {a ∗ b | |b| = k} ,

wb(a) def
= {b ∈ {0, 1}∗ | a 4 b} .

I V ⊆ {0, 1}∗ is splitting iff a ∈ V ⇐⇒ (∃i ∈ {0, 1}) a ∗ 〈i〉 ∈ V .
I A splitting subset V is located iff it is detachable (NB. a� a),

i.e. it is a (possibly empty) “spread”.
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Examples of located subsets

Example (Locally compact metric spaces, Palmgren (2007))
Given a (Bishop) locally compact metric space (X, d), its localic
completion is the continuous coverM(X) = (MX, � X,wb) where

I MX
def
= X ×Q>0 =

{
b(x, ε) | x ∈ X & ε ∈ Q>0} with an order

b(x, ε) <X b(y, δ) def⇐⇒ d(x, y) + ε < δ.

I a � X U def⇐⇒ (∀b <X a) (∃A ∈ Fin(U))
(
∃θ ∈ Q>0) b <θ A,

b <θ A def⇐⇒ (∀ b(x, ε) <X b) ε < θ→ (∃a ∈ A) b(x, ε) <X a.

I wb(a) def
= {b ∈ MX | b <X a}.

Consider R2. We have a � R2 {b, c}.

ab c

35 5
4

a′
b c

3 − ε
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Examples of located subsets

Proposition

I A splitting subset V ⊆ MX corresponds to a closed subset

XV
def
= {x ∈ X | (∀ b(y, δ) ∈ MX) d(x, y) < δ→ b(y, δ) ∈ V} .

A closed subset Y ⊆ X corresponds to a splitting subset

VY
def
= {b(x, ε) ∈ MX | (∃y ∈ Y) d(x, y) < ε} .

The correspondence is bijective.
I (Coquand et al. (2011)) A splitting subset V ⊆ MX is located iff

XV ⊆ X is semi-located, i.e. for each x ∈ X, the distance

d(x,XV)
def
=
{

q ∈ Q>0 | (∃y ∈ XV) d(x, y) < q
}

is a located upper real (we allow empty set to be semi-located).
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Geometric theory

A geometric theory T = (P,R) over a set P of propositional symbols
is a set R of axioms of the form

p0 ∧ · · · ∧ pn−1 `
∨
i∈I

qi
0 ∧ · · · ∧ qi

ni−1.

A model (ideal) of T is subset α ⊆ P such that

{p0, . . . , pn−1} ⊆ α =⇒ (∃i ∈ I)
{

qi
0, . . . , q

i
ni−1
}
⊆ α

for all axioms p0 ∧ · · · ∧ pn−1 `
∨

i∈I qi
0 ∧ · · · ∧ qi

ni−1 in T .

Problem. Given a continuous cover S, find a geometric theory TL
whose models are the located subsets of S.
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Geometric theory

Example (Theory of splitting subsets)
Let S = (S, � ,wb) be a continuous cover.
Recall that V ⊆ S is splitting iff

1. a � {a0, . . . , an−1} & a ∈ V =⇒ (∃i < n) ai ∈ V ,
2. a ∈ V =⇒ (∃b� a) b ∈ V .

Thus, splitting subsets of S are the models of a geometric over S
with the following axioms:

a `
∨
b�a

b, a `
∨
k<n

ak (a � {a0, . . . , an−1})

Non-example (Located subsets)
A locatedness a� b =⇒ a 6∈ V ∨ b ∈ V is not geometric.
A naive approach requires non-geometric axiom:

> ` (a→→→ ⊥) ∨ b (a� b)
where > def

= ∧∅.
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But there is a way out . . . , inspired by the following example

Example (Theory of extended Dedekind reals)
I ConsiderRu = (Q, � u,wb) whose located subsets are the

located (unbounded) upper reals.
I A located upper real is equivalent to an extended Dedekind real

(L,U), a pair of disjoint lower and upper reals that is located:
p < q =⇒ p ∈ L ∨ q ∈ U.

Extended Dedekind reals are the models of a theory TD over the
propositional symbols {(p,+∞) | p ∈ Q} ∪ {(−∞, q) | q ∈ Q} with
the following axioms:

(−∞, q) `
∨

q′<q

(−∞, q′)

(−∞, q) ` (−∞, q′) (q < q′)
Dual axioms for (p,+∞) . . . .

(q,+∞) ∧ (−∞, q) ` ⊥
> ` (p,+∞) ∧ (−∞, q) (p < q),

> def
= ∧∅, ⊥ def

= ∨∅.
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Cuts of a continuous cover

Let S = (S, � ,wb) be a continuous cover. A cut of S is a pair (L,U)
of subsets of S such that

1. a � {a0, . . . , an−1} & a ∈ U =⇒ (∃k < n) ak ∈ U,
2. a ∈ U =⇒ (∃b� a) b ∈ U,
3. a � {a0, . . . , an−1} & {a0, . . . , an−1} ⊆ L =⇒ a ∈ L,
4. a ∈ L =⇒ (∃ {a0, . . . , an−1} � a) {a0, . . . , an−1} ⊆ L,
5. L ∩ U = ∅,
6. a� b =⇒ a ∈ L ∨ b ∈ U.

Note that U is a located subset of S.
Proposition
There exists a bijective correspondence between the located subsets
of S and the cuts of S given by

V 7→ (LV ,V) ,

LV
def
= {a ∈ S | (∃ {a0, . . . , an−1} � a) (∀k < n) ak /∈ V} .
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Theory of located subsets

Given a continuous cover S, define a geometric theory TL over a
propositional symbols P = {l(a) | a ∈ S} ∪ {u(a) | a ∈ S} consisting
of axioms:

u(a) `
∨
k<n

u(ak) (a � {a0, . . . , an−1})

u(a) `
∨
b�a

u(b)

l(a0) ∧ · · · ∧ l(an−1) ` l(a) (a � {a0, . . . , an−1})

l(a) `
∨

{a0,...,an−1}�a

l(a0) ∧ · · · ∧ l(an−1)

l(a) ∧ u(a) ` ⊥
> ` l(a) ∨ u(b) (a� b)

A model α ⊆ P corresponds to a cut of S via

α 7→ ({a | l(a) ∈ α} , {a | u(a) ∈ α}) .
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Universal property

a bit of topology . . . for specialists



Formal topology

A formal topology S is a triple S = (S, � ,≤) where (S,≤) is a
preorder and � ⊆ S× Pow(S) is called a cover on S such that

a ∈ U
a � U

,
a ≤ b
a � b

,
a � U U � V

a � V
,

a � U a � V
a � U ↓ V

,

for all a, b ∈ S and U,V ⊆ S where

U ↓ V def
= ↓U ∩ ↓V = {c ∈ S | (∃a ∈ U) (∃b ∈ V) c ≤ a & c ≤ b} .

A geometric theory T over propositional symbols P determines a
formal topology ST = (Fin(P), � T ,⊇), where � T is the smallest
cover on Fin(P) such that

{p0, . . . , pn−1} � T
{{

qi
0, . . . , q

i
ni−1
}
| i ∈ I

}
for each axiom p0 ∧ · · · ∧ pn−1 `

∨
i∈I qi

0 ∧ · · · ∧ qi
ni−1 in T .
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Compact regular formal topologies

A formal topology S = (S, � ,≤) is regular if

a � {b ∈ S | b≪ a} ,

where a≪ b def⇐⇒ S � a∗ ∪ {b} and b∗ def
= {c ∈ S | b ↓ c � ∅}.

Intuitively, b≪ a ⇐⇒ “ the closure of b is contained in a ”.

A formal topology S is compact if

S � U =⇒ (∃A ∈ Fin(U)) S � A.

Lemma (Johnstone (1982))
Every compact regular formal topology S = (S, � ,≤) is a continuous
cover (S, � ,wb) with

wb(a) def
= {b ∈ S | b≪ a} .
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Morphisms

A perfect map between continuous covers S = (S, � ,wb) and
S ′ = (S′, � ′,wb′) is a relation r ⊆ S× S′ such that

1. a � ′U =⇒ r− {a} � r−U,
2. a�′ b =⇒ r− {a} � r− {b}.

Let CCov be the category of continuous covers and perfect maps.

A continuous map between formal topologies S = (S, � ,≤) and
S ′ = (S′, � ′,≤′) is a relation r ⊆ S× S′ such that

1. S � r−S′,
2. r− {a} ↓ r− {b} � r−(a ↓′ b),
3. a � ′U =⇒ r− {a} � r−U.

Lemma
Continuous maps between regular formal topologies are perfect.
Hence, the category KReg of compact regular formal topologies and
continuous maps is a full subcategory of CCov.
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The space of located subsets

Let S be a continuous cover, and let L(S) be the formal topology
associated with the geometric theory TL; call L(S) the space of
located subsets of S.
Theory TL
Propositional symbols {l(a) | a ∈ S} ∪ {u(a) | a ∈ S} with axioms:

u(a) `
∨
k<n

u(ak) (a � {a0, . . . , an−1})

u(a) `
∨
b�a

u(b)

l(a0) ∧ · · · ∧ l(an−1) ` l(a) (a � {a0, . . . , an−1})

l(a) `
∨

{a0,...,an−1}�a

l(a0) ∧ · · · ∧ l(an−1)

l(a) ∧ u(a) ` ⊥
> ` l(a) ∨ u(b) (a� b)
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Universal property

Proposition

1. L(S) is a compact regular formal topology.
2. There exists a perfect map ιS : L(S)→ S such that for any

compact regular formal topology S ′ and a perfect map r : S ′ → S,
there exists a unique continuous map r̃ : S ′ → L(S) such that

L(S)
ιS
��

S ′∃! r̃oo

r
yyS

Theorem
The construction L(S) is the right adjoint to the forgetful functor
KReg→ CCov.
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Lawson topology

Classically, the left adjoint to the forgetful functor KReg→ CCov is
defined by the Lawson topologies on continuous lattices.

Theorem
The space L(S) of located subsets of S represents the Lawson
topology on S.

The above adjunction induces a monad KL = (L, ηL, µL) on KReg.
By an easy analogy to the classical domain theory, we have

Theorem
The monad KL induced by the adjunction is naturally isomorphic to the
Vietoris monad on KReg.
Note: Vietoris monad is a point-free extension of Hausdorff metric on
compact subsets on a compact metric space.
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Summary

I The notion located subset for continuous cover captures
well-known examples of located subsets.

I Located subsets can be characterised geometrically via an
equivalent notion of cuts.

I The space L(S) of located subsets of a continuous cover S is the
Lawson topology on S.

I The monad on KReg induced by the construction L(−) is the
Vietoris monad on KReg.
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