A constructive proof of the minimax theorem

Hajime Ishihara

School of Information Science
Japan Advanced Institute of Science and Technology
(JAIST)
Nomi, Ishikawa 923-1292, Japan

second CORE meeting, LMU Munich, 27 January, 2017

The von Neumann minimax theorem

Theorem 1 (classical)
Let A be an $n \times m$ matrix. Then

$$
\max _{\mathbf{y} \in S^{m}} \min _{\mathbf{x} \in S^{n}} \mathbf{x}^{T} A \mathbf{y}=\min _{\mathbf{x} \in S^{n}} \max _{\mathbf{y} \in S^{m}} \mathbf{x}^{T} A \mathbf{y}
$$

where S^{n} is the n-dimensional simplex.

- S^{n} and S^{m} are inhabited compact convex subsets of normed spaces \mathbf{R}^{n} and \mathbf{R}^{m}, respectively;
- ($\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}^{T} A \mathbf{y}$ is a uniformly continuous function from $S^{n} \times S^{m}$ into \mathbf{R};
- $(\cdot)^{T} A \mathbf{y}: S^{n} \rightarrow \mathbf{R}$ is convex for each $\mathbf{y} \in S^{m}$;
- $\mathbf{x}^{T} A(\cdot): S^{m} \rightarrow \mathbf{R}$ is concave for each $\mathbf{x} \in S^{n}$.

Inhabited sets and constructive suprema

Definition 2

A set S is inhabited if there exists x such that $x \in S$.
Definition 3
Let S be a subset of \mathbf{R}. Then $s=\sup S \in \mathbf{R}$ is a supremum of S if $\forall x \in S(x \leq s)$ and $\forall \epsilon>0 \exists x \in S(s<x+\epsilon)$.

Proposition 4
An inhabited subset S of \mathbf{R} with an upper bound has a supremum if and only if for each $a, b \in \mathbf{R}$ with $a<b$, either $\exists x \in S(a<x)$ or $\forall x \in S(x<b)$.

Metric spaces

Definition 5

A metric space is a set X equipped with a metric d : $X \times X \rightarrow \mathbf{R}$ such that

- $d(x, y)=0 \leftrightarrow x=y$,
- $d(x, y)=d(y, x)$,
- $d(x, y) \leq d(x, z)+d(z, y)$,
for each $x, y, z \in X$.

Remark 6

Let X and Y be metric spaces with metrics d_{X} and d_{Y}, respectively. Then $X \times Y$ is a metric space with a metric

$$
d_{X \times Y}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right)
$$

for each $(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \times Y$.

Closures and closed subsets

Definition 7
The closure \bar{S} of a subset S of a metric space X is defined by

$$
\bar{S}=\{x \in X \mid \forall \epsilon>0 \exists y \in S[d(x, y)<\epsilon]\} .
$$

A subset S of a metric space X is closed if $\bar{S}=S$.
Definition 8
A sequence $\left(x_{n}\right)$ of X converges to $x \in X$ if

$$
\forall \epsilon>0 \exists N \forall n \geq N\left[d\left(x_{n}, x\right)<\epsilon\right] .
$$

Remark 9

A subset S of a metric space X is closed if and only if $x \in S$ whenever there exists a sequence $\left(x_{n}\right)$ of S converging to x.

Uniform continuity and total boundedness

Definition 10

A mapping f between metric spaces X and Y is uniformly continuous if for each $\epsilon>0$ there exists $\delta>0$ such that

$$
\forall x y \in X[d(x, y)<\delta \rightarrow d(f(x), f(y))<\epsilon] .
$$

Definition 11

A metric space X is totally bounded if for each $\epsilon>0$ there exist $x_{1}, \ldots, x_{n} \in X$ such that $\forall y \in X \exists i \in\{1, \ldots, n\}\left[d\left(x_{i}, y\right)<\epsilon\right]$.

Proposition 12
If f is a uniformly continuous function from an inhabited totally bounded metric space X into \mathbf{R}, then $\sup _{x \in X} f(x)$ exists.

Complete and compact metric spaces

Definition 13

A sequence $\left(x_{n}\right)$ of a metric space is a Cauchy sequence if

$$
\forall \epsilon>0 \exists N \forall m n \geq N\left[d\left(x_{m}, x_{n}\right)<\epsilon\right] .
$$

A metric space is complete if every Cauchy sequence converges.
Definition 14
A metric space is compact if it is totally bounded and complete.

Convex sets and convex functions

Definition 15

A subset C of a linear space is convex if $\lambda x+(1-\lambda) y \in C$ for each $x, y \in C$ and $\lambda \in[0,1]$.

Definition 16
A function f from a convex subset C of a linear space into \mathbf{R} is

- convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for each $x, y \in C$ and $\lambda \in[0,1]$;

- concave if

$$
f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y)
$$

for each $x, y \in C$ and $\lambda \in[0,1]$.

Normed spaces

Definition 17

A normed space is a linear space E equipped with a norm
$\|\cdot\|: E \rightarrow \mathbf{R}$ such that

- $\|x\|=0 \leftrightarrow x=0$,
- $\|a x\|=|a|\|x\|$,
- $\|x+y\| \leq\|x\|+\|y\|$,
for each $x, y \in E$ and $a \in \mathbf{R}$.
Note that a normed space E is a metric space with the metric

$$
d(x, y)=\|x-y\| .
$$

Definition 18
A Banach space is a normed space which is complete with respect to the metric.

The minimax theorem

Theorem 19
Let K and C be inhabited totally bounded convex subsets of normed spaces E and F, respectively, and let $f: K \times C \rightarrow \mathbf{R}$ be a uniformly continuous function such that

- $f(\cdot, y): K \rightarrow \mathbf{R}$ is convex for each $y \in C$;
- $f(x, \cdot): C \rightarrow \mathbf{R}$ is concave for each $x \in K$.

Then

$$
\sup _{y \in C} \inf _{x \in K} f(x, y)=\inf _{x \in K} \sup _{y \in C} f(x, y)
$$

General lemmata

Lemma 20

Let X and Y be inhabited totally bounded metric spaces, and let $f: X \times Y \rightarrow \mathbf{R}$ be a uniformly continuous function. Then $\sup _{y \in Y} \inf _{x \in X} f(x, y)$ and $\inf _{x \in X} \sup _{y \in Y} f(x, y)$ exist, and

$$
\sup _{y \in Y} \inf _{x \in X} f(x, y) \leq \inf _{x \in X} \sup _{y \in Y} f(x, y)
$$

Lemma 21

Let X and Y be inhabited totally bounded metric spaces, let $f: X \times Y \rightarrow \mathbf{R}$ be a uniformly continuous function, and let $c \in \mathbf{R}$. If $c<\inf _{x \in X} \sup _{y \in Y} f(x, y)$, then there exist $y_{1}, \ldots, y_{n} \in Y$ such that

$$
c<\inf _{x \in X} \max \left\{f\left(x, y_{i}\right) \mid 1 \leq i \leq n\right\} .
$$

Fan's theorem for inequalities

Theorem 22
Let K be an inhabited totally bounded convex subset of a normed space E, let f_{1}, \ldots, f_{n} be uniformly continuous convex functions from K into \mathbf{R}, and let $c \in \mathbf{R}$. Then

$$
c<\inf _{x \in K} \max \left\{f_{i}(x) \mid 1 \leq i \leq n\right\}
$$

if and only if there exist nonnegative numbers $\lambda_{1}, \ldots, \lambda_{n}$ with $\sum_{i=1}^{n} \lambda_{i}=1$ such that

$$
c<\inf _{x \in K} \sum_{i=1}^{n} \lambda_{i} f_{i}(x)
$$

Proof.
We will give a proof after a proof of the minimax theorem.

A proof of the minimax theorem

Proof.
By Lemma 20, it suffices to show that

$$
\sup _{y \in C} \inf _{x \in K} f(x, y) \geq \inf _{x \in K} \sup _{y \in C} f(x, y)
$$

Let $c=\sup _{y \in C} \inf _{x \in K} f(x, y)$, and suppose that

$$
c<\inf _{x \in K} \sup _{y \in C} f(x, y)
$$

Then, by Lemma 21, there exist $y_{1}, \ldots, y_{n} \in C$ such that

$$
c<\inf _{x \in K} \max \left\{f\left(x, y_{i}\right) \mid 1 \leq i \leq n\right\} .
$$

A proof of the minimax theorem

Proof.

Therefore, by Theorem 22, there exist nonnegative numbers $\lambda_{1}, \ldots, \lambda_{n}$ with $\sum_{i=1}^{n} \lambda_{i}=1$ such that

$$
c<\inf _{x \in K} \sum_{i=1}^{n} \lambda_{i} f\left(x, y_{i}\right)
$$

Since $f(x, \cdot): C \rightarrow \mathbf{R}$ is concave for each $x \in K$, we have

$$
c<\inf _{x \in K} \sum_{i=1}^{n} \lambda_{i} f\left(x, y_{i}\right) \leq \inf _{x \in K} f\left(x, \sum_{i=1}^{n} \lambda_{i} y_{i}\right) \leq \sup _{y \in C} \inf _{x \in K} f(x, y)
$$

a contradiction.

Hilbert spaces

Definition 23
An inner product space is a linear space E equipped with an inner product $\langle\cdot, \cdot\rangle: E \times E \rightarrow \mathbf{R}$ such that

- $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \leftrightarrow x=0$,
- $\langle x, y\rangle=\langle y, x\rangle$,
- $\langle a x, y\rangle=a\langle x, y\rangle$,
- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
for each $x, y, z \in E$ and $a \in \mathbf{R}$.
Note that an inner product space E is a normed space with the norm

$$
\|x\|=\langle x, x\rangle^{1 / 2}
$$

Definition 24
A Hilbert space is an inner product space which is a Banach space.

Hilbert spaces

Remark 25
Let E be an inner product space. Then

- $\|x+y\|^{2}=\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2}$,
- $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$
for each $x, y \in E$.
Example 26
Define an inner product on \mathbf{R}^{n} by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=0}^{n} x_{i} y_{i}
$$

for each $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{R}^{n}$.
Then \mathbf{R}^{n} is a Hilbert space.

Closest points

Lemma 27

Let C be a convex subset of a Hilbert space H, and let $x \in H$ be such that $d=d(x, C)=\inf \{\|x-y\| \mid y \in C\}$ exists. Then there exists $z \in \bar{C}$ such that $\|x-z\|=d$.

Proof.

We may assume without loss of generality that $x=0$. Let $\left(y_{n}\right)$ be a sequence in C such that $\left\|y_{n}\right\| \rightarrow d$ as $n \rightarrow \infty$. Then

$$
\begin{aligned}
\left\|y_{m}-y_{n}\right\|^{2} & =2\left\|y_{m}\right\|^{2}+2\left\|y_{n}\right\|^{2}-4\left\|\left(y_{m}+y_{n}\right) / 2\right\|^{2} \\
& \leq 2\left\|y_{m}\right\|^{2}+2\left\|y_{n}\right\|^{2}-4 d^{2} \rightarrow 0
\end{aligned}
$$

as $m, n \rightarrow \infty$, and hence $\left(y_{n}\right)$ is a Cauchy sequence in H. Therefore $\left(y_{n}\right)$ converges to a limit $z \in \bar{C}$, and so $\|z\|=d$.

A separation theorem

Proposition 28
Let C be a convex subset of a Hilbert space H, and let $x \in H$ be such that $d=d(x, C)$ exists and $0<d$. Then there exists $z_{0} \in H$ such that $\left\|z_{0}\right\|=1$ and $d+\left\langle z_{0}, x\right\rangle \leq\left\langle z_{0}, y\right\rangle$ for each $y \in C$.

A separation theorem

Proof.

We may assume without loss of generality that $x=0$. By Lemma 27 , there exists $z \in \bar{C}$ such that $\|z\|=d$. Note that $\|z\| \leq\|y\|$ for each $y \in \bar{C}$. Let $z_{0}=z / d$, and let $y \in C$. Then $\left\|z_{0}\right\|=1$. Since

$$
\begin{aligned}
\|z\|^{2} & \leq\|(1-1 / n) z+(1 / n) y\|^{2}=\|z+(1 / n)(y-z)\|^{2} \\
& =\|z\|^{2}+(2 / n)\langle z, y-z\rangle+\left(1 / n^{2}\right)\|y-z\|^{2},
\end{aligned}
$$

we have $0 \leq(2 / n)\langle z, y-z\rangle+\left(1 / n^{2}\right)\|y-z\|$ for each n, and hence

$$
0 \leq\langle z, y-z\rangle+(1 / 2 n)\|y-z\|^{2}
$$

for each n. Therefore, letting $n \rightarrow \infty$, we have $0 \leq\langle z, y-z\rangle$, and so $d^{2} \leq\langle z, y\rangle$. Thus $d \leq\left\langle z_{0}, y\right\rangle$.

Fan's theorem for inequalities

Theorem 29
Let K be an inhabited totally bounded convex subset of a normed space E, let f_{1}, \ldots, f_{n} be uniformly continuous convex functions from K into \mathbf{R}, and let $c \in \mathbf{R}$. Then

$$
c<\inf _{x \in K} \max \left\{f_{i}(x) \mid 1 \leq i \leq n\right\}
$$

if and only if there exist nonnegative numbers $\lambda_{1}, \ldots, \lambda_{n}$ with $\sum_{i=1}^{n} \lambda_{i}=1$ such that

$$
c<\inf _{x \in K} \sum_{i=1}^{n} \lambda_{i} f_{i}(x)
$$

A proof of Fan's theorem

Since the "if" part is trivial, we show the "only if" part. Define a subset C of \mathbf{R}^{n+1} by

$$
\begin{aligned}
& C=\left\{\left(u_{1}, \ldots, u_{n+1}\right) \in \mathbf{R}^{n+1} \mid\right. \\
&\left.\exists x \in K \forall i \in\{1, \ldots, n\}\left(f_{i}(x) \leq u_{i}+u_{n+1}+c\right)\right\} .
\end{aligned}
$$

Lemma 30
C is inhabited.
Proof.
Let $x_{0} \in K$, and let $t_{0} \in \mathbf{R}$ be such that $0<t_{0}$ and $\max \left\{f_{i}\left(x_{0}\right) \mid 1 \leq i \leq n\right\}<t_{0}+c$. Then $\left(0, \ldots, 0, t_{0}\right) \in C$.

A proof of Fan's theorem

Lemma 31

C is a convex subset of \mathbf{R}^{n+1}.
Proof.
Let $\mathbf{u}=\left(u_{1}, \ldots, u_{n+1}\right), \mathbf{v}=\left(v_{1}, \ldots, v_{n+1}\right) \in C$, and let $\lambda \in[0,1]$.
Then there exist x and y in K such that $f_{i}(x) \leq u_{i}+u_{n+1}+c$ and $f_{i}(y) \leq v_{i}+v_{n+1}+c$ for each $i \in\{1, \ldots, n\}$, and, since f_{i} is convex for each $i \in\{1, \ldots, n\}$, we have

$$
\begin{aligned}
f_{i}(\lambda x & +(1-\lambda) y) \leq \lambda f_{i}(x)+(1-\lambda) f_{i}(y) \\
& \leq\left(\lambda u_{i}+(1-\lambda) v_{i}\right)+\left(\lambda u_{n+1}+(1-\lambda) v_{n+1}\right)+c
\end{aligned}
$$

for each $i \in\{1, \ldots, n\}$. Therefore, since K is convex, we have $\lambda \mathbf{u}+(1-\lambda) \mathbf{v} \in C$.

A proof of Fan's theorem

Suppose that $d=d(0, C)$ exists and $0<d$.
Then, by Proposition 28, there exists $\left(\alpha_{1}, \ldots, \alpha_{n+1}\right) \in \mathbf{R}^{n+1}$ such that $\sum_{i=1}^{n+1}\left|\alpha_{i}\right|^{2}=1$ and

$$
d \leq \sum_{i=1}^{n+1} \alpha_{i} u_{i}
$$

for each $\mathbf{u} \in C$.
Lemma 32
$0<\alpha_{n+1}$ and $0 \leq \alpha_{i}$ for each $i \in\{1, \ldots, n\}$.
Proof.
Since $\left(0, \ldots, 0, t_{0}\right) \in C$, we have $d \leq \alpha_{n+1} t_{0}$, and hence $0<d / t_{0} \leq \alpha_{n+1}$. Since $\left(0, \ldots, 0, m, 0, \ldots, 0, t_{0}\right) \in C$ for each m, we have $d \leq m \alpha_{i}+\alpha_{n+1} t_{0}$ for each $i \in\{1, \ldots, n\}$ and m, and hence $0 \leq \alpha_{i}$ for each $i \in\{1, \ldots, n\}$.

A proof of Fan's theorem

Let $\lambda_{i}=\alpha_{i} / \alpha_{n+1}$ for each $i \in\{1, \ldots, n\}$, and recall that

$$
\begin{aligned}
& C=\left\{\left(u_{1}, \ldots, u_{n+1}\right) \in \mathbf{R}^{n+1}\right. \\
&\left.\exists x \in K \forall i \in\{1, \ldots, n\}\left(f_{i}(x) \leq u_{i}+u_{n+1}+c\right)\right\} .
\end{aligned}
$$

Then, for each $r \in \mathbf{R}$ and $x \in K$, since

$$
\left(f_{1}(x)-c+r, \ldots, f_{n}(x)-c+r,-r\right) \in C
$$

we have

$$
d \leq \sum_{i=1}^{n} \alpha_{i}\left(f_{i}(x)-c+r\right)-\alpha_{n+1} r
$$

and hence

$$
\frac{d}{\alpha_{n+1}} \leq \sum_{i=1}^{n} \lambda_{i}\left(f_{i}(x)-c\right)+r\left(\sum_{i=1}^{n} \lambda_{i}-1\right)
$$

A proof of Fan's theorem

Lemma 33
$\sum_{i=1}^{n} \lambda_{i}=1$.
Proof.
For $r>0$ and $x=x_{0}$, we have

$$
\frac{d}{\alpha_{n+1} r} \leq \frac{1}{r} \sum_{i=1}^{n} \lambda_{i}\left(f_{i}\left(x_{0}\right)-c\right)+\left(\sum_{i=1}^{n} \lambda_{i}-1\right)
$$

and hence, letting $r \rightarrow \infty$, we have $1 \leq \sum_{i=1}^{n} \lambda_{i}$.
For $r<0$ and $x=x_{0}$, we have

$$
\frac{d}{\alpha_{n+1} r} \geq \frac{1}{r} \sum_{i=1}^{n} \lambda_{i}\left(f_{i}\left(x_{0}\right)-c\right)+\left(\sum_{i=1}^{n} \lambda_{i}-1\right)
$$

and hence, letting $r \rightarrow-\infty$, we have $1 \geq \sum_{i=1}^{n} \lambda_{i}$.

A proof of Fan's theorem

Lemma 34
$c<\inf _{x \in K} \sum_{i=1}^{n} \lambda_{i} f_{i}(x)$.
Proof.
By Lemma 33, we have

$$
\frac{d}{\alpha_{n+1}} \leq \sum_{i=1}^{n} \lambda_{i}\left(f_{i}(x)-c\right)=\sum_{i=1}^{n} \lambda_{i} f_{i}(x)-c
$$

for each $x \in K$, and hence $c<\inf _{x \in K} \sum_{i=1}^{n} \lambda_{i} f_{i}(x)$.
It remains to show that $d=d(0, C)$ exists and $0<d$.

A proof of Fan's theorem

Lemma 35
There exists $d^{\prime}>0$ such that $d^{\prime}<\|\mathbf{u}\|$ for each $\mathbf{u} \in C$.
Proof.
Let $d^{\prime} \in \mathbf{R}$ be such that

$$
c<4 d^{\prime}+c<\inf _{x \in K} \max \left\{f_{i}(x) \mid 1 \leq i \leq n\right\},
$$

and let $\mathbf{u}=\left(u_{1}, \ldots, u_{n+1}\right) \in C$. If $\left|u_{i}\right|<2 d^{\prime}$ for each $i=1, \ldots, n+1$, then there exists $x^{\prime} \in K$ such that

$$
\begin{aligned}
f_{i}\left(x^{\prime}\right) & \leq u_{i}+u_{n+1}+c<2 d^{\prime}+2 d^{\prime}+c=4 d^{\prime}+c \\
& <\inf _{x \in K} \max \left\{f_{i}(x) \mid 1 \leq i \leq n\right\}
\end{aligned}
$$

for each $i \in\{1, \ldots, n\}$, a contradiction. Therefore $d^{\prime}<\left|u_{i}\right|$ for some $i=1, \ldots, n+1$, and so $d^{\prime}<\left(\sum_{i=1}^{n+1}\left|u_{i}\right|^{2}\right)^{1 / 2}=\|\mathbf{u}\|$.

A proof of Fan's theorem

Lemma 36
$d=d(0, C)$ exists.
Proof.
Since $\{\|\mathbf{u}\| \| \mathbf{u} \in C\}$ is inhabited and has a lower bound 0 , it suffices, by Proposition 4 , to show that for each $a, b \in \mathbf{R}$ with $a<b$, either

- $\|\mathbf{u}\|<b$ for some $\mathbf{u} \in C$, or
- $a<\|\mathbf{u}\|$ for each $\mathbf{u} \in C$.

Let $a, b \in \mathbf{R}$ with $a<b$, and let $\epsilon=(b-a) / 5$.

A proof of Fan's theorem

Proof.

Then, since f_{1}, \ldots, f_{n} are uniformly continuous, there exists $\delta>0$ such that

$$
\forall x y \in K \forall i \in\{1, \ldots, n\}\left(\|x-y\|<\delta \rightarrow\left|f_{i}(x)-f_{i}(y)\right|<\epsilon\right) .
$$

Since K is totally bounded, there exist $y_{1}, \ldots, y_{m} \in K$ such that

$$
\forall x \in K \exists j \in\{1, \ldots, m\}\left(\left\|x-y_{j}\right\|<\delta\right)
$$

Also, since

$$
B=\left\{\mathbf{w} \in \mathbf{R}^{n+1} \mid\|\mathbf{w}\|<b\right\}
$$

is a totally bounded subset of \mathbf{R}^{n+1}, there exist $\mathbf{w}^{1}=\left(w_{1}^{1}, \ldots, w_{n+1}^{1}\right), \ldots, \mathbf{w}^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{n+1}^{\prime}\right) \in B$ such that $\forall \mathbf{u} \in B \exists k \in\{1, \ldots, I\}\left(\left\|\mathbf{u}-\mathbf{w}^{k}\right\|<\epsilon\right)$.

A proof of Fan's theorem

Proof.

Either

- $\forall i \in\{1, \ldots, n\}\left(f_{i}\left(y_{j}\right)<w_{i}^{k}+w_{n+1}^{k}+c\right)$ for some $j \in\{1, \ldots, m\}$ and $k \in\{1, \ldots, /\}$, or
- $\exists i \in\{1, \ldots, n\}\left(f_{i}\left(y_{j}\right)+\epsilon>w_{i}^{k}+w_{n+1}^{k}+c\right)$ for each $j \in\{1, \ldots, m\}$ and $k \in\{1, \ldots, /\}$.
In the former case, $\|\mathbf{u}\|<b$ for some $\mathbf{u} \in C$.
In the latter case, assume that $\|\mathbf{u}\|<a+\epsilon$ for some $\mathbf{u}=\left(u_{1}, \ldots, u_{n+1}\right) \in C$.

A proof of Fan's theorem

Proof.
Then there exists $x \in K$ such that

$$
\forall i \in\{1, \ldots, n\}\left(f_{i}(x) \leq u_{i}+u_{n+1}+c\right)
$$

Therefore there exists $j \in\{1, \ldots, m\}$ such that $\left\|x-y_{j}\right\|<\delta$, and so

$$
\forall i \in\{1, \ldots, n\}\left(f_{i}\left(y_{j}\right)<f_{i}(x)+\epsilon\right)
$$

Let $\mathbf{u}^{\prime}=\left(u_{1}, \ldots, u_{n}, u_{n+1}+4 \epsilon\right)$. Then

$$
\begin{aligned}
\left\|\mathbf{u}^{\prime}\right\| & =\left(\sum_{i=1}^{n}\left|u_{i}\right|^{2}+\left|u_{n+1}+4 \epsilon\right|^{2}\right)^{1 / 2} \leq\left(\|\mathbf{u}\|^{2}+8 \epsilon\|\mathbf{u}\|+(4 \epsilon)^{2}\right)^{1 / 2} \\
& =\|\mathbf{u}\|+4 \epsilon<a+5 \epsilon=b
\end{aligned}
$$

and hence there exists $k \in\{1, \ldots, l\}$ such that $\left\|\mathbf{u}^{\prime}-\mathbf{w}^{k}\right\|<\epsilon$.

A proof of Fan's theorem

Proof.

Therefore, since
$f_{i}\left(y_{j}\right)+3 \epsilon<f_{i}(x)+4 \epsilon \leq u_{i}+\left(u_{n+1}+4 \epsilon\right)+c<w_{i}^{k}+w_{n+1}^{k}+c+2 \epsilon$
for each $i \in\{1, \ldots, n\}$, we have

$$
\forall i \in\{1, \ldots, n\}\left(f_{i}\left(y_{j}\right)+\epsilon<w_{i}^{k}+w_{n+1}^{k}+c\right)
$$

a contradiction.
Thus $a<a+\epsilon \leq\|\mathbf{u}\|$ for each $\mathbf{u} \in C$.

A generalization

Definition 37

Let X and Y be metric spaces. Then a function $f: X \times Y \rightarrow \mathbf{R}$. is convex-concave like if

- for each $x, x^{\prime} \in X$ and $\lambda \in[0,1]$, there exists $z \in X$ such that

$$
f(z, y) \leq \lambda f(x, y)+(1-\lambda) f\left(x^{\prime}, y\right)
$$

for each $y \in Y$, and

- for each $y, y^{\prime} \in Y$ and $\lambda \in[0,1]$, there exists $z \in Y$ such that

$$
f(x, z) \geq \lambda f(x, y)+(1-\lambda) f\left(x, y^{\prime}\right)
$$

for each $x \in X$.

A generalization

Definition 38
A set $\left\{f_{i} \mid i \in I\right\}$ of functions between metric spaces X and Y is uniformly equicontinuous if for each $\epsilon>0$ there exists $\delta>0$ such that

$$
\forall i \in I \forall x y \in X\left[d(x, y)<\delta \rightarrow d\left(f_{i}(x), f_{i}(y)\right)<\epsilon\right] .
$$

A generalization

Theorem 39
Let X and Y be metric spaces, and let $f: X \times Y \rightarrow \mathbf{R}$ be a convex-concave like function such that the set $\{f(\cdot, y) \mid y \in Y\}$ of functions from X into \mathbf{R} is uniformly equicontinuous. If X is totally bounded, and $\sup _{y \in Y} \inf _{x \in X} f(x, y)$ and $\inf _{x \in X} \sup _{y \in Y} f(x, y)$ exist, then

$$
\sup _{y \in Y} \inf _{x \in X} f(x, y)=\inf _{x \in X} \sup _{y \in Y} f(x, y) .
$$

Acknowledgment

The speaker thanks the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks) for supporting the research.

References

- J.M. Borwein and D. Zhuang, On Fan's minimax theorem, Math. Program. 34 (1986),232-234.
- K. Fan, Existence theorems and extreme solutions for inequalities concerning convex functions or linear transformations, Math. Z. 68 (1957),205-217.

