# Baire category theorem and nowhere differentiable continuous functions 

Takako Nemoto<br>JAIST<br>third CORE meeting<br>26 January 2018

## Abstract

In constructive mathematics, Baire Category Theorem has at least the following two forms:
A. For a sequence $\left\{U_{n}\right\}_{n=0}^{\infty}$ of dense open sets in a complete metric space $X$,

$$
U=\bigcap_{n \in \mathbf{N}} U_{n}
$$

is as well as dense in $X$.
B. For a sequence $\left\{V_{n}\right\}_{n=0}^{\infty}$ of nowhere dense closed sets in a complete metric space $X$,

$$
V=\bigcup_{n \in \mathbf{N}} V_{n}
$$

is as well as nowhere dense in $X$.
A is constructively provable. We will show that there exist nowhere differentiable continuous functions densely in $C[0,1]$, using A .

## $\mathbf{N}, \mathbf{Z}$ and $\mathbf{Q}$

- For natural number $\mathbf{N}$, we allow to use induction.
- By induction, we can prove that, for each $n, m \in \mathbf{N}$

$$
\begin{aligned}
& n=m \vee \neg n=m ; \\
& n<m \vee \neg n<m \text { (equivalently, } n<m \vee m \leq n \text { ). }
\end{aligned}
$$

- Integers $\mathbf{Z}$ and rationals $\mathbf{Q}$ can be coded by natural numbers. Therefore we also have, for each $p, q \in \mathbf{Q}$

$$
\begin{aligned}
& p=q \vee \neg p=q ; \\
& p<q \vee \neg(p<q) \text { (equivalently, } p<q \vee q \leq p) .
\end{aligned}
$$

## $\mathbf{R}$ and functions on $\mathbf{R}$

- A sequence $x=\left(p_{n}\right)_{n}$ of rationals are regular if

$$
\forall m n\left(\left|p_{m}-p_{n}\right|<2^{-m}+2^{-n}\right)
$$

- A regular sequence $x$ of rationals is real $(x \in \mathbf{R})$.

For $x=\left(p_{n}\right)_{n}, x_{n}=p_{n}$.

- The equality $=_{\mathbf{R}}$ is the following equivalence relation:

$$
\left(p_{n}\right)_{n}=_{\mathbf{R}}\left(q_{n}\right)_{n} \stackrel{\mathrm{def}}{\Longleftrightarrow} \forall n\left(\left|p_{n}-q_{n}\right| \leq 2^{-n+2}\right)
$$

The following are well-defined.

$$
\begin{array}{ll}
\left(x \pm_{\mathbf{R}} y\right)_{n}=x_{2 n+1} \pm y_{2 n+1} & |x|_{n}=\left|x_{n}\right| \\
\max \{x, y\}_{n}=\max \left\{x_{n}, y_{n}\right\} & \min \{x, y\}_{n}=\min \left\{x_{n}, y_{n}\right\} \\
(x \cdot \mathbf{R} y)_{n}=x_{2 k n+1} \cdot y_{2 k n+1}, & \text { where } k=\max \left\{|x|_{0}+2,|y|_{0}+2\right\}
\end{array}
$$

## Order $<_{\mathbf{R}}$

Let $x$ and $y$ be reals.
Order $<_{\mathbf{R}}$

- $x$ is positive if $\exists n\left(x_{n}>2^{-n+2}\right)$.
- $x$ is negative if $\exists n\left(x_{n}<-2^{-n+2}\right)$.
- $x<_{\mathbf{R}} y$ if $y-_{\mathbf{R}} x$ is positive.

Some properties of $<_{\boldsymbol{R}}$

- $x={ }_{\mathbf{R}} x^{\prime} \wedge y={ }_{\mathbf{R}} y^{\prime} \wedge x<_{\mathbf{R}} y \rightarrow x^{\prime}<_{\mathbf{R}} y^{\prime}$
- $\forall x, y \in \mathbf{R} \forall n\left(x_{n}<y_{n} \vee x_{n}=y_{n} \vee y_{n}<x_{n}\right)$.
- But we cannot prove $\forall x, y \in \mathbf{R}\left(x<_{\mathbf{R}} y \vee x=_{\mathbf{R}} y \vee y<_{\mathbf{R}} x\right)$ constructively (LPO).


## Order $\leq_{\mathbf{R}}$

Let $x$ and $y$ be reals
Order $\leq_{\mathbf{R}}$

- $x \leq_{\mathbf{R}} y$ if $x-_{\mathbf{R}} y$ is not positive.

Some properties of $\leq_{R}$

- $x={ }_{\mathbf{R}} x^{\prime} \wedge y==_{\mathbf{R}} y^{\prime} \wedge x \leq_{\mathbf{R}} y \rightarrow x^{\prime} \leq_{\mathbf{R}} y^{\prime}$
- $\forall x, y \in \mathbf{R}\left(x \leq_{\mathbf{R}} y \vee_{\mathbf{R}} y \leq_{\mathbf{R}} x\right)$ cannot be proved constructively (LLPO).
- $\forall x, y \in \mathbf{R}\left(x \leq_{\mathbf{R}} y \vee_{\mathbf{R}} \neg x \leq_{\mathbf{R}} y\right)$ cannot be proved constructively (WLPO).
- But $\forall x, y \in \mathbf{R}\left(\neg x<_{\mathbf{R}} y \rightarrow y \leq_{\mathbf{R}} x\right)$ can be proved constructively.

We omit $\mathbf{R}$ in $=_{\mathbf{R}},+_{\mathbf{R}},-_{\mathbf{R}},<_{\mathbf{R}}, \leq_{\mathbf{R}}$.

## How to make case divisions?

We can not use the following case division.

$$
x<_{\mathbf{R}} y \vee x=_{\mathbf{R}} y \vee y<_{\mathbf{R}} x, \quad x \leq_{\mathbf{R}} y \vee y \leq_{\mathbf{R}} x
$$

What kind of case division is available?

## How to make case divisions?

We can not use the following case division.

$$
x<_{\mathbf{R}} y \vee x=_{\mathbf{R}} y \vee y<_{\mathbf{R}} x, \quad x \leq_{\mathbf{R}} y \vee y \leq_{\mathbf{R}} x
$$

What kind of case division is available?

## Lemma

For any $r<_{\mathbf{R}} s$, we have the following:
$\triangleright x<_{\mathbf{R}} s \vee r<_{\mathbf{R}} x \quad \forall x<_{\mathbf{R}} s \vee r \leq_{\mathbf{R}} x$


For $a \leq_{\mathbf{R}} b$, we use the following notations:
$(a, b)=\left\{x \in \mathbf{R}: a<_{\mathbf{R}} x<_{\mathbf{R}} b\right\} \quad[a, b]=\left\{x \in \mathbf{R}: a \leq_{\mathbf{R}} x \leq_{\mathbf{R}} b\right\}$

## Uniformly continuous function

- A uniformly continuous function $f:[0,1] \rightarrow \mathbf{R}$ consists of $\varphi: \mathbf{Q} \times \mathbf{N} \rightarrow \mathbf{Q}$ and $\nu: \mathbf{N} \rightarrow \mathbf{N}$ with the following properties:

$$
\begin{aligned}
& (f(p))_{n}=\varphi(p, n) \in \mathbf{R} \\
& \forall n \in \mathbf{N} \forall p, q \in \mathbf{Q}\left(|p-q|<2^{-\nu(n)} \rightarrow|f(p)-f(q)|<2^{-n}\right)
\end{aligned}
$$

For each $x \in[0,1], f(x) \in \mathbf{R}$ is given by

$$
(f(x))_{n}=\varphi\left(\min \left\{\max \left\{x_{\mu(n)}, 0\right\}, 1\right\}, n+1\right)
$$

where $\mu(n)=\nu(n+1)+1$.

## Derivative and differentiability

- $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at $x_{0}$ if, for some $a \in \mathbf{R}$,

$$
\forall k \exists l \forall x\left(\left|x-x_{0}\right|<\frac{1}{2^{l}} \rightarrow\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-a\right| \leq \frac{1}{2^{k}}\right) .
$$

## Complete metric space

- A set $X$ is metric space if there is $\rho: X \times X \rightarrow \mathbf{R}_{\geq 0}$ s.t.
- $\rho(x, y)=0$ iff $x=y$;
- $\rho(x, y)=\rho(y, x)$;
- $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$.
- For a metric space $X$, a sequence $\left(x_{n}\right)_{n}$ from $X$ is regular if

$$
\forall m n\left(\rho\left(x_{m}, x_{n}\right)<2^{-m}+2^{-n}\right)
$$

The metric completion $\hat{X}$ of $X$ consists of all regular sequences of $X$.

- The equality $=_{\hat{X}}$ is the following equivalence relation:

$$
\left(x_{n}\right)_{n}=_{\hat{X}}\left(y_{n}\right)_{n} \stackrel{\text { def }}{\Longleftrightarrow} \forall n\left(\left|x_{n}-y_{n}\right| \leq 2^{-n+2}\right)
$$

- A metric space $Y$ is a complete metric space if $\hat{Y}=Y$.


## Some examples

- $\mathbf{R}$ is a complete metric space with $\rho(x, y)=|x-y|$.
- Let $C[0,1]$ be the set of all uniformly continuous $f:[0,1] \rightarrow \mathbf{R}$. Then $C[0,1]$ is a complete metric space with $\rho(f, g)=\sup \{|f(x)-g(x)|: x \in[0,1]\}$.
- We need uniformity to show the existence of $\sup \{|f(x)-g(x)|: x \in[0,1]\}$.
- To prove that continuous $f:[0,1] \rightarrow \mathbf{R}$ is uniformly continuous, we need some non-constructive principle (FAN)


## Topological notions

## Open \& closed sets

For a complete metric space $X$,

- $U \subseteq X$ is open if, for each $x \in U$, there is $\varepsilon>0$ s.t. $\mathcal{B}(x, \varepsilon)=\{y \in X: \rho(x, y)<\varepsilon\} \subseteq U$.
- $V \subseteq X$ is closed if $x \in X$ satisfying that, for each $\varepsilon>0$, there is $y \in \mathcal{B}(x, \varepsilon) \cap V$ is itself in $V$.

Dense \& nowhere dense

- For $Y \subseteq X$, the set $\bar{Y}=\{x: \forall \varepsilon>0 \exists y \in Y(y \in \mathcal{B}(x, \varepsilon))\}$ is the closure of $Y$.
- $Y \subseteq X$ is dense is if $\bar{Y}=X$.
- For $Y \subseteq X$, the set $Y^{\circ}=\{x: \exists \varepsilon>0 \in Y(\mathcal{B}(x, \varepsilon) \subseteq Y)\}$ is the interior of $Y$.
- $Y \subseteq X$ is nowhere dense if $(\bar{Y})^{\circ}=\emptyset$.


## Baire category theorem

There are several versions of Baire category theorem, which are equivalent over classical logic:
A. For a sequence $\left\{U_{n}\right\}_{n=0}^{\infty}$ of dense open sets in a complete metric space $X$,

$$
U=\bigcap_{n \in \mathbf{N}} U_{n}
$$

is as well as dense in $X$.
B. For a sequence $\left\{V_{n}\right\}_{n=0}^{\infty}$ of nowhere dense closed sets in a complete metric space $X$,

$$
V=\bigcup_{n \in \mathbf{N}} V_{n}
$$

is as well as nowhere dense in $X$.
A is constructively provable (cf. [1]).

## Theorem in classical mathematics

- Let $C[0,1]$ be the set of all continuous $f:[0,1] \rightarrow \mathbf{R}$.
- Then $\|f\|=\sup \{|f(x)|: x \in[0,1]\}$ is a norm on $C[0,1]$ and $d(f, g)=\|f-g\|$ is a distance on $C[0,1]$.

Classical theorem (Banach)
There are densely many functions in $C[0,1]$ which are nowhere differentiable on $[0,1]$.

## Sketch of the classical proof

1. Let $U_{m, n}=\left\{f \in C[0,1]: \varphi_{m, n}(f)\right\}$, where $\varphi_{m, n}(f)$ is

$$
\forall x \exists y \in[0,1]\left(0<|y-x|<\frac{1}{m} \wedge\left|\frac{f(y)-f(x)}{y-x}\right|>n\right) .
$$

If $f \in C[0,1]$ is differentiable in some $x \in[0,1], f \notin U_{m, n}$ for some $m, n$.

## Sketch of the classical proof

1. Let $U_{m, n}=\left\{f \in C[0,1]: \varphi_{m, n}(f)\right\}$, where $\varphi_{m, n}(f)$ is

$$
\forall x \exists y \in[0,1]\left(0<|y-x|<\frac{1}{m} \wedge\left|\frac{f(y)-f(x)}{y-x}\right|>n\right) .
$$

If $f \in C[0,1]$ is differentiable in some $x \in[0,1], f \notin U_{m, n}$ for some $m, n$.
2. $U_{m, n}$ is open in $C[0,1]$.

- If $U_{m, n}$ is not open, then there is $f \in U_{m, n}$ s.t. for any $k \in \mathbf{N}$ there is $g_{k} \notin U_{m, n}$ with $\left\|f-g_{k}\right\|<2^{-k}$.
- $\lim _{k \rightarrow \infty} g_{k}=f$.
- By Bolzano-Weierstrass, there is $x \in[0,1]$ s.t.

$$
\forall y \in[0,1]\left(0<|y-x|<\frac{1}{m} \rightarrow\left|\frac{f(y)-f(x)}{y-x}\right| \leq n\right)
$$

## Sketch of the classical proof

1. Let $U_{m, n}=\left\{f \in C[0,1]: \varphi_{m, n}(f)\right\}$, where $\varphi_{m, n}(f)$ is

$$
\forall x \exists y \in[0,1]\left(0<|y-x|<\frac{1}{m} \wedge\left|\frac{f(y)-f(x)}{y-x}\right|>n\right) .
$$

If $f \in C[0,1]$ is differentiable in some $x \in[0,1], f \notin U_{m, n}$ for some $m, n$.
2. $U_{m, n}$ is open in $C[0,1]$.

- If $U_{m, n}$ is not open, then there is $f \in U_{m, n}$ s.t. for any $k \in \mathbf{N}$ there is $g_{k} \notin U_{m, n}$ with $\left\|f-g_{k}\right\|<2^{-k}$.
- $\lim _{k \rightarrow \infty} g_{k}=f$.
- By Bolzano-Weierstrass, there is $x \in[0,1]$ s.t.

$$
\forall y \in[0,1]\left(0<|y-x|<\frac{1}{m} \rightarrow\left|\frac{f(y)-f(x)}{y-x}\right| \leq n\right) .
$$

3. $U_{m, n}$ is dense.

- For any $f \in C[0,1]$ and $\varepsilon>0$, there is piecewise-linear

$$
p \in C[0,1] \text { s.t. }\|f-p\|<\varepsilon .
$$

## Sketch of the classical proof

1. Let $U_{m, n}=\left\{f \in C[0,1]: \varphi_{m, n}(f)\right\}$, where $\varphi_{m, n}(f)$ is

$$
\forall x \exists y \in[0,1]\left(0<|y-x|<\frac{1}{m} \wedge\left|\frac{f(y)-f(x)}{y-x}\right|>n\right) .
$$

If $f \in C[0,1]$ is differentiable in some $x \in[0,1], f \notin U_{m, n}$ for some $m, n$.
2. $U_{m, n}$ is open in $C[0,1]$.

- If $U_{m, n}$ is not open, then there is $f \in U_{m, n}$ s.t. for any $k \in \mathbf{N}$ there is $g_{k} \notin U_{m, n}$ with $\left\|f-g_{k}\right\|<2^{-k}$.
- $\lim _{k \rightarrow \infty} g_{k}=f$.
- By Bolzano-Weierstrass, there is $x \in[0,1]$ s.t.

$$
\forall y \in[0,1]\left(0<|y-x|<\frac{1}{m} \rightarrow\left|\frac{f(y)-f(x)}{y-x}\right| \leq n\right)
$$

3. $U_{m, n}$ is dense.

- For any $f \in C[0,1]$ and $\varepsilon>0$, there is piecewise-linear

$$
p \in C[0,1] \text { s.t. }\|f-p\|<\varepsilon .
$$

4. By Baire category theorem $\mathrm{A}, \bigcap_{m, n \in \mathbf{N}} U_{m, n}$ is dense.

## Constructivising the proof

- Let $C[0,1]$ be the set of all uniformly continuous $f:[0,1] \rightarrow \mathbf{R}$.
- $\|f\|=\sup \{|f(x)|: x \in[0,1]\}$ is a norm on $C[0,1]$ and $d(f, g)=\|f-g\|$ is a distance on $C[0,1]$.
- We cannot prove $U_{m, n}=\left\{f \in C[0,1]: \varphi_{m, n}(f)\right\}$ is open for the following $\varphi_{m, n}(f)$ :

$$
\forall x \exists y \in[0,1]\left(0<|y-x|<\frac{1}{m} \wedge\left|\frac{f(y)-f(x)}{y-x}\right|>n\right) .
$$

- We cannot prove by contradiction.
- We cannot prove Bolzano-Weierstrass constructively.


## Constructivising the proof

- Let $\tilde{U}_{m, n}=\left\{f \in C[0,1]: \tilde{\varphi}_{m, n}(f)\right\}$, where $\tilde{\varphi}_{m, n}(f)$ is

$$
\exists \varepsilon>0 \forall g \in C[0,1]\binom{\|f-g\|<\varepsilon \rightarrow}{\forall x \in[0,1] \neg \neg \exists t \in[0,1]\binom{0<|t-x|<\frac{1}{m}}{\wedge\left|\frac{g(t)-g(x)}{t-x}\right|>n}}
$$

- If $f \in C[0,1]$ is differentiable at some $x \in[0,1], f \notin \tilde{U}_{m, n}$ for some $m, n$.
- $\tilde{U}_{m, n}$ is open.
- For $f \in \tilde{U}_{m, n}$ and $\varepsilon>0$ witnessing $f \in \tilde{U}_{m, n}$,

$$
\begin{aligned}
& \varepsilon^{\prime}=\varepsilon-\|f-h\|>0 \text { witnesses } h \in \tilde{U}_{m, n} \text { for } h \text { with } \\
& \|f-h\|<\varepsilon .
\end{aligned}
$$

- $\tilde{U}_{m, n}$ is dense.
- For any $f \in C[0,1]$ and $\varepsilon>0$, we have to find $g \in \tilde{U}_{m, n}$ s.t. $\|f-g\|<\varepsilon$.


## Constructivising the proof

- $p:[0,1] \rightarrow \mathbf{R}$ is piecewise-linear
if there is a division $0=a_{0}<a_{1}<\ldots<a_{n+1}=1$ of $[0,1]$ s.t.
$p$ is linear on each $\left[a_{i}, a_{i+1}\right]$.
- Let $P L[0,1]$ be the set of all piecewise-linear $f \in C[0,1]$.


## Lemma 1

If $p \in P L[0,1]$ and $\left|p^{\prime}(x)\right|>n$ on all differentiable $x, p \in \tilde{U}_{m, n}$.
Proof.
Assume $0=a_{0}<a_{1}<\ldots<a_{k+1}=1$ and $p$ is linear on each $\left[a_{i}, a_{i+1}\right.$ ].
For $g \in C[0,1]$ set

$$
\begin{aligned}
& s=\min \left\{\left|\frac{\left(p\left(a_{i+1}\right)-p\left(a_{i}\right)\right)}{\left(a_{i+1}-a_{i}\right)}\right|-n: 0 \leq i \leq k\right\} \\
& s^{\prime}=\min \left(\left\{a_{i+1}-a_{i}: 0 \leq i \leq k\right\} \cup\left\{\frac{1}{m}\right\}\right), \quad \varepsilon=s / 16 s^{\prime} .
\end{aligned}
$$

Then we have, for each $g$ s.t. $\|f-g\|<\varepsilon$,
$\forall x \in[0,1] \neg \neg \exists t \in[0,1]\left(0<|t-x|<\frac{1}{m} \wedge\left(\left|\frac{g(t)-g(x)}{t-x}\right|>n\right)\right)$.

Let $\|g-p\|<\varepsilon$ and $\delta_{x}=\min \left\{\left|x-a_{i}\right|: 0 \leq i \leq k+1\right\}$.
For each $x \in[0,1]$, we have $\delta_{x}<s^{\prime} / 2 \vee s^{\prime} / 4 \leq \delta_{x}$.

Let $\|g-p\|<\varepsilon$ and $\delta_{x}=\min \left\{\left|x-a_{i}\right|: 0 \leq i \leq k+1\right\}$.
For each $x \in[0,1]$, we have $\delta_{x}<s^{\prime} / 2 \vee s^{\prime} / 4 \leq \delta_{x}$.
Case 1. $\delta_{x}<s^{\prime} / 2$ : Take $a_{i}$ s.t. $\left|x-a_{i}\right|<s^{\prime} / 2$.
If $a_{i} \leq x$, then $p$ has the slope $b$ on $\left[x, x+\frac{s^{\prime}}{2}\right]$.
By $|b|>n$, we have $b>n \vee b<-n$. If $b>n$, then

$$
\begin{aligned}
\frac{g\left(x+\frac{s^{\prime}}{2}\right)-g(x)}{x+\frac{s^{\prime}}{2}-x} & \geq \frac{2}{s^{\prime}}\left(p\left(x+\frac{s^{\prime}}{2}\right)-\varepsilon-(p(x)+\varepsilon)\right) \\
& =b-\frac{4}{s^{\prime}} \varepsilon \geq s+n-\frac{s}{4}>n .
\end{aligned}
$$

Let $\|g-p\|<\varepsilon$ and $\delta_{x}=\min \left\{\left|x-a_{i}\right|: 0 \leq i \leq k+1\right\}$.
For each $x \in[0,1]$, we have $\delta_{x}<s^{\prime} / 2 \vee s^{\prime} / 4 \leq \delta_{x}$.
Case 1. $\delta_{x}<s^{\prime} / 2$ : Take $a_{i}$ s.t. $\left|x-a_{i}\right|<s^{\prime} / 2$.
If $a_{i} \leq x$, then $p$ has the slope $b$ on $\left[x, x+\frac{s^{\prime}}{2}\right]$.
By $|b|>n$, we have $b>n \vee b<-n$. If $b>n$, then

$$
\begin{aligned}
\frac{g\left(x+\frac{s^{\prime}}{2}\right)-g(x)}{x+\frac{s^{\prime}}{2}-x} & \geq \frac{2}{s^{\prime}}\left(p\left(x+\frac{s^{\prime}}{2}\right)-\varepsilon-(p(x)+\varepsilon)\right) \\
& =b-\frac{4}{s^{\prime}} \varepsilon \geq s+n-\frac{s}{4}>n .
\end{aligned}
$$

Similarly, we have $\left|\frac{g\left(x-\frac{s^{\prime}}{2}\right)-g(x)}{x-\frac{s^{\prime}}{2}-x}\right|>n$ when $b<-n$ or $x<a$. Hence

Let $\|g-p\|<\varepsilon$ and $\delta_{x}=\min \left\{\left|x-a_{i}\right|: 0 \leq i \leq k+1\right\}$.
For each $x \in[0,1]$, we have $\delta_{x}<s^{\prime} / 2 \vee s^{\prime} / 4 \leq \delta_{x}$.
Case 1. $\delta_{x}<s^{\prime} / 2$ : Take $a_{i}$ s.t. $\left|x-a_{i}\right|<s^{\prime} / 2$.
If $a_{i} \leq x$, then $p$ has the slope $b$ on $\left[x, x+\frac{s^{\prime}}{2}\right]$.
By $|b|>n$, we have $b>n \vee b<-n$. If $b>n$, then

$$
\begin{aligned}
\frac{g\left(x+\frac{s^{\prime}}{2}\right)-g(x)}{x+\frac{s^{\prime}}{2}-x} & \geq \frac{2}{s^{\prime}}\left(p\left(x+\frac{s^{\prime}}{2}\right)-\varepsilon-(p(x)+\varepsilon)\right) \\
& =b-\frac{4}{s^{\prime}} \varepsilon \geq s+n-\frac{s}{4}>n
\end{aligned}
$$

Similarly, we have $\left|\frac{g\left(x-\frac{s^{\prime}}{2}\right)-g(x)}{x-\frac{s^{\prime}}{2}-x}\right|>n$ when $b<-n$ or $x<a$. Hence

$$
\begin{aligned}
& a_{i} \leq x \vee x<a_{i} \rightarrow \exists t \in[0,1]\left(0<|t-x|<\frac{1}{m} \wedge\left|\frac{g(t)-g(x)}{t-x}\right|>n\right), \text { and } \\
& \neg \neg\left(a_{i} \leq x \vee x<a_{i}\right) \rightarrow \neg \neg \exists t \in[0,1]\left(0<|t-x|<\frac{1}{m} \wedge\left|\frac{g(t)-g(x)}{t-x}\right|>n\right) .
\end{aligned}
$$

Let $\|g-p\|<\varepsilon$ and $\delta_{x}=\min \left\{\left|x-a_{i}\right|: 0 \leq i \leq k+1\right\}$.
For each $x \in[0,1]$, we have $\delta_{x}<s^{\prime} / 2 \vee s^{\prime} / 4 \leq \delta_{x}$.
Case 1. $\delta_{x}<s^{\prime} / 2$ : Take $a_{i}$ s.t. $\left|x-a_{i}\right|<s^{\prime} / 2$.
If $a_{i} \leq x$, then $p$ has the slope $b$ on $\left[x, x+\frac{s^{\prime}}{2}\right]$.
By $|b|>n$, we have $b>n \vee b<-n$. If $b>n$, then

$$
\begin{aligned}
\frac{g\left(x+\frac{s^{\prime}}{2}\right)-g(x)}{x+\frac{s^{\prime}}{2}-x} & \geq \frac{2}{s^{\prime}}\left(p\left(x+\frac{s^{\prime}}{2}\right)-\varepsilon-(p(x)+\varepsilon)\right) \\
& =b-\frac{4}{s^{\prime}} \varepsilon \geq s+n-\frac{s}{4}>n
\end{aligned}
$$

Similarly, we have $\left|\frac{g\left(x-\frac{s^{\prime}}{2}\right)-g(x)}{x-\frac{s^{\prime}}{2}-x}\right|>n$ when $b<-n$ or $x<a$. Hence
$a_{i} \leq x \vee x<a_{i} \rightarrow \exists t \in[0,1]\left(0<|t-x|<\frac{1}{m} \wedge\left|\frac{g(t)-g(x)}{t-x}\right|>n\right)$, and
$\neg \neg\left(a_{i} \leq x \vee x<a_{i}\right) \rightarrow \neg \neg \exists t \in[0,1]\left(0<|t-x|<\frac{1}{m} \wedge\left|\frac{g(t)-g(x)}{t-x}\right|>n\right)$.
By $\neg \neg\left(a_{i} \leq x \vee x<a_{i}\right)$, we have the right-hand side of $\rightarrow$.

Let $\|g-p\|<\varepsilon$ and $\delta_{x}=\min \left\{\left|x-a_{i}\right|: 0 \leq i \leq k+1\right\}$.
For each $x \in[0,1]$, we have $\delta_{x}<s^{\prime} / 2 \vee s^{\prime} / 4 \leq \delta_{x}$.

$$
\text { Let }\|g-p\|<\varepsilon \text { and } \delta_{x}=\min \left\{\left|x-a_{i}\right|: 0 \leq i \leq k+1\right\} .
$$

For each $x \in[0,1]$, we have $\delta_{x}<s^{\prime} / 2 \vee s^{\prime} / 4 \leq \delta_{x}$.
Case 2. $s^{\prime} / 4 \leq \delta_{x}: p$ has the slope $b$ on $\left[x-\frac{s^{\prime}}{4}, x+\frac{s^{\prime}}{4}\right]$. By $|b|>n$, we have $b>n \vee b<-n$. If $b>n$, then

$$
\begin{aligned}
\frac{g\left(x+\frac{s^{\prime}}{4}\right)-g(x)}{x+\frac{s^{\prime}}{4}-x} & \geq \frac{4}{s^{\prime}}\left(p\left(x+\frac{s^{\prime}}{4}\right)-\varepsilon-(p(x)+\varepsilon)\right) \\
& =\frac{4}{s^{\prime}}\left(\left(p\left(x+\frac{s^{\prime}}{4}\right)-p(x)\right)-2 \varepsilon\right) \\
& =b-\frac{8}{s^{\prime}} \varepsilon \\
& \geq s+n-\frac{s}{2}>n .
\end{aligned}
$$

Let $\|g-p\|<\varepsilon$ and $\delta_{x}=\min \left\{\left|x-a_{i}\right|: 0 \leq i \leq k+1\right\}$.
For each $x \in[0,1]$, we have $\delta_{x}<s^{\prime} / 2 \vee s^{\prime} / 4 \leq \delta_{x}$.
Case 2. $s^{\prime} / 4 \leq \delta_{x}: p$ has the slope $b$ on $\left[x-\frac{s^{\prime}}{4}, x+\frac{s^{\prime}}{4}\right]$. By $|b|>n$, we have $b>n \vee b<-n$. If $b>n$, then

$$
\begin{aligned}
\frac{g\left(x+\frac{s^{\prime}}{4}\right)-g(x)}{x+\frac{s^{\prime}}{4}-x} & \geq \frac{4}{s^{\prime}}\left(p\left(x+\frac{s^{\prime}}{4}\right)-\varepsilon-(p(x)+\varepsilon)\right) \\
& =\frac{4}{s^{\prime}}\left(\left(p\left(x+\frac{s^{\prime}}{4}\right)-p(x)\right)-2 \varepsilon\right) \\
& =b-\frac{8}{s^{\prime}} \varepsilon \\
& \geq s+n-\frac{s}{2}>n
\end{aligned}
$$

Similarly, we have $\frac{g\left(x+\frac{a}{4}\right)-g(x)}{x+\frac{a}{4}-x}<-n$ when $b<-n$.

## Constructivising the proof

Lemma 2
$P L[0,1]$ is dense in $C[0,1]$.
Proof.
Let $f \in C[0,1]$ and $\varepsilon>0$. Take $k \in \mathbf{N}$ s.t.

$$
\forall x, y \in[0,1]\left(|x-y|<\frac{1}{k} \rightarrow|f(x)-f(y)|<\varepsilon / 3\right)
$$

Let $a_{i}=i / k$ for $0 \leq i \leq k$ and define $p_{0}:[0,1] \cap \mathbf{Q} \rightarrow \mathbf{R}$ by

$$
p_{0}(x)=k\left(f\left(a_{i+1}\right)-f\left(a_{i}\right)\right)\left(x-a_{i}\right)+f\left(a_{i}\right)
$$

We can extend this $p_{0}$ to $p \in P L[0,1]$ by defining $p(x)=\left\{p\left(x_{i}\right)\right\}_{i=0}^{\infty}$ for $x=\left\{x_{i}\right\}_{i=0}^{\infty}$. Then there is $a_{i}$ s.t. $\left|x-a_{i}\right|<\frac{1}{k}$ and

$$
\left|p(x)-f\left(a_{i}\right)\right|<\frac{2}{3} \varepsilon
$$

Since $\left|f(x)-f\left(a_{i}\right)\right|<\varepsilon / 3$, we have $|p(x)-f(x)|<\varepsilon$.

## Constructivising the proof

## Lemma 3

For each $f \in C[0,1], \varepsilon>0$ and $n$, there is $p \in P L[0,1]$ s.t.
$\|f-p\|<\varepsilon$ and $\left|p^{\prime}(x)\right|>n$ for all differentiable $x$.
Proof.
Let $f \in C[0,1]$. By Lemma 2, there are $k$ and $p \in P L[0,1]$
$\|f-p\|<\varepsilon / 2$ and $p$ is linear on each $\left[\frac{i}{k}, \frac{i+1}{k}\right]$.
Take $M \in \mathbf{N}$ s.t. $\left|p^{\prime}(x)\right|<M$ for all differentiable $x \in[0,1]$ and $l>2(M+n) / \varepsilon$. There is $q(x) \in P L[0,1]$ s.t. $|q(x)| \leq 1$ for all
$[0,1]$ and $q^{\prime}(x)= \pm k$ for all differentiable $x \in[0,1]$. Let

$$
g(x)=p(x)+\frac{\varepsilon}{2} q(x)
$$

Since $\|f-p\|<\varepsilon / 2$ and $\|g-p\|<\varepsilon / 2$, we have $\|f-g\|<\varepsilon$.
For each differentiable $x \in[0,1]$, we have
$\left|g^{\prime}(x)\right|=\left|p^{\prime}(x)+\frac{\varepsilon}{2} q^{\prime}(x)\right| \geq\left|\left|p^{\prime}(x)\right|-\frac{\varepsilon}{2} k\right|=\left|\left|p^{\prime}(x)\right|-(M+n)\right|>n$.

## Constructivising the proof

By Lemma 1, 2 and 3, $\tilde{U}_{m, n}$ is dense in $C[0,1]$.
Theorem
There are densely many functions in $C[0,1]$ which are nowhere differentiable on $[0,1]$.

Proof.
Since $\tilde{U}_{m, n}$ is dense open in $C[0,1]$,
$\bigcap_{m, n \in \mathbf{N}} U_{m, n}$ is also dense in $C[0,1]$ by Baire category theorem A .
If $f \in C[m, n]$ is differentiable at some $x$, then $f \notin \tilde{U}_{m, n}$ for some $m, n$. Therefore $f \in \bigcap_{m, n \in \mathbf{N}} U_{m, n}$ is nowhere differentiable.

## Some observations

- In classical proof, we used

$$
\begin{aligned}
& \forall x \exists y \in[0,1]\left(0<|y-x|<\frac{1}{m} \wedge\left|\frac{f(y)-f(x)}{y-x}\right|>n\right) \\
& U_{m, n}=\left\{f \in C[0,1]: \varphi_{m, n}(f)\right\}
\end{aligned}
$$

For each $f \in U_{m, n}$, how to calculate $\varepsilon>0$ s.t. $\mathcal{B}(f, \varepsilon) \subseteq U_{m, n}$ ? What information of $f$ is needed?

- It is easy for $f \in U_{m, n} \cap P L[0,1]$.
- For general $f \in U_{m, n}$, how to calculate the following values?

$$
\begin{aligned}
& \inf \left\{\sup \left\{\left|\frac{f(y)-f(x)}{y-x}\right|-n: 0<|y-x|<\frac{1}{m}\right\}: x \in[0,1]\right\} \\
& \inf \left\{\sup \left\{|x-y|: 0<|y-x|<\frac{1}{m} \wedge\left|\frac{f(y)-f(x)}{y-x}\right|>n\right\}: x \in[0,1]\right\}
\end{aligned}
$$

## References

1. E. Bishop, Foundations of Constructive Analysis, Academic Press (1967).
2. D. Marker, Most Continuous Functions are Nowhere Differentiable, Lecture notes, http://homepages.math.uic.edu/~marker/math414/fs.pdf (2004).

## Acknowledgment

The authors thank the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks) for supporting the research.

