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Normed spaces

Definition
A normed space is a linear space E equipped with a norm
Il -] : E— R such that

> [[x|| =0+ x=0,
> [Jax]| = falllx]]
> x+yll < x4y,
for each x,y € E and a € R.
Note that a normed space E is a metric space with the metric

d(x,y) =[x =yl
Definition

A Banach space is a normed space which is complete with respect
to the metric.



Examples

For1 < p < oo, let
1P = {(x) € RN | 3202 [xn]P < o0}
and define a norm by

1)l = (32520 1xalP) /P

Then [P is a (separable) Banach space.



Examples

Classically the normed space
1% = {(x,) € RN | (x,) is bounded}

with the norm

1) | = sup [xa]
n

is an inseparable Banach space.

However, constructively, it is not a normed space.



Linear mappings

Definition
A mapping T between linear spaces E and F is linear if
» T(ax)=aTx,

> T(x+y)=Tx+ Ty
for each x,y € E and a € R.
Definition

A linear functional f on a linear space E is a linear mapping from
E into R.



Bounded linear mappings

Definition
A linear mapping T between normed spaces E and F is bounded if
there exists ¢ > 0 such that

[T < cllx|l
for each x € E.

Proposition

Let T be a linear mapping between normed spaces E and F. Then
the following are equivalent.

» T is continuous,
» T is uniformly continuous,

» T is bounded.



Normable linear mappings

Classicaly, for a bounded linear mapping T between normed
spaces, its norm

[Tl = sup [[Tx|
Ixl<1

always exists, and hence the set E’ of all bounded linear fuctionals
on a normed space E forms a Banach space.

However it is not always the case constructively.
Definition

A linear mapping T between normed spaces is normable if

ITl = sup [[Tx|
<1

exists.



Remark

Let E* be the set of all normable linear fuctionals on a normed
space E.

Open Problem
Under what condition does E* become a linear space?

Note that (/P)* is a linear space for 1 < p < oo, and H* is a linear
space for a Hilbert space H.



Convex and sublinear functions

Definition

A function p form a linear space E into R is convex if
P(Ax+ (1= A)y) < Ap(x) + (1 = A)p(y)

for each x,y € E and X\ € [0, 1].

Definition

A function p form a linear space E into R is sublinear if
> p(ax) = ap(x),
> p(x+y) < p(x)+p(y)

for each x,y € E and a € R with a > 0.

Note that sublinear functions are convex.



Classical Hahn-Banach theorem

Theorem (Hahn-Banach Theorem, Rudin 1991)

Let p be a sublinear function on a linear space E, let M be a
subspace of E, and let f be a linear functional on M such that
f(x) < p(x) for each x € M. Then there exists a linear functional
g on E such that g(x) = f(x) for each x € M and g(y) < p(y)
for each y € E.



Corollaries

Corollary

Let M be a subspace of a normed space E, and let f be a bounded
linear functional on M. Then there exists a bounded linear
functional g on E such that g(x) = f(x) for each x € M and

gl = 11l

Corollary

Let x be a nonzero element of a normed space E. Then there
exists a bounded linear functional f on E such that f(x) = ||x||
and ||f]| = 1.



Constructive Hahn-Banach theorem

Theorem (Bishop 1967)

Let M be a subspace of a separable normed space E, and let f be
a nonzero normable linear functional on M. Then for each ¢ > 0
there exists a normable linear functional g on E such that

g(x) = f(x) for each x € M and ||g|| < ||f|| +e.

Corollary

Let x be a nonzero element of a separable normed space E. Then
for each € > 0 there exists a normable linear functional f on E
such that f(x) = ||x|| and ||f|| < 1+e.



Hilbert spaces

Definition
An inner product space is a linear space E equipped with an inner
product (-,-) : E X E — R such that
» (x,x) >0and (x,x) =0+ x =0,
> (X, y) =y, x),
> (ax,y) = a(x,y),
> (xt+y,z)=(x,2) +(y,2)
for each x,y,z € E and a € R.

Note that an inner product space E is a normed space with the
norm
1/2
x| = (x, )2,
Definition
A Hilbert space is an inner product space which is a Banach space.



Example

Let
17 ={(xn) € RN [ 3202 [xa|? < 00}

and define an inner product by

((xn), (vn)) = Ziio XnYn-

Then /? is a Hilbert space.



Riesz theorem

Proposition (Bishop 1967)
Let f be a bounded linear functional on a Hilbert space H. Then f
is normable if and only if there exists xo € H such that

f(x) = (x,x0)
for each x € H.

Corollary
Let x be a nonzero element of a Hilbert space H. Then there

exists a normable linear functional f on H such that f(x) = ||x||
and ||f|| = 1.



The Hahn-Banach theorem in Hilbert spaces

Theorem

Let M be a subspace of a Hilbert space H, and let f be a normable
linear functional on M. Then there exists a normable linear
functional g on H such that g(x) = f(x) for each x € M and

gl = 111l

Proof.
Let M be the closure of M. Then there exists a normable
extension f of f on M. Since M is a Hilbert space, there exists
xo € M such that

F(x) = (x,%0)

for each x € M. Let g(x) = (x, xo) for each x € H. Then it is
straightforwad to show that g(x) = f(x) for each x € M and
gl =11l 0



Differentiations

Let f : E — R be a real-valued function on a normed space E.

Definition

f is Gateaux differentiable at x € E with the derivative g : E — R
if for each y € E with |ly|| =1 and € > 0 there exists 6 > 0 such
that

Vt e R(|t] < 8 — |f(x + ty) — F(x) — tg(y)| < €|t]).

Note that if f is convex, then g is linear.

Definition
f is Fréchet differentiable at x € E with the derivative g : E — R
if for each € > 0 there exists > 0 such that

Vy € EVt € R(||ly|| = 1A|t] < d—=|f(x+ty)—f(x)—tg(y)| < €|t]).



Gateaux differentiable norm

Proposition (I 1989)

Let x be a nonzero element of a normed linear space E whose norm
is Gateaux differentiable at x. Then there exists a unique normable
linear functional f on E such that f(x) = ||x|| and ||f|| = 1.

Proof.
Take the derivative f of the norm at x. O

Remark
The norm of /P for 1 < p < oo and the norm of a Hilbert space are
Gateaux (even Fréchet) differentiable at each x € E with x # 0.



Uniformly convex spaces

Definition
A normed space E is uniformly convex if for each € > 0 there exists
6 > 0 such that

Ix =yl =e=l(x+y)/2 <1-4
for each x,y € E with [|x|| = ||y]| = 1.

Proposition (Bishop 1967)

Let f be a nonzero normable linear functional on a uniformly
convex Banach space E. Then there exists x € E such that
f(x) = [Ifll and |[x|| = 1.

Remark
IP for 1 < p < oo and a Hilbert space are uniformly convex.



The Hahn-Banach theorem in Banach spaces

The norm of a normed space E is Gateaux (Fréchet) differentiable
if it is Gateaux (Fréchet) differentiable at each x € E with || x| = 1.

Theorem (I 1989)

Let M be a subspace of a uniformly convex Banach space E with a
Gateaux differentiable norm, and let f be a normable linear
functional on M. Then there exists a unique normable linear
functional g on H such that g(x) = f(x) for each x € M and

gl = 11l

Proof.

We may assume without loss of generality that ||f|| = 1. Let M be
the closure of M. Then there exists a normable extension f of f on
M. Since M is a uniformly convex Banach, there exists x € M such
that f(x) = ||x|| = 1. Take the derivative g of the norm at x. [



The separation theorem in Banach spaces

Theorem (I 1989)

Let C and D be subsets of a uniformly convex Banach space E
with a Gateaux differentiable norm, whose algebraic difference

D-C={y—x|yeD,xeC}
is located and convex, and whose mutual distance
d=inf{lly — x| |y € D,x € C}

is positive. Then there exists a normable linear functional f on E
such that ||f|| = 1 and

fly) > f(x)+d

for each y € D and x € C.



Remark

Open Problem

With a differentability condition on p, does the following full
Hahn-Banach theorem hold?

Let p be a sublinear function on a linear space E, let M be a
subspace of E, and let f be a linear functional on M such that
f(x) < p(x) for each x € M. Then there exists a linear functional
g on E such that g(x) = f(x) for each x € M and g(y) < p(y)
for each y € E.

The above full Hahn-Banach theorem has various applications in
game theory (for example, von Neumann minimax theorem).



Locating subsets

Definition
A subset S of a normed space E is located if

inf ||[x —
y€es H }/H
exists for each x € E.

Remark

Locating a subset S of a normed space E amounts to computing
an infimum of the convex function f : S — R defined by

Frym x—yl.



Weakly totally bounded sets

Definition
A subset S of a normed space E is weakly totally bounded if

{f(x) [ x5}

is a totally bounded subset of R for each normable linear functional
fonE.

Lemma

A convex subset C of a normed space E is weakly totally bounded
if and only if sup{f(x) | x € C} exists for each normable linear
functional f on E.



Locating subsets in Hirbert spaces

Proposition (I 2001)

Let C be a bounded, convex subset of an inner product space H.
Then C is located if and only if C is weakly totally bounded.
Proposition (I 2001)

Let C be a convex subset of a Hilbert space H. If C is weakly
totally bounded, then C is located.



Uniformly differentiable convex functions

Definition

A real-valued convex function f on a convex subset C of a normed
space E is uniformly differentiable if there exists g : x — gy from
C into E* such that for each b > 0 and € > 0 there exists § > 0
such that

Ix[F < bAllyll =1/t <= [f(x+ty) — F(x) — taxly)] <elt|
for each x,y € E and t € R.

Remark
Every uniformly differentiable convex function is Fréchet
differentiable.



Uniformly smooth normed spaces

Definition
A normed space E is uniformly smooth if its norm is uniformly
defferentiable on x € E with ||x|| = 1.

Remark
IP for 1 < p < oo and a Hilbert space H are uniformly smooth
Banach spaces.



Locating subsets in Banach spaces

Proposition (I-Vita 2003)

Let C be a bounded, convex subset of a uniformly convex Banach
space E with a Fréchet differentiable norm. If C is located, then C
is weakly totally bounded.

Proposition (I-Vita 2003)

Let C be a bounded, convex subset of a uniformly convex and
uniformly smooth Banach space E. If C is weakly totally bounded,
then C is located.

Corollary

Let C be a bounded, convex subset of a uniformly convex and
uniformly smooth Banach space E. Then C is located if and only
if C is weakly totally bounded.



Infima of convex functions

Lemma (Bridges-I-Vita 2004)

Let C be a bounded, weakly totally bounded, convex subset of a
normed space E, and let f : C — R be a uniformly differentiable
convex function. Then for each € > 0 there exists § > 0 such that
if x € C, then either

» f(x) < f(y)+eforally € C,
> or there exists z € C such that f(z) < f(x) — €d.

Theorem (Bridges-1-Vita 2004)
Let C be a bounded, weakly totally bounded, convex subset of a

normed space E, and let f : C — R be a uniformly differentiable
convex function that is bounded from below. Then inf f exists.



An application

Corollary

Let C be a bounded, weakly totally bounded, convex subset of a
uniformly smooth normed space E, and let x1,...x, € E. Then

; 2
inf i~ v

exists.
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