D.S. Bridges

Crossing Boundarie

Separation

References

Boundaries and Separation

Douglas S. Bridges

School of Mathematics, University of Canterbury Christchurch New Zealand

27 January 2017

D.S. Bridges

Crossing Boundaries

Separation

References

Suppose we start at a point ξ in the interior of a located subset *C* of a normed space *X* and move linearly towards a point *z* in the metric complement of *C*. Are we able to tell when we are crossing the boundary of *C*? In general, the constructive answer is *no*. However, our geometric intuition suggests that when *C* is convex, we might succeed in pinpointing boundary crossing points.

D.S. Bridges

Crossing Boundaries

Separation

References

Our context is a normed space X. Note that if $x, y \in X$, then $x \neq y$ (x and y are **distinct**) means ||x - y|| > 0.

A subset C of X has three types of complement:

• the logical complement

$$\neg C = \{x \in X : \forall_{y \in C} \neg (x = y)\}$$
,

Our context is a normed space X. Note that if $x, y \in X$, then $x \neq y$ (x and y are **distinct**) means ||x - y|| > 0.

A subset C of X has three types of complement:

• the logical complement

$$eg C = \{x \in X : orall_{y \in \mathcal{C}} \
eg (x = y)\}$$
 ,

• the complement

$$\sim C = \{x \in X : \forall_{y \in C} (x \neq y)\},\$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Boundaries and Separation

D.S. Bridges

Crossing Boundaries

Separation

References

Our context is a normed space X. Note that if $x, y \in X$, then $x \neq y$ (x and y are **distinct**) means ||x - y|| > 0.

A subset C of X has three types of complement:

• the logical complement

$$eg C = \{x \in X : orall_{y \in C} \
eg (x = y)\}$$
 ,

the complement

$$\sim C = \{x \in X : \forall_{y \in C} (x \neq y)\}$$

the metric/apartness complement

$$-C = \{x \in X : \exists_{r>0} \forall_{y \in C} (\|x - y\| \ge r)\}$$

Boundaries and Separation

D.S. Bridges

Crossing Boundaries

Separation

References

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

D.S. Bridges

Crossing Boundaries

Separation

References

Our boundary-crossing theorem uses three geometric lemmas about convexity.

Lemma 1 Let *C* be a convex subset of *X*, ξ an interior point of *C*, and *r* a positive number such that $B(\xi, r) \subset C$. Let $z \neq \xi$, and let $z' = t\xi + (1-t)z$ where 0 < t < 1. If B(z, tr) intersects *C*, then $B(z', t^2r) \subset C$.

D.S. Bridges

Crossing Boundaries

Separatior

References

Our boundary-crossing theorem uses three geometric lemmas about convexity.

Lemma 1 Let C be a convex subset of X, ξ an interior point of C, and r a positive number such that $B(\xi, r) \subset C$. Let $z \neq \xi$, and let $z' = t\xi + (1 - t)z$ where 0 < t < 1. If B(z, tr) intersects C, then $B(z', t^2r) \subset C$.

Lemma 2 Let C be an open convex subset of X such that $C \cup -C$ is dense in X. Let $\xi \in C$ and $z \in -C$. Then $(C \cup -C) \cap [\xi, z]$ is dense in $[\xi, z]$.

D.S. Bridges

Crossing Boundaries

Separation

References

The third lemma is almost trivial, yet remarkably useful.

Lemma 3 Let x_1, x_2 be distinct points of X; let $x_3 = \lambda x_1 + (1 - \lambda) x_2$ with $\lambda \neq 0, 1$. For all $\alpha, \beta > 0$, if $||x - x_1|| < \alpha / |\lambda|$ and $||y - x_2|| < \beta / |1 - \lambda|$, then

$$\|\lambda x+(1-\lambda)y-x_3\|<\alpha+\beta.$$

D.S. Bridges

Crossing Boundaries

Separation

References

The third lemma is almost trivial, yet remarkably useful.

Lemma 3 Let x_1, x_2 be distinct points of X; let $x_3 = \lambda x_1 + (1 - \lambda) x_2$ with $\lambda \neq 0, 1$. For all $\alpha, \beta > 0$, if $||x - x_1|| < \alpha / |\lambda|$ and $||y - x_2|| < \beta / |1 - \lambda|$, then

 $\|\lambda x+(1-\lambda)y-x_3\|<\alpha+\beta.$

One application:

Proposition 1 If C is an inhabited open convex subset of X, then -C is dense in $\sim C$.

D.S. Bridges

Crossing Boundaries

Separation

References

A more significant application of Lemma 3 is in the proof of our boundary crossing theorem:

Theorem 1 Let C be an open convex subset of a Banach space X, such that $C \cup -C$ is dense in X, and let $\xi \in C$. For each $z \in -C$ and each $t \in [0, 1]$ write

$$z_t = t\xi + (1-t)z.$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Then the following hold:

D.S. Bridges

Crossing Boundaries

Separation

References

- (a) $\gamma(\xi, z) = \inf\{t \in [0, 1] : z_t \in C\}$ exists, and $0 < \gamma(\xi, z) < 1$.
- (b) $z_{\gamma(\xi,z)}$ is the unique intersection of $[\xi, z]$ with the boundary ∂C of C.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

(c) If
$$\gamma(\xi, z) < t \le 1$$
, then $z_t \in C$.
(d) If $0 \le t < \gamma(\xi, z)$, then $z_t \in -C$.

Moreover, the boundary crossing map $(\xi, z) \rightsquigarrow z_{\gamma(\xi, z)}$ of $C \times -C$ into ∂C is continuous.

D.S. Bridges

Crossing Boundaries

Separation

References

A subset C of a vector space X over K is called a **cone** if for all $x, y \in C$ and all t > 0, both x + y and tx belong to C. In that case, C is convex.

The closure of a cone is a cone, as is the intersection of two cones.

・ロト ・ 日本・ 小田・ ・ 田・ うらぐ

A subset C of a vector space X over K is called a **cone** if for all $x, y \in C$ and all t > 0, both x + y and tx belong to C. In that case, C is convex.

The closure of a cone is a cone, as is the intersection of two cones.

If K is a convex subset of X, then the set

$$c(K) = \{tx : x \in K, t > 0\}$$

is a cone—the **cone generated by the convex set** K.

If X is a normed space and K is open, then so is c(K).

Boundaries and Separation

D.S. Bridges

Crossing Boundarie

Separation

References

D.S. Bridges

Crossing Boundarie

Separation

References

Lemma 4 Let K be a bounded, located, convex subset of a normed space X such that $\rho(0, K) > 0$. Then c(K) is located.

Lemma 4 Let K be a bounded, located, convex subset of a normed space X such that $\rho(0, K) > 0$. Then c(K) is located.

Proof. Given $x_0 \in X$, for all $x \in X$ and t > 0 we have

 $||x_0 - tx|| \ge t ||x|| - ||x_0||$,

so

$$ho(x_0, tK) \geq t
ho(0, K) - \|x_0\|
ightarrow \infty$$
 as $t
ightarrow \infty$.

We can therefore find $\tau > 0$ such that $\rho(x_0, c(K)) = \rho(x_0, \tau K)$.

Boundaries and Separation

D.S. Bridges

Crossing Boundarie

Separation

References

・ロト・日本・日本・日本・日本・日本

D.S. Bridges

Crossing Boundarie

Separation

References

Lemma 5 Let K and L be open cones in a normed space X such that $K \cup L$ is dense in X and $K \subset \sim L$. Then

(i)
$$K \subset -L$$
 and $L \subset -K$,
(ii) $K \cup -K$ and $L \cup -L$ are dense in X, and
(iii) K and L have a common boundary—namely,
 $\overline{K} \cap \overline{L}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

If also $L = \{-x : x \in K\}$, then ∂K is a subspace of X.

D.S. Bridges

Crossing Boundarie

Separation

References

By a **half-space** of a normed space X we mean a convex subset K such that ∂K is a hyperplane and the set

 $\{x \in X : x \in K \lor -x \in K\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

is dense in X.

By a **half-space** of a normed space X we mean a convex subset K such that ∂K is a hyperplane and the set

 $\{x \in X : x \in K \lor -x \in K\}$

is dense in X.

The Basic Separation Theorem:

Theorem 2 Let X be a separable normed space, K_0 a bounded, located, open, convex subset of X such that $\rho(0, K_0) > 0$, and x_0 a point of X such that $-x_0 \in K_0$. Then there exists an open half-space K of X such that $K_0 \subset K$, $\rho(x_0, K) > 0$, and the boundary of K is a located subspace of X that is a hyperplane with associated vector x_0 . Boundaries and Separation

D.S. Bridges

Crossing Boundarie

Separation

References

The (full) Separation Theorem:

Theorem 3 Let A and B be bounded convex subsets of a separable normed space X such that the algebraic difference

$$\{y - x : x \in A, y \in B\}$$

is located and the mutual distance

$$d = \inf \left\{ \|y - x\| : x \in A, \ y \in B \right\}$$

is positive. Then for each $\varepsilon > 0$ there exists a normed linear functional u on X, with norm 1, such that

 $\operatorname{Re} u(y) > \operatorname{Re} u(x) + d - \varepsilon \quad (x \in A, y \in B).$

Boundaries and Separation

D.S. Bridges

Crossing Boundarie

Separation

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Berger-Svindland Separation Theorem:

Theorem 4 Let C, Y be convex subsets of \mathbb{R}^n such that

(i) C is convex and compact;

(ii) Y is convex, closed, and located;

(iii) $x \neq y$ for all $x \in C$ and $y \in Y$.

Then there exist $p \in \mathbf{R}^n$ and real α, β such that

 $\langle p, x \rangle < \alpha < \beta < \langle p, y \rangle$

for all $x \in C$ and $y \in Y$.

Boundaries and Separation

D.S. Bridges

Crossing Boundarie

Separation

References

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

A crucial step in the proof is showing that

$$\inf\{\|x - y\| : x \in C, y \in Y\} > 0.$$
 (1)

Under what conditions can we show that if C, Y are located convex subsets of a normed space satisfying (iii), then (1) holds?

Boundaries and Separation

D.S. Bridges

Crossing Boundarie

Separation

References

D.S. Bridges

Crossing Boundarie

Separation

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Recall the following:

Bishop's Lemma: if Y is an inhabited, complete, located subset of a metric space X, then for each x ∈ X such that x ≠ y implies that ρ(x, Y) > 0. Recall the following:

- Bishop's Lemma: if Y is an inhabited, complete, located subset of a metric space X, then for each x ∈ X such that x ≠ y implies that ρ(x, Y) > 0.
- ► A convex subset *C* of a normed space *X* is **uniformly rotund** if for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $x, x' \in C$ and $||x - x'|| > \varepsilon$, then $\frac{1}{2}(x + x') + z \in C$ for all $z \in X$ with $||z|| \leq \delta$.

Boundaries and Separation

D.S. Bridges

Crossing Boundarie

Separation

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We now have a weak generalisation of Bishop's Lemma.

Theorem 5 Let K, L be inhabited, complete convex subsets of a normed space X such that

- (a) K is uniformly rotund,
- (b) L contains at least two distinct points, and

(c) $d \equiv \inf_{x \in K} \rho(x, L)$ exists.

Then there exist $x_{\infty} \in K$ and $y_{\infty} \in L$ such that if $x_{\infty} \neq y_{\infty}$, then d is positive.

Boundaries and Separation

D.S. Bridges

Crossing Boundarie

Separation

References

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

D.S. Bridges

Crossing Boundarie

Separation

References

Theorem 5 is at least interesting, and perhaps useful.

But we should note that if K is compact and contains at least two distinct points, then, by uniform rotundity, K includes a ball centred at their midpoint; that ball, being closed and located in K, is compact, so the space X is finite-dimensional.

- D.S. Bridges: 'The construction of a continuous demand function for uniformly rotund preferences', J. Math. Economics 21, 217–227, 1992. (*for uniform rotundity*)
- D.S. Bridges and L.S. Vîţă: Techniques of Constructive Analysis, Universitext, Springer New York, 2006. (for boundary crossing and separation)
- Josef Berger and Gregor Svindland, 'Convexity and constructive infima', Arch. Math. Logic **55**, 873–881, 2016. DOI 10.1007/s00153-016-0502-y (for a general result about infima of positive convex functions)

D.S. Bridges

Crossing Boundarie

Separation

References