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Normed spaces

Definition
A normed space is a linear space E equipped with a norm
‖ · ‖ : E → R such that

I ‖x‖ = 0↔ x = 0,

I ‖ax‖ = |a|‖x‖,
I ‖x + y‖ ≤ ‖x‖+ ‖y‖,

for each x , y ∈ E and a ∈ R.

Note that a normed space E is a metric space with the metric

d(x , y) = ‖x − y‖.

Definition
A Banach space is a normed space which is complete with respect
to the metric.



Examples

For 1 ≤ p <∞, let

lp = {(xn) ∈ RN |
∑∞

n=0 |xn|p <∞}

and define a norm by

‖(xn)‖ = (
∑∞

n=0 |xn|p)1/p.

Then lp is a (separable) Banach space.



Examples

Classically the normed space

l∞ = {(xn) ∈ RN | (xn) is bounded}

with the norm
‖(xn)‖ = sup

n
|xn|

is an inseparable Banach space.

However, constructively, it is not a normed space.



Linear mappings

Definition
A mapping T between linear spaces E and F is linear if

I T (ax) = aTx ,

I T (x + y) = Tx + Ty

for each x , y ∈ E and a ∈ R.

Definition
A linear functional f on a linear space E is a linear mapping from
E into R.



Bounded linear mappings

Definition
A linear mapping T between normed spaces E and F is bounded if
there exists c ≥ 0 such that

‖Tx‖ ≤ c‖x‖

for each x ∈ E .

Proposition

Let T be a linear mapping between normed spaces E and F . Then
the following are equivalent.

I T is continuous,

I T is uniformly continuous,

I T is bounded.



Normable linear mappings

Classicaly, for a bounded linear mapping T between normed
spaces, its norm

‖T‖ = sup
‖x‖≤1

‖Tx‖

always exists, and hence the set E ′ of all bounded linear fuctionals
on a normed space E forms a Banach space.

However it is not always the case constructively.

Definition
A linear mapping T between normed spaces is normable if

‖T‖ = sup
‖x‖≤1

‖Tx‖

exists.



Remark

Let E ∗ be the set of all normable linear fuctionals on a normed
space E .

Open Problem

Under what condition does E ∗ become a linear space?

Note that (lp)∗ is a linear space for 1 < p <∞, and H∗ is a linear
space for a Hilbert space H.



Convex and sublinear functions

Definition
A function p form a linear space E into R is convex if

p(λx + (1− λ)y) ≤ λp(x) + (1− λ)p(y)

for each x , y ∈ E and λ ∈ [0, 1].

Definition
A function p form a linear space E into R is sublinear if

I p(ax) = ap(x),

I p(x + y) ≤ p(x) + p(y)

for each x , y ∈ E and a ∈ R with a ≥ 0.

Note that sublinear functions are convex.



Classical Hahn-Banach theorem

Theorem (Hahn-Banach Theorem, Rudin 1991)

Let p be a sublinear function on a linear space E , let M be a
subspace of E , and let f be a linear functional on M such that
f (x) ≤ p(x) for each x ∈ M. Then there exists a linear functional
g on E such that g(x) = f (x) for each x ∈ M and g(y) ≤ p(y)
for each y ∈ E .



Corollaries

Corollary

Let M be a subspace of a normed space E , and let f be a bounded
linear functional on M. Then there exists a bounded linear
functional g on E such that g(x) = f (x) for each x ∈ M and
‖g‖ = ‖f ‖.

Corollary

Let x be a nonzero element of a normed space E . Then there
exists a bounded linear functional f on E such that f (x) = ‖x‖
and ‖f ‖ = 1.



Constructive Hahn-Banach theorem

Theorem (Bishop 1967)

Let M be a subspace of a separable normed space E , and let f be
a nonzero normable linear functional on M. Then for each ε > 0
there exists a normable linear functional g on E such that
g(x) = f (x) for each x ∈ M and ‖g‖ ≤ ‖f ‖+ ε.

Corollary

Let x be a nonzero element of a separable normed space E. Then
for each ε > 0 there exists a normable linear functional f on E
such that f (x) = ‖x‖ and ‖f ‖ ≤ 1 + ε.



Hilbert spaces

Definition
An inner product space is a linear space E equipped with an inner
product 〈·, ·〉 : E × E → R such that

I 〈x , x〉 ≥ 0 and 〈x , x〉 = 0↔ x = 0,

I 〈x , y〉 = 〈y , x〉,
I 〈ax , y〉 = a〈x , y〉,
I 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉

for each x , y , z ∈ E and a ∈ R.

Note that an inner product space E is a normed space with the
norm

‖x‖ = 〈x , x〉1/2.

Definition
A Hilbert space is an inner product space which is a Banach space.



Example

Let
l2 = {(xn) ∈ RN |

∑∞
n=0 |xn|2 <∞}

and define an inner product by

〈(xn), (yn)〉 =
∑∞

n=0 xnyn.

Then l2 is a Hilbert space.



Riesz theorem

Proposition (Bishop 1967)

Let f be a bounded linear functional on a Hilbert space H. Then f
is normable if and only if there exists x0 ∈ H such that

f (x) = 〈x , x0〉

for each x ∈ H.

Corollary

Let x be a nonzero element of a Hilbert space H. Then there
exists a normable linear functional f on H such that f (x) = ‖x‖
and ‖f ‖ = 1.



The Hahn-Banach theorem in Hilbert spaces

Theorem
Let M be a subspace of a Hilbert space H, and let f be a normable
linear functional on M. Then there exists a normable linear
functional g on H such that g(x) = f (x) for each x ∈ M and
‖g‖ = ‖f ‖.

Proof.
Let M be the closure of M. Then there exists a normable
extension f of f on M. Since M is a Hilbert space, there exists
x0 ∈ M such that

f (x) = 〈x , x0〉

for each x ∈ M. Let g(x) = 〈x , x0〉 for each x ∈ H. Then it is
straightforwad to show that g(x) = f (x) for each x ∈ M and
‖g‖ = ‖f ‖.



Differentiations

Let f : E → R be a real-valued function on a normed space E .

Definition
f is Gâteaux differentiable at x ∈ E with the derivative g : E → R
if for each y ∈ E with ‖y‖ = 1 and ε > 0 there exists δ > 0 such
that

∀t ∈ R(|t| < δ→ |f (x + ty)− f (x)− tg(y)| < ε|t|).

Note that if f is convex, then g is linear.

Definition
f is Fréchet differentiable at x ∈ E with the derivative g : E → R
if for each ε > 0 there exists δ > 0 such that

∀y ∈ E∀t ∈ R(‖y‖ = 1∧|t| < δ→|f (x +ty)−f (x)−tg(y)| < ε|t|).



Gâteaux differentiable norm

Proposition (I 1989)

Let x be a nonzero element of a normed linear space E whose norm
is Gâteaux differentiable at x. Then there exists a unique normable
linear functional f on E such that f (x) = ‖x‖ and ‖f ‖ = 1.

Proof.
Take the derivative f of the norm at x .

Remark
The norm of lp for 1 < p <∞ and the norm of a Hilbert space are
Gâteaux (even Fréchet) differentiable at each x ∈ E with x 6= 0.



Uniformly convex spaces

Definition
A normed space E is uniformly convex if for each ε > 0 there exists
δ > 0 such that

‖x − y‖ ≥ ε→‖(x + y)/2‖ ≤ 1− δ

for each x , y ∈ E with ‖x‖ = ‖y‖ = 1.

Proposition (Bishop 1967)

Let f be a nonzero normable linear functional on a uniformly
convex Banach space E . Then there exists x ∈ E such that
f (x) = ‖f ‖ and ‖x‖ = 1.

Remark
lp for 1 < p <∞ and a Hilbert space are uniformly convex.



The Hahn-Banach theorem in Banach spaces

The norm of a normed space E is Gâteaux (Fréchet) differentiable
if it is Gâteaux (Fréchet) differentiable at each x ∈ E with ‖x‖ = 1.

Theorem (I 1989)

Let M be a subspace of a uniformly convex Banach space E with a
Gâteaux differentiable norm, and let f be a normable linear
functional on M. Then there exists a unique normable linear
functional g on H such that g(x) = f (x) for each x ∈ M and
‖g‖ = ‖f ‖.

Proof.
We may assume without loss of generality that ‖f ‖ = 1. Let M be
the closure of M. Then there exists a normable extension f of f on
M. Since M is a uniformly convex Banach, there exists x ∈ M such
that f (x) = ‖x‖ = 1. Take the derivative g of the norm at x .



The separation theorem in Banach spaces

Theorem (I 1989)

Let C and D be subsets of a uniformly convex Banach space E
with a Gâteaux differentiable norm, whose algebraic difference

D − C = {y − x | y ∈ D, x ∈ C}

is located and convex, and whose mutual distance

d = inf{‖y − x‖ | y ∈ D, x ∈ C}

is positive. Then there exists a normable linear functional f on E
such that ‖f ‖ = 1 and

f (y) ≥ f (x) + d

for each y ∈ D and x ∈ C .



Remark

Open Problem

With a differentability condition on p, does the following full
Hahn-Banach theorem hold?

Let p be a sublinear function on a linear space E , let M be a
subspace of E , and let f be a linear functional on M such that
f (x) ≤ p(x) for each x ∈ M. Then there exists a linear functional
g on E such that g(x) = f (x) for each x ∈ M and g(y) ≤ p(y)
for each y ∈ E .

The above full Hahn-Banach theorem has various applications in
game theory (for example, von Neumann minimax theorem).



Locating subsets

Definition
A subset S of a normed space E is located if

inf
y∈S
‖x − y‖

exists for each x ∈ E .

Remark
Locating a subset S of a normed space E amounts to computing
an infimum of the convex function f : S → R defined by

f : y 7→ ‖x − y‖.



Weakly totally bounded sets

Definition
A subset S of a normed space E is weakly totally bounded if

{f (x) | x ∈ S}

is a totally bounded subset of R for each normable linear functional
f on E .

Lemma
A convex subset C of a normed space E is weakly totally bounded
if and only if sup{f (x) | x ∈ C} exists for each normable linear
functional f on E .



Locating subsets in Hirbert spaces

Proposition (I 2001)

Let C be a bounded, convex subset of an inner product space H.
Then C is located if and only if C is weakly totally bounded.

Proposition (I 2001)

Let C be a convex subset of a Hilbert space H. If C is weakly
totally bounded, then C is located.



Uniformly differentiable convex functions

Definition
A real-valued convex function f on a convex subset C of a normed
space E is uniformly differentiable if there exists g : x 7→ gx from
C into E ∗ such that for each b > 0 and ε > 0 there exists δ > 0
such that

‖x‖ ≤ b ∧ ‖y‖ = 1 ∧ |t| < δ→ |f (x + ty)− f (x)− tgx(y)| < ε|t|

for each x , y ∈ E and t ∈ R.

Remark
Every uniformly differentiable convex function is Fréchet
differentiable.



Uniformly smooth normed spaces

Definition
A normed space E is uniformly smooth if its norm is uniformly
defferentiable on x ∈ E with ‖x‖ = 1.

Remark
lp for 1 < p <∞ and a Hilbert space H are uniformly smooth
Banach spaces.



Locating subsets in Banach spaces

Proposition (I-V̂ıţă 2003)

Let C be a bounded, convex subset of a uniformly convex Banach
space E with a Fréchet differentiable norm. If C is located, then C
is weakly totally bounded.

Proposition (I-V̂ıţă 2003)

Let C be a bounded, convex subset of a uniformly convex and
uniformly smooth Banach space E . If C is weakly totally bounded,
then C is located.

Corollary

Let C be a bounded, convex subset of a uniformly convex and
uniformly smooth Banach space E . Then C is located if and only
if C is weakly totally bounded.



Infima of convex functions

Lemma (Bridges-I-V̂ıţă 2004)

Let C be a bounded, weakly totally bounded, convex subset of a
normed space E , and let f : C → R be a uniformly differentiable
convex function. Then for each ε > 0 there exists δ > 0 such that
if x ∈ C , then either

I f (x) ≤ f (y) + ε for all y ∈ C ,

I or there exists z ∈ C such that f (z) < f (x)− εδ.

Theorem (Bridges-I-V̂ıţă 2004)

Let C be a bounded, weakly totally bounded, convex subset of a
normed space E , and let f : C → R be a uniformly differentiable
convex function that is bounded from below. Then inf f exists.



An application

Corollary

Let C be a bounded, weakly totally bounded, convex subset of a
uniformly smooth normed space E, and let x1, . . . xn ∈ E . Then

inf
y∈C

∑n
i=1 ‖xi − y‖2

exists.
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