A constructive proof of the minimax theorem

Hajime Ishihara

School of Information Science Japan Advanced Institute of Science and Technology (JAIST) Nomi, Ishikawa 923-1292, Japan

second CORE meeting, LMU Munich, 27 January, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The von Neumann minimax theorem

Theorem 1 (classical) Let A be an $n \times m$ matrix. Then

$$\max_{\mathbf{y}\in S^m}\min_{\mathbf{x}\in S^n}\mathbf{x}^T A\mathbf{y} = \min_{\mathbf{x}\in S^n}\max_{\mathbf{y}\in S^m}\mathbf{x}^T A\mathbf{y},$$

where S^n is the n-dimensional simplex.

- Sⁿ and S^m are inhabited compact convex subsets of normed spaces ℝⁿ and ℝ^m, respectively;
- (x, y) → x^TAy is a uniformly continuous function from Sⁿ × S^m into R;
- $(\cdot)^T A \mathbf{y} : S^n \to \mathbf{R}$ is convex for each $\mathbf{y} \in S^m$;
- ▶ $\mathbf{x}^T A(\cdot) : S^m \to \mathbf{R}$ is concave for each $\mathbf{x} \in S^n$.

Inhabited sets and constructive suprema

Definition 2 A set S is inhabited if there exists x such that $x \in S$.

Definition 3

Let S be a subset of **R**. Then $s = \sup S \in \mathbf{R}$ is a supremum of S if $\forall x \in S(x \le s)$ and $\forall \epsilon > 0 \exists x \in S(s < x + \epsilon)$.

Proposition 4

An inhabited subset S of **R** with an upper bound has a supremum if and only if for each $a, b \in \mathbf{R}$ with a < b, either $\exists x \in S(a < x)$ or $\forall x \in S(x < b)$.

Metric spaces

Definition 5

A metric space is a set X equipped with a metric $d: X \times X \to \mathbf{R}$ such that

•
$$d(x,y) = 0 \leftrightarrow x = y$$
,

$$\blacktriangleright d(x,y) = d(y,x),$$

•
$$d(x,y) \leq d(x,z) + d(z,y)$$
,

for each $x, y, z \in X$.

Remark 6

Let X and Y be metric spaces with metrics d_X and d_Y , respectively. Then $X \times Y$ is a metric space with a metric

$$d_{X \times Y}((x, y), (x', y')) = d_X(x, x') + d_Y(y, y')$$

for each $(x, y), (x', y') \in X \times Y$.

Closures and closed subsets

Definition 7 The closure \overline{S} of a subset S of a metric space X is defined by

$$\overline{S} = \{x \in X \mid \forall \epsilon > 0 \exists y \in S[d(x, y) < \epsilon]\}.$$

A subset S of a metric space X is closed if $\overline{S} = S$.

Definition 8 A sequence (x_n) of X converges to $x \in X$ if

$$\forall \epsilon > 0 \exists N \forall n \geq N[d(x_n, x) < \epsilon].$$

Remark 9

A subset S of a metric space X is closed if and only if $x \in S$ whenever there exists a sequence (x_n) of S converging to x.

Uniform continuity and total boundedness

Definition 10

A mapping f between metric spaces X and Y is uniformly continuous if for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$\forall xy \in X[d(x,y) < \delta \rightarrow d(f(x),f(y)) < \epsilon].$$

Definition 11

A metric space X is totally bounded if for each $\epsilon > 0$ there exist $x_1, \ldots, x_n \in X$ such that $\forall y \in X \exists i \in \{1, \ldots, n\} [d(x_i, y) < \epsilon].$

Proposition 12

If f is a uniformly continuous function from an inhabited totally bounded metric space X into **R**, then $\sup_{x \in X} f(x)$ exists.

Complete and compact metric spaces

Definition 13

A sequence (x_n) of a metric space is a Cauchy sequence if

$$\forall \epsilon > 0 \exists N \forall mn \geq N[d(x_m, x_n) < \epsilon].$$

A metric space is complete if every Cauchy sequence converges.

Definition 14

A metric space is compact if it is totally bounded and complete.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Convex sets and convex functions

Definition 15

A subset C of a linear space is convex if $\lambda x + (1 - \lambda)y \in C$ for each $x, y \in C$ and $\lambda \in [0, 1]$.

Definition 16

A function f from a convex subset C of a linear space into **R** is \triangleright convex if

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

for each $x, y \in C$ and $\lambda \in [0, 1]$;

concave if

$$f(\lambda x + (1-\lambda)y) \geq \lambda f(x) + (1-\lambda)f(y)$$

for each $x, y \in C$ and $\lambda \in [0, 1]$.

Normed spaces

Definition 17 A normed space is a linear space E equipped with a norm $\|\cdot\|: E \to \mathbf{R}$ such that

$$\bullet ||x|| = 0 \leftrightarrow x = 0,$$

•
$$||ax|| = |a|||x||,$$

►
$$||x + y|| \le ||x|| + ||y||,$$

for each $x, y \in E$ and $a \in \mathbf{R}$.

Note that a normed space E is a metric space with the metric

$$d(x,y) = \|x-y\|.$$

Definition 18

A Banach space is a normed space which is complete with respect to the metric.

The minimax theorem

Theorem 19

Let K and C be inhabited totally bounded convex subsets of normed spaces E and F, respectively, and let $f : K \times C \rightarrow \mathbf{R}$ be a uniformly continuous function such that

• $f(\cdot, y) : K \to \mathbf{R}$ is convex for each $y \in C$;

• $f(x, \cdot) : C \to \mathbf{R}$ is concave for each $x \in K$.

Then

$$\sup_{y\in C}\inf_{x\in K}f(x,y)=\inf_{x\in K}\sup_{y\in C}f(x,y).$$

General lemmata

Lemma 20

Let X and Y be inhabited totally bounded metric spaces, and let $f: X \times Y \to \mathbf{R}$ be a uniformly continuous function. Then $\sup_{y \in Y} \inf_{x \in X} f(x, y)$ and $\inf_{x \in X} \sup_{y \in Y} f(x, y)$ exist, and

$$\sup_{y\in Y} \inf_{x\in X} f(x,y) \leq \inf_{x\in X} \sup_{y\in Y} f(x,y).$$

Lemma 21

Let X and Y be inhabited totally bounded metric spaces, let $f: X \times Y \to \mathbf{R}$ be a uniformly continuous function, and let $c \in \mathbf{R}$. If $c < \inf_{x \in X} \sup_{y \in Y} f(x, y)$, then there exist $y_1, \ldots, y_n \in Y$ such that

$$c < \inf_{x \in X} \max\{f(x, y_i) \mid 1 \le i \le n\}.$$

Fan's theorem for inequalities

Theorem 22

Let K be an inhabited totally bounded convex subset of a normed space E, let f_1, \ldots, f_n be uniformly continuous convex functions from K into **R**, and let $c \in \mathbf{R}$. Then

$$c < \inf_{x \in \mathcal{K}} \max\{f_i(x) \mid 1 \le i \le n\}$$

if and only if there exist nonnegative numbers $\lambda_1, \ldots, \lambda_n$ with $\sum_{i=1}^n \lambda_i = 1$ such that

$$c < \inf_{x \in K} \sum_{i=1}^n \lambda_i f_i(x).$$

Proof.

We will give a proof after a proof of the minimax theorem.

A proof of the minimax theorem

Proof. By Lemma 20, it suffices to show that

$$\sup_{y\in C}\inf_{x\in K}f(x,y)\geq \inf_{x\in K}\sup_{y\in C}f(x,y).$$

Let $c = \sup_{y \in C} \inf_{x \in K} f(x, y)$, and suppose that

 $c < \inf_{x \in K} \sup_{y \in C} f(x, y).$

Then, by Lemma 21, there exist $y_1, \ldots, y_n \in C$ such that

$$c < \inf_{x \in \mathcal{K}} \max\{f(x, y_i) \mid 1 \le i \le n\}.$$

A proof of the minimax theorem

Proof.

Therefore, by Theorem 22, there exist nonnegative numbers $\lambda_1, \ldots, \lambda_n$ with $\sum_{i=1}^n \lambda_i = 1$ such that

$$c < \inf_{x \in K} \sum_{i=1}^n \lambda_i f(x, y_i).$$

Since $f(x, \cdot) : C \to \mathbf{R}$ is concave for each $x \in K$, we have

$$c < \inf_{x \in K} \sum_{i=1}^n \lambda_i f(x, y_i) \le \inf_{x \in K} f(x, \sum_{i=1}^n \lambda_i y_i) \le \sup_{y \in C} \inf_{x \in K} f(x, y),$$

a contradiction.

Hilbert spaces

Definition 23

An inner product space is a linear space E equipped with an inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathbf{R}$ such that

• $\langle x,x
angle \geq 0$ and $\langle x,x
angle = 0 \leftrightarrow x = 0$,

$$\blacktriangleright \langle x, y \rangle = \langle y, x \rangle,$$

$$\flat \langle ax, y \rangle = a \langle x, y \rangle,$$

$$\land \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

for each $x, y, z \in E$ and $a \in \mathbf{R}$.

Note that an inner product space E is a normed space with the norm

$$\|x\| = \langle x, x \rangle^{1/2}.$$

Definition 24 A Hilbert space is an inner product space which is a Banach space.

Hilbert spaces

Remark 25

Let E be an inner product space. Then

►
$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$
,
► $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$
for each $x, y \in E$.

Example 26

Define an inner product on \mathbf{R}^n by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=0}^{n} x_i y_i$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for each $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbf{R}^n$. Then \mathbf{R}^n is a Hilbert space.

Closest points

Lemma 27

Let C be a convex subset of a Hilbert space H, and let $x \in H$ be such that $d = d(x, C) = \inf\{||x - y|| \mid y \in C\}$ exists. Then there exists $z \in \overline{C}$ such that ||x - z|| = d.

Proof.

We may assume without loss of generality that x = 0. Let (y_n) be a sequence in C such that $||y_n|| \to d$ as $n \to \infty$. Then

$$||y_m - y_n||^2 = 2||y_m||^2 + 2||y_n||^2 - 4||(y_m + y_n)/2||^2$$

$$\leq 2||y_m||^2 + 2||y_n||^2 - 4d^2 \to 0$$

as $m, n \to \infty$, and hence (y_n) is a Cauchy sequence in H. Therefore (y_n) converges to a limit $z \in \overline{C}$, and so ||z|| = d.

A separation theorem

Proposition 28

Let C be a convex subset of a Hilbert space H, and let $x \in H$ be such that d = d(x, C) exists and 0 < d. Then there exists $z_0 \in H$ such that $||z_0|| = 1$ and $d + \langle z_0, x \rangle \leq \langle z_0, y \rangle$ for each $y \in C$.

A separation theorem

Proof.

We may assume without loss of generality that x = 0. By Lemma 27, there exists $z \in \overline{C}$ such that ||z|| = d. Note that $||z|| \le ||y||$ for each $y \in \overline{C}$. Let $z_0 = z/d$, and let $y \in C$. Then $||z_0|| = 1$. Since

$$\begin{split} |z||^2 &\leq \|(1-1/n)z + (1/n)y\|^2 = \|z + (1/n)(y-z)\|^2 \\ &= \|z\|^2 + (2/n)\langle z, y-z\rangle + (1/n^2)\|y-z\|^2, \end{split}$$

we have $0 \leq (2/n)\langle z, y-z \rangle + (1/n^2) ||y-z||$ for each *n*, and hence

$$0 \leq \langle z, y - z \rangle + (1/2n) \|y - z\|^2$$

for each *n*. Therefore, letting $n \to \infty$, we have $0 \le \langle z, y - z \rangle$, and so $d^2 \le \langle z, y \rangle$. Thus $d \le \langle z_0, y \rangle$.

Fan's theorem for inequalities

Theorem 29

Let K be an inhabited totally bounded convex subset of a normed space E, let f_1, \ldots, f_n be uniformly continuous convex functions from K into **R**, and let $c \in \mathbf{R}$. Then

$$c < \inf_{x \in K} \max\{f_i(x) \mid 1 \le i \le n\}$$

if and only if there exist nonnegative numbers $\lambda_1, \ldots, \lambda_n$ with $\sum_{i=1}^n \lambda_i = 1$ such that

$$c < \inf_{x \in K} \sum_{i=1}^n \lambda_i f_i(x).$$

Since the "if" part is trivial, we show the "only if" part. Define a subset C of \mathbf{R}^{n+1} by

$$C = \{ (u_1, \dots, u_{n+1}) \in \mathbf{R}^{n+1} \mid \\ \exists x \in K \forall i \in \{1, \dots, n\} (f_i(x) \le u_i + u_{n+1} + c) \}.$$

Lemma 30 *C* is inhabited.

Proof.

Let $x_0 \in K$, and let $t_0 \in \mathbf{R}$ be such that $0 < t_0$ and max $\{f_i(x_0) \mid 1 \le i \le n\} < t_0 + c$. Then $(0, \dots, 0, t_0) \in C$.

Lemma 31 *C* is a convex subset of \mathbf{R}^{n+1} .

Proof.

Let $\mathbf{u} = (u_1, \ldots, u_{n+1}), \mathbf{v} = (v_1, \ldots, v_{n+1}) \in C$, and let $\lambda \in [0, 1]$. Then there exist x and y in K such that $f_i(x) \leq u_i + u_{n+1} + c$ and $f_i(y) \leq v_i + v_{n+1} + c$ for each $i \in \{1, \ldots, n\}$, and, since f_i is convex for each $i \in \{1, \ldots, n\}$, we have

$$egin{aligned} &f_i(\lambda x+(1-\lambda)y)\leq \lambda f_i(x)+(1-\lambda)f_i(y)\ &\leq (\lambda u_i+(1-\lambda)v_i)+(\lambda u_{n+1}+(1-\lambda)v_{n+1})+c \end{aligned}$$

for each $i \in \{1, ..., n\}$. Therefore, since K is convex, we have $\lambda \mathbf{u} + (1 - \lambda)\mathbf{v} \in C$.

Suppose that d = d(0, C) exists and 0 < d. Then, by Proposition 28, there exists $(\alpha_1, \ldots, \alpha_{n+1}) \in \mathbf{R}^{n+1}$ such that $\sum_{i=1}^{n+1} |\alpha_i|^2 = 1$ and

$$d \leq \sum_{i=1}^{n+1} \alpha_i u_i$$

for each $\mathbf{u} \in C$.

Lemma 32

 $0 < \alpha_{n+1}$ and $0 \le \alpha_i$ for each $i \in \{1, \ldots, n\}$.

Proof.

Since $(0, \ldots, 0, t_0) \in C$, we have $d \leq \alpha_{n+1}t_0$, and hence $0 < d/t_0 \leq \alpha_{n+1}$. Since $(0, \ldots, 0, m, 0, \ldots, 0, t_0) \in C$ for each m, we have $d \leq m\alpha_i + \alpha_{n+1}t_0$ for each $i \in \{1, \ldots, n\}$ and m, and hence $0 \leq \alpha_i$ for each $i \in \{1, \ldots, n\}$.

Let
$$\lambda_i = \alpha_i / \alpha_{n+1}$$
 for each $i \in \{1, \dots, n\}$, and recall that

$$C = \{(u_1, \dots, u_{n+1}) \in \mathbf{R}^{n+1} \mid \\ \exists x \in K \forall i \in \{1, \dots, n\} (f_i(x) \le u_i + u_{n+1} + c)\}.$$

Then, for each $r \in \mathbf{R}$ and $x \in K$, since

$$(f_1(x)-c+r,\ldots,f_n(x)-c+r,-r)\in C,$$

we have

$$d \leq \sum_{i=1}^{n} \alpha_i (f_i(x) - c + r) - \alpha_{n+1} r,$$

and hence

$$\frac{d}{\alpha_{n+1}} \leq \sum_{i=1}^n \lambda_i (f_i(x) - c) + r \left(\sum_{i=1}^n \lambda_i - 1 \right).$$

Lemma 33 $\sum_{i=1}^{n} \lambda_i = 1.$

Proof.

For r > 0 and $x = x_0$, we have

$$\frac{d}{\alpha_{n+1}r} \leq \frac{1}{r}\sum_{i=1}^n \lambda_i(f_i(x_0)-c) + \left(\sum_{i=1}^n \lambda_i-1\right),$$

and hence, letting $r \to \infty$, we have $1 \le \sum_{i=1}^{n} \lambda_i$. For r < 0 and $x = x_0$, we have

$$\frac{d}{\alpha_{n+1}r} \geq \frac{1}{r}\sum_{i=1}^n \lambda_i(f_i(x_0)-c) + \left(\sum_{i=1}^n \lambda_i-1\right),$$

and hence, letting $r \to -\infty$, we have $1 \ge \sum_{i=1}^n \lambda_i$.

Lemma 34 $c < \inf_{x \in K} \sum_{i=1}^{n} \lambda_i f_i(x).$

Proof. By Lemma 33, we have

$$\frac{d}{\alpha_{n+1}} \leq \sum_{i=1}^n \lambda_i (f_i(x) - c) = \sum_{i=1}^n \lambda_i f_i(x) - c$$

for each $x \in K$, and hence $c < \inf_{x \in K} \sum_{i=1}^{n} \lambda_i f_i(x)$.

It remains to show that d = d(0, C) exists and 0 < d.

Lemma 35 There exists d' > 0 such that $d' < ||\mathbf{u}||$ for each $\mathbf{u} \in C$.

Proof. Let $d' \in \mathbf{R}$ be such that

$$c < 4d' + c < \inf_{x \in \mathcal{K}} \max\{f_i(x) \mid 1 \le i \le n\},$$

and let $\mathbf{u} = (u_1, \dots, u_{n+1}) \in C$. If $|u_i| < 2d'$ for each $i = 1, \dots, n+1$, then there exists $x' \in K$ such that

$$f_i(x') \le u_i + u_{n+1} + c < 2d' + 2d' + c = 4d' + c$$

 $< \inf_{x \in K} \max\{f_i(x) \mid 1 \le i \le n\}$

for each $i \in \{1, \ldots, n\}$, a contradiction. Therefore $d' < |u_i|$ for some $i = 1, \ldots, n+1$, and so $d' < (\sum_{i=1}^{n+1} |u_i|^2)^{1/2} = ||\mathbf{u}||$.

Lemma 36 d = d(0, C) exists.

Proof.

Since $\{ \|\mathbf{u}\| \mid \mathbf{u} \in C \}$ is inhabited and has a lower bound 0, it suffices, by Proposition 4, to show that for each $a, b \in \mathbf{R}$ with a < b, either

- $\|\mathbf{u}\| < b$ for some $\mathbf{u} \in C$, or
- $a < ||\mathbf{u}||$ for each $\mathbf{u} \in C$.

Let $a, b \in \mathbf{R}$ with a < b, and let $\epsilon = (b - a)/5$.

Proof.

Then, since f_1, \ldots, f_n are uniformly continuous, there exists $\delta > 0$ such that

$$\forall xy \in K \forall i \in \{1, \ldots, n\} (\|x - y\| < \delta \rightarrow |f_i(x) - f_i(y)| < \epsilon).$$

Since K is totally bounded, there exist $y_1, \ldots, y_m \in K$ such that

$$\forall x \in K \exists j \in \{1, \ldots, m\} (\|x - y_j\| < \delta).$$

Also, since

$$B = \{ \mathbf{w} \in \mathbf{R}^{n+1} \mid \|\mathbf{w}\| < b \}$$

is a totally bounded subset of \mathbf{R}^{n+1} , there exist $\mathbf{w}^1 = (w_1^1, \dots, w_{n+1}^1), \dots, \mathbf{w}^l = (w_1^l, \dots, w_{n+1}^l) \in B$ such that $\forall \mathbf{u} \in B \exists k \in \{1, \dots, l\} (\|\mathbf{u} - \mathbf{w}^k\| < \epsilon).$

Proof.

Either

In the former case, $\|\mathbf{u}\| < b$ for some $\mathbf{u} \in C$. In the latter case, assume that $\|\mathbf{u}\| < a + \epsilon$ for some $\mathbf{u} = (u_1, \dots, u_{n+1}) \in C$.

Proof.

Then there exists $x \in K$ such that

$$\forall i \in \{1,\ldots,n\} (f_i(x) \leq u_i + u_{n+1} + c).$$

Therefore there exists $j \in \{1, \dots, m\}$ such that $\|x - y_j\| < \delta$, and so

$$\forall i \in \{1,\ldots,n\}(f_i(y_j) < f_i(x) + \epsilon).$$

Let $\mathbf{u}' = (u_1, \dots, u_n, u_{n+1} + 4\epsilon)$. Then

$$\|\mathbf{u}'\| = \left(\sum_{i=1}^{n} |u_i|^2 + |u_{n+1} + 4\epsilon|^2\right)^{1/2} \le \left(\|\mathbf{u}\|^2 + 8\epsilon\|\mathbf{u}\| + (4\epsilon)^2\right)^{1/2}$$

= $\|\mathbf{u}\| + 4\epsilon < a + 5\epsilon = b,$

and hence there exists $k \in \{1, \dots, l\}$ such that $\| \mathbf{u}' - \mathbf{w}^k \| < \epsilon.$ $\ \ \Box$

Proof. Therefore, since

$$f_i(y_j) + 3\epsilon < f_i(x) + 4\epsilon \le u_i + (u_{n+1} + 4\epsilon) + c < w_i^k + w_{n+1}^k + c + 2\epsilon$$

for each $i \in \{1, \ldots, n\}$, we have

$$\forall i \in \{1,\ldots,n\}(f_i(y_j) + \epsilon < w_i^k + w_{n+1}^k + c),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

a contradiction.

Thus $a < a + \epsilon \le ||\mathbf{u}||$ for each $\mathbf{u} \in C$.

A generalization

Definition 37

Let X and Y be metric spaces. Then a function $f : X \times Y \rightarrow \mathbf{R}$. is convex-concave like if

▶ for each $x, x' \in X$ and $\lambda \in [0, 1]$, there exists $z \in X$ such that

$$f(z,y) \leq \lambda f(x,y) + (1-\lambda)f(x',y)$$

for each $y \in Y$, and

▶ for each $y, y' \in Y$ and $\lambda \in [0, 1]$, there exists $z \in Y$ such that

$$f(x,z) \geq \lambda f(x,y) + (1-\lambda)f(x,y')$$

for each $x \in X$.

A generalization

Definition 38

A set $\{f_i \mid i \in I\}$ of functions between metric spaces X and Y is uniformly equicontinuous if for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$\forall i \in I \forall xy \in X[d(x, y) < \delta \rightarrow d(f_i(x), f_i(y)) < \epsilon].$$

A generalization

Theorem 39

Let X and Y be metric spaces, and let $f : X \times Y \to \mathbf{R}$ be a convex-concave like function such that the set $\{f(\cdot, y) \mid y \in Y\}$ of functions from X into \mathbf{R} is uniformly equicontinuous. If X is totally bounded, and $\sup_{y \in Y} \inf_{x \in X} f(x, y)$ and $\inf_{x \in X} \sup_{y \in Y} f(x, y)$ exist, then

$$\sup_{y\in Y} \inf_{x\in X} f(x,y) = \inf_{x\in X} \sup_{y\in Y} f(x,y).$$

Acknowledgment

The speaker thanks the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks) for supporting the research.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

References

 J.M. Borwein and D. Zhuang, On Fan's minimax theorem, Math. Program. 34 (1986),232-234.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 K. Fan, Existence theorems and extreme solutions for inequalities concerning convex functions or linear transformations, Math. Z. 68 (1957),205–217.