
Convexity and constructive minima

Josef Berger and Gregor Svindland

LMU Munich

25 July 2017



X compact metric space and f : X → R uniformly continuous

the infimum of f is given by

inf f = inf {f (x) | x ∈ X}

x is a minimum point of f if

f (x) = inf f

f has at most one minimum point if

d(x , y) > 0 ⇒ inf f < f (x) ∨ inf f < f (y)



In Bishop’s constructive mathematics, the following statements are
equivalent:

(FAN) Brouwer’s fan theorem for decidable bars

(POS) each uniformly continuous map

f : X → R+

on a compact metric space has positive infimum

(MIN!) each uniformly continuous map

f : X → R

on a compact metric space with at most one
minimum point has a minimum point



recently!

In a convex setting, the statements (FAN) and (POS) are
constructively provable.



Constructive version of (FAN)

Proposition 1

Every co-convex bar is a uniform bar.

Josef Berger and Gregor Svindland, Brouwer’s fan theorem and
convexity. Submitted



Constructive version of (POS)

A function f : C → R, where C is a convex subset of Rm, is called
quasi-convex if

f (λx + (1− λ)y) ≤ max (f (x), f (y))

for all λ ∈ [0, 1] and x , y ∈ C .

Proposition 2

If C ⊆ Rm is compact and convex and

f : C → R+

is quasi-convex and uniformly continuous, then inf f > 0.

Josef Berger and Gregor Svindland, Convexity and constructive
infima. Arch. Math. Logic 55 (2016) 873–881



new!

In a convex setting, the statement (MIN!) is constructively
provable.



Constructive version of (MIN!)

Proposition 3

Fix a convex and compact subset C of Rm and suppose that
f : C → R has at most one minimum point and is quasi-convex
and uniformly continuous. Then f has a minimum point.



Proof of Proposition 3

Suppose that f : C → R has at most one minimum point. We can
assume that inf f = 0.

Lemma 1
Suppose that A and B are compact convex subsets of C such that
d(a, b) > 0 for all a ∈ A and b ∈ B. Then

inf f � A > 0 ∨ inf f � B > 0 .

Proof.
Apply Proposition 2 to the function

A× B 3 (a, b) 7→ max (f (a), f (b)) .



Proof of Proposition 3

The diameter of a compact set X is defined by

diam X = sup {d(x , y) | x , y ∈ X} .

We construct a sequence (Cn) of subsets of C with vanishing
diameter such that inf f � Cn = 0.

Then, we fix xn ∈ Cn with f (xn) < 1/n. The sequence (xn) is
Cauchy and its limit is a minimum point of f .











Finite dimensional spaces

A normed space V is finite-dimensional if there exist
b1, . . . , bm ∈ V such that the linear mapping

κ : Rm → V , λ 7→
m∑
i=1

λibi

is bijective. (Injective in the sense that ‖λ‖ > 0 implies
‖κ(λ)‖ > 0.) In this case, both κ and its inverse κ−1 are
uniformly continuous.



Finite dimensional spaces

Proposition 4

Fix a convex and compact subset C of a finite-dimensional normed
space and suppose that f : C → R has at most one minimum
point and is quasi-convex and uniformly continuous. Then f has a
minimum point.



Quasiproximinal sets

Let Y be a subset of a normed linear space X . Fix a ∈ X . Let f Ya
be the function

f Ya : Y 3 y 7→ d(y , a).

The set Y is quasiproximinal if for every a ∈ X the implication

f Ya has at most one minimum point ⇒ f Ya has a minimum point

is valid.



A corollary: the constructive fundamental theorem of
approximation theory

Corollary 1

Every finite-dimensional subspace V of a real normed space X is
quasiproximinal.

Douglas S. Bridges, A Constructive Proximinality Property of
Finite-dimensional Linear Subspaces. Rocky Mountain Journal
of Mathematics 11, Number 4 (1981) 491–497



Proof of Corollary 1

Fix a ∈ X and suppose that f = f Va has at most one minimum
point. Fix b ∈ V . Set

V0 = {v ∈ V | d(v , b) ≤ 3 · d(a, b)} .

Then V0 is convex and compact. The function f � V0 is uniformly
continuous, quasi-convex and has at most one minimum point.
Proposition 4 implies that f � V0 has a minimum point v0, which is
also a minimum point of f . For any v ∈ V , either v ∈ V0 or

2 · d(a, b) ≤ d(v , b) ≤ d(v , a) + d(a, b),

which implies
f (v0) ≤ f (b) ≤ f (v).



Proof of Corollary 1

Fix a ∈ X and suppose that f = f Va has at most one minimum
point. Fix b ∈ V . Set

V0 = {v ∈ V | d(v , b) ≤ 3 · d(a, b)} .

Then V0 is convex and compact. The function f � V0 is uniformly
continuous, quasi-convex and has at most one minimum point.
Proposition 4 implies that f � V0 has a minimum point v0, which is
also a minimum point of f . For any v ∈ V , either v ∈ V0 or

2 · d(a, b) ≤ d(v , b) ≤ d(v , a) + d(a, b),

which implies
f (v0) ≤ f (b) ≤ f (v).



(FAN) ⇔ (POS)

Josef Berger and Hajime Ishihara, Brouwer’s fan theorem and
unique existence in constructive analysis. Math. Log. Quart.
51, No. 4 (2005) 360–364

William H. Julian and Fred Richman, A uniformly continuous
function on [0, 1] that is everywhere different from its infimum.
Pacific Journal of Mathematics 111, No 2 (1984) 333–340



(FAN) ⇔ (MIN!)

Josef Berger and Hajime Ishihara, Brouwer’s fan theorem and
unique existence in constructive analysis. Math. Log. Quart.
51, No. 4 (2005) 360–364

Josef Berger, Douglas Bridges, and Peter Schuster, The fan
theorem and unique existence of maxima. The Journal of
Symbolic Logic, Volume 71, Number 2 (2006) 713–720

Peter Schuster, ‘Unique solutions.’ Math. Log. Quart. 52
(2006), 534–539; Corrigendum: Math. Log. Quart. 53 (2007),
214



Brouwer’s fan theorem

I {0, 1}∗ the set of finite binary sequences u, v ,w

I |u| the length of u, i.e.

for u = (u0, . . . , un−1) we have |u| = n

I u ∗ v the concatenation of u and v , i.g.

(0, 1) ∗ (0, 0, 1) = (0, 1, 0, 0, 1)

I α, β, γ infinite binary sequences

I αn the restriction of α to the first n elements, i.e.

αn = (α0, . . . , αn−1)



B ⊆ {0, 1}∗ is

I detachable if ∀u (u ∈ B ∨ u /∈ B)

I a bar if ∀α ∃n (αn ∈ B) (“every α hits B”)

I a uniform bar if ∃N ∀α ∃n ≤ N (αn ∈ B)

FAN every detachable bar is a uniform bar



Constructive version of (FAN)

(0, 0, 1) < (0, 1, 1)

u ≤ v :⇔ u < v ∨ u = v



Constructive version of (FAN)

A subset B of {0, 1}∗ is co-convex if for every α which hits B there
exists an n such that either

{v | v ≤ αn} ⊆ B or {v | αn ≤ v} ⊆ B .





Constructive version of (FAN)

Proposition 1

Every co-convex bar is a uniform bar.


