# Functional Representations of Partial Orders

Douglas S. Bridges

School of Mathematics & Statistics,

University of Canterbury,

Christchurch, New Zealand

## **Preliminary general definitions**

Let X be an inhabited set, and  $\succ$  a binary relation on X that is asymmetric:

$$\forall_{x,y \in X} (x \succ y \Rightarrow \neg (y \succ x)).$$

**Def.** Two associated binary relations on X:

preference-indifference:  $x \succcurlyeq y \equiv \forall_{z \in X} (y \succ z \Rightarrow x \succ z);$ 

indifference:  $x \sim y \equiv (x \succcurlyeq y \land y \succcurlyeq x)$ ).

Note that

$$x \succcurlyeq y \Rightarrow (y \succ x \Rightarrow x \succ x) \Rightarrow \neg(y \succ x).$$

**Def.** The upper contour set and the strict upper contour set of x in X, relative to  $\succ$ , are, respectively

$$[x, \to) \equiv \{y \in X : y \succcurlyeq x\},\$$
  
$$(x, \to) \equiv \{y \in X : y \succ x\}.$$

Likewise, we define the  $\emph{lower contour set}$  and the  $\emph{strict lower contour set}$  of x by

$$(\leftarrow, x] \equiv \{y \in X : x \succcurlyeq y\}, (\leftarrow, x) \equiv \{y \in X : y \succ x\}.$$

**Def.** A partial utility function for the asymmetric relation  $\succ$  on X is a mapping  $u: X \to \mathbf{R}$  such that

$$\forall_{x,y \in X} (x \succ y \Rightarrow u(x) > u(y)).$$

If the implication can be replaced by ' $\Leftrightarrow$ ', then u becomes a *utility function* for  $\succ$ . A necessary condition for this replacement is that of *cotransitivity* (or *negative transitivity*):

$$\forall_{x,y\in X}(x\succ y\Rightarrow\forall_{z\in X}(x\succ z\lor z\succ y)).$$

An old problem with many classical solutions:

Find necessary and sufficient conditions for the existence—and, when X is a topological space, continuity—of (partial) utility functions representing asymmetric orders.

According to Fred Roberts,

If possible, the proof of a representation theorem should be constructive; it should not only show us that a representation is possible, but it should show us how actually to construct it.

F.S. Roberts: Measurement Theory, Addison-Wesley, 1979.

## **Preference systems**

**Def.** Let X be an inhabited set,  $\delta$  a positive number or  $\infty$ , and

$$\mathcal{F} \equiv (\succ_{\varepsilon})_{0 < \varepsilon < \delta}$$

a family of binary relations on X indexed by the interval  $I \equiv (0, \delta)$ . We set

$$x \succ y \Leftrightarrow \exists_{\varepsilon} (x \succ_{\varepsilon} y)$$

and

$$x \succcurlyeq y \Leftrightarrow \forall_z (y \succ z \Rightarrow x \succ z).$$

We call  $\mathcal{F}$  a preference system on X if the following hold:

- the relation ≻ is asymmetric;
- if  $\varepsilon, \varepsilon' \in I$ ,  $\varepsilon' \leq \varepsilon$ , and  $x \succ_{\varepsilon} y$ , then  $x \succ_{\varepsilon'} y$ ;
- if  $x \succcurlyeq x' \succ_{\varepsilon} y' \succcurlyeq y$ , then  $x \succ_{\varepsilon} y$ ;
- if  $\varepsilon, \varepsilon'$ , and  $\varepsilon + \varepsilon'$  belong to I and  $x \succ_{\varepsilon} y$ , then

$$\forall_{z \in X} (x \succ_{\varepsilon} z \lor z \succ_{\varepsilon'} y).$$

Note that the last property implies the cotransitivity of  $\succ$ —and hence the transitivity of both  $\succ$  and  $\succcurlyeq$ —and that

$$\forall_{x,y \in X} (x \succcurlyeq y \Leftrightarrow \neg (y \succ x)).$$

Denote by  $B_n$  the open ball with centre 0 and radius r in  ${f R}^N$ .

**Theorem** (dsb, JME **9**, 1982). Let X be a locally compact, convex subset of  $\mathbf{R}^N$ ,  $\delta$  a positive number of  $\infty$ , and  $\mathcal{F} \equiv (\succ_{\varepsilon})_{0<\varepsilon<\delta}$  a preference system on X. Suppose that there exists a dense subset A of X such that for each  $n \in \mathbf{N}^+$  and each  $x \in A \cap B_n$ , the upper and lower contour sets of x are totally bounded. Suppose also that certain natural (\*) continuity and local nonsatiation conditions hold for the family  $\mathcal{F}$ . Then there exists a continuous (utility) function  $u: X \to \mathbf{R}$  such that

$$\forall_{x,y \in X} (x \succ y \Leftrightarrow u(x) > u(y).$$

(\*) You will surely forgive me for not burdening you with the full details of what 'natural' means here.

### A reasonable question:

Under the conditions of this theorem, can we find, for each  $n \geq 1$ , a mapping  $\alpha_n : (0, \delta) \to \mathbf{R}$  such that

$$\forall_{x,y\in B_n}\forall_{\varepsilon\in(0,\delta)}(x \succ_{\varepsilon} y \Leftrightarrow u(x) > u(y) + \alpha_n(\varepsilon))$$
?

No. Take N=1,  $X=[0,\infty)$ ,  $\delta=\pi/16$ , and for each  $\varepsilon\in(0,\delta)$ ,  $x\succ_\varepsilon y$  if and only if

either  $x > y + \varepsilon$ 

or else  $x, y \in [0, \pi/2]$  and  $\sin x > \sin y + \varepsilon^2$ .

## Preference relations—a better way

Recall these two properties applicable to a binary relation  $\succ$  on X:

$$x \succ y \Rightarrow \neg(y \succ x)$$
 (asymmetry)

$$x \succ y \Rightarrow \forall_{z \in X} (x \succ z \lor z \succ y)$$
 (cotransitivity)

**Def.** An asymmetric, cotransitive binary relation  $\succ$  on X is called a *strict* weak order or preference relation on X.

Now specialise to the case where  $(X, \rho)$  is a metric space.

**Def.** The preference relation  $\succ$  is *continuous* if for each x in X both the strict upper contour set  $(x, \rightarrow)$  and the strict lower contour set  $(\leftarrow, x)$  are open.

If  $\succ$  is represented by a continuous utility function, then it is a continuous strict weak order.

Fix a strict weak order  $\succ$  on  $(X, \rho)$ .

**Def.** Let K be a compact subset of X. We say that  $\succ$  is *uniformly continuous* on K if for all  $a, b \in X$  with  $a \succ b$ , there exists r > 0 such that

$$\forall_{x,y \in K} (\rho(x,y) < r \Rightarrow a \succ x \lor y \succ b).$$

For example, > is uniformly continuous on each compact subset of  $\mathbf{R}$ .

Uniformly continuity on each compact subset of X is an extension of cotransitivity.

If  $\succ$  is continuous, then classically (but **not** recursively) it is uniformly continuous on each compact subset of X.

If  $\succ$  is represented by a continuous<sup>(\*)</sup> utility function, then  $\succ$  is uniformly continuous on each compact subset of X.

(\*) i.e. uniformly continuous on compact sets

**Def.** We say that  $\succ$  is *locally nonsatiated at* the point  $x \in X$  if

$$\forall_{\varepsilon>0}\exists_{y\in X}(\rho(x,y)<\varepsilon\wedge y\succ x);$$

and that it is *locally nonsatiated* (on X) if it is locally nonsatiated at each point x of X.

**Def.** We say that  $\succ$  is uniformly local nonsatiated near the compact set  $K \subset X$  if for each  $\varepsilon > 0$  there exists  $\delta > 0$  such that

$$\forall_{a,b\in K}(\rho(a,b)<\delta\Rightarrow\forall_{x\in K}(x\succ a\Rightarrow\exists_{y\succ b}(\rho(x,y)<\varepsilon)))$$

Clearly, this property implies that  $\succ$  is locally nonsatiated at each point of the compact set K.

Brouwer's fan theorem for detachable bars ensures that uniform local non-satiation near each compact  $K \subset X$  is intuitionistically equivalent to local nonsatiation.

#### The constructive Arrow-Hahn-Mirrlees theorem

**Theorem** (dsb, Indag. Math., 1989). Let X be an inhabited, locally compact, convex subset of  $\mathbf{R}^N$ , and let  $\succ$  be a preference relation on X that is

uniformly continuous on each compact  $K \subset X$  and

uniformly locally nonsatiated near each compact  $K \subset X$ .

Suppose also that  $[x, \rightarrow)$  is locally compact for each x in a dense subset A of X. Then

- (i) for each x in X,  $[x, \rightarrow)$  is locally compact;
- (ii) for each  $x \in X$  and each compact  $K \subset X$ ,

$$u(K,x) \equiv \sup \{ \rho(\xi, [x, \rightarrow) : \xi \in K \}$$

exists.

Moreover, if  $X = \bigcup_{n \geqslant 1} K_n$ , where each  $K_n$  is compact, then

$$u_{\succ}(x) \equiv \sum_{n=1}^{\infty} 2^{-n} \frac{u(K_n, x)}{1 + u(K_n, x)}$$

defines a continuous utility function  $u: X \to [0,1]$  representing  $\succ$ .

**Def.** A preference relation  $\succ$  on a metric space X is admissible if it is uniformly locally nonsatiated near each compact set and is represented by a continuous utility function.

We also gave conditions that ensure the uniform continuity of the mappings

$$\succ \leadsto u_{\succ}$$
 on  $\Sigma$ 

and

$$(\succ, x) \rightsquigarrow u_{\succ}(x) \text{ on } \Sigma \times K$$
,

where  $\Sigma$  is a certain set of admissible preference relations and  $K\subset X$  is compact.

## Intransitivity of preferences

In the economics of real life, preference-indifference need not be transitive: consider  $\succ$  defined on  ${\bf R}$  by

$$\forall x,y (x \succ y \Leftrightarrow x > y+1).$$

Note that this can be represented by the interplay of the two functions  $u:x\leadsto x$  and  $v:x\leadsto x+1$ , in the sense that

$$x \succ y \Leftrightarrow u(x) > v(y).$$

Another representation question:

Given an asymmetric binary relation on  $X \subset \mathbf{R}^N$ , under what conditions can we find mappings  $u,v:X \to \mathbf{R}$  such that

$$\forall_{x,y \in X} (x \succ y \Leftrightarrow u(x) > v(y))$$
?

**Def.** If  $\succ$  is an asymmetric binary relation on an inhabited set X, then  $\succcurlyeq$  is pseudotransitive if

$$\forall_x \forall_{x'} \forall_y \forall_{y'} (x \succ x' \succcurlyeq y' \succ y \Rightarrow x \succ y).$$

This condition is *classically* equivalent to the Scott-Fishburn *interval order* property:

$$\forall_x \forall_{x'} \forall_y \forall_{y'} ((x \succ y \lor x' \succ y') \Rightarrow (x \succ y' \lor x' \succ y)).$$

**Proposition.** If  $\succ$  is an asymmetric binary relation on X such that  $\succcurlyeq$  is pseudotransitive, then  $\succ$  is transitive and

$$\forall_x \forall_y \forall_z ((x \succ y \succcurlyeq x \lor x \succcurlyeq y \succ z) \Rightarrow x \succ z)).$$

**Def.** Let  $\succ$  be an asymmetric binary relation on a metric space  $(X, \rho)$ . We say that  $\succcurlyeq$  is *strongly pseudotransitive* if for all sequences  $(x_n)_{n\geq 1}$ ,  $(y_n)_{n\geq 1}$  converging to x,y respectively in X,

$$\forall_n (x_n \succ y_n \succcurlyeq a \succ b) \Rightarrow x \succ b.$$

Strongly pseudotransitive implies transitive.

**Proposition.** If  $\succ$  is an asymmetric, locally nonsatiated binary relation on a metric space, and  $\succcurlyeq$  is strongly pseudotransitive, then  $\succcurlyeq$  is transitive.

**Theorem** (classical; dsb, JME **11**, 1983). Let X be an inhabited, closed, convex subset of  $\mathbf{R}^N$ , and let  $\succ$  be an open, asymmetric binary relation on X such that  $\succcurlyeq$  is strongly pseudotransitive. Then there exist mappings  $u, v: X \to \mathbf{R}$  such that

$$\forall_{x,y \in X} (x \succ y \Leftrightarrow u(x) > v(y).$$

Under reasonable conditions on  $\succ$ , the mappings u and v are uniformly continuous on compact subsets of X.

An invitation: Find the constructive content of the foregoing theorem.