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Abstract
In constructive mathematics, Baire Category Theorem has at least
the following two forms:

A. For a sequence {Un}∞n=0 of dense open sets in a complete
metric space X,

U =
∩
n∈N

Un

is as well as dense in X.

B. For a sequence {Vn}∞n=0 of nowhere dense closed sets in a
complete metric space X,

V =
∪
n∈N

Vn

is as well as nowhere dense in X.

A is constructively provable. We will show that there exist nowhere
differentiable continuous functions densely in C[0, 1], using A.



N, Z and Q

▶ For natural number N, we allow to use induction.

▶ By induction, we can prove that, for each n,m ∈ N

n = m ∨ ¬n = m;

n < m ∨ ¬n < m (equivalently, n < m ∨m ≤ n).

▶ Integers Z and rationals Q can be coded by natural numbers.
Therefore we also have, for each p, q ∈ Q

p = q ∨ ¬p = q;

p < q ∨ ¬(p < q) (equivalently, p < q ∨ q ≤ p).



R and functions on R

▶ A sequence x = (pn)n of rationals are regular if

∀mn(|pm − pn| < 2−m + 2−n)

▶ A regular sequence x of rationals is real (x ∈ R).
For x = (pn)n, xn = pn.

▶ The equality =R is the following equivalence relation:

(pn)n =R (qn)n
def⇐⇒ ∀n(|pn − qn| ≤ 2−n+2)

The following are well-defined.

(x±R y)n = x2n+1 ± y2n+1 |x|n = |xn|
max{x, y}n = max{xn, yn} min{x, y}n = min{xn, yn}
(x ·R y)n = x2kn+1 · y2kn+1, where k = max{|x|0 + 2, |y|0 + 2}



Order <R

Let x and y be reals.

Order <R

▶ x is positive if ∃n(xn > 2−n+2).

▶ x is negative if ∃n(xn < −2−n+2).

▶ x <R y if y −R x is positive.

Some properties of <R

▶ x =R x′ ∧ y =R y′ ∧ x <R y → x′ <R y′

▶ ∀x, y ∈ R∀n(xn < yn ∨ xn = yn ∨ yn < xn).

▶ But we cannot prove ∀x, y ∈ R(x <R y ∨ x =R y ∨ y <R x)
constructively (LPO).



Order ≤R

Let x and y be reals

Order ≤R

▶ x ≤R y if x−R y is not positive.

Some properties of ≤R

▶ x =R x′ ∧ y =R y′ ∧ x ≤R y → x′ ≤R y′

▶ ∀x, y ∈ R(x ≤R y ∨R y ≤R x) cannot be proved
constructively (LLPO).

▶ ∀x, y ∈ R(x ≤R y ∨R ¬x ≤R y) cannot be proved
constructively (WLPO).

▶ But ∀x, y ∈ R(¬x <R y → y ≤R x) can be proved
constructively.

We omit R in =R, +R, −R, <R, ≤R.



How to make case divisions?
We can not use the following case division.

x <R y ∨ x =R y ∨ y <R x, x ≤R y ∨ y ≤R x

What kind of case division is available?

Lemma
For any r <R s, we have the following:

▶ x <R s ∨ r <R x

b b -�
r s

▶ x ≤R s ∨ r <R x

b r -�
r s

▶ x <R s ∨ r ≤R x

r b -�
r s

▶ x ≤R s ∨ r ≤R x

r r -�
r s

For a ≤R b, we use the following notations:

(a, b) = {x ∈ R : a <R x <R b} [a, b] = {x ∈ R : a ≤R x ≤R b}
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Uniformly continuous function

▶ A uniformly continuous function f : [0, 1] → R consists of
φ : Q×N → Q and ν : N → N with the following properties:

(f(p))n = φ(p, n) ∈ R

∀n ∈ N∀p, q ∈ Q(|p− q| < 2−ν(n) → |f(p)− f(q)| < 2−n).

For each x ∈ [0, 1], f(x) ∈ R is given by

(f(x))n = φ(min{max{xµ(n), 0}, 1}, n+ 1),

where µ(n) = ν(n+ 1) + 1.



Derivative and differentiability

▶ f : R → R is differentiable at x0 if, for some a ∈ R,

∀k∃l∀x
(
|x− x0| <

1

2l
→
∣∣∣∣f(x)− f(x0)

x− x0
− a

∣∣∣∣ ≤ 1

2k

)
.



Complete metric space

▶ A set X is metric space if there is ρ : X ×X → R≥0 s.t.
▶ ρ(x, y) = 0 iff x = y;
▶ ρ(x, y) = ρ(y, x);
▶ ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

▶ For a metric space X, a sequence (xn)n from X is regular if

∀mn(ρ(xm, xn) < 2−m + 2−n).

The metric completion X̂ of X consists of all regular
sequences of X.

▶ The equality =X̂ is the following equivalence relation:

(xn)n =X̂ (yn)n
def⇐⇒ ∀n(|xn − yn| ≤ 2−n+2)

▶ A metric space Y is a complete metric space if Ŷ = Y .



Some examples

▶ R is a complete metric space with ρ(x, y) = |x− y|.
▶ Let C[0, 1] be the set of all uniformly continuous

f : [0, 1] → R. Then C[0, 1] is a complete metric space with
ρ(f, g) = sup{|f(x)− g(x)| : x ∈ [0, 1]}.

▶ We need uniformity to show the existence of
sup{|f(x)− g(x)| : x ∈ [0, 1]}.

▶ To prove that continuous f : [0, 1] → R is uniformly
continuous, we need some non-constructive principle (FAN)



Topological notions

Open & closed sets

For a complete metric space X,

▶ U ⊆ X is open if, for each x ∈ U , there is ε > 0 s.t.
B(x, ε) = {y ∈ X : ρ(x, y) < ε} ⊆ U .

▶ V ⊆ X is closed if x ∈ X satisfying that, for each ε > 0,
there is y ∈ B(x, ε) ∩ V is itself in V .

Dense & nowhere dense

▶ For Y ⊆ X, the set Y = {x : ∀ε > 0∃y ∈ Y (y ∈ B(x, ε))} is
the closure of Y .

▶ Y ⊆ X is dense is if Y = X.

▶ For Y ⊆ X, the set Y ◦ = {x : ∃ε > 0 ∈ Y (B(x, ε) ⊆ Y )} is
the interior of Y .

▶ Y ⊆ X is nowhere dense if (Y )◦ = ∅.



Baire category theorem

There are several versions of Baire category theorem, which are
equivalent over classical logic:

A. For a sequence {Un}∞n=0 of dense open sets in a complete
metric space X,

U =
∩
n∈N

Un

is as well as dense in X.

B. For a sequence {Vn}∞n=0 of nowhere dense closed sets in a
complete metric space X,

V =
∪
n∈N

Vn

is as well as nowhere dense in X.

A is constructively provable (cf. [1]).



Theorem in classical mathematics

▶ Let C[0, 1] be the set of all continuous f : [0, 1] → R.

▶ Then ||f || = sup{|f(x)| : x ∈ [0, 1]} is a norm on C[0, 1] and
d(f, g) = ||f − g|| is a distance on C[0, 1].

Classical theorem (Banach)

There are densely many functions in C[0, 1] which are nowhere
differentiable on [0, 1].



Sketch of the classical proof

1. Let Um,n = {f ∈ C[0, 1] : φm,n(f)}, where φm,n(f) is

∀x∃y ∈ [0, 1]

(
0 < |y − x| < 1

m
∧
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ > n

)
.

If f ∈ C[0, 1] is differentiable in some x ∈ [0, 1], f /∈ Um,n for
some m,n.

2. Um,n is open in C[0, 1].
▶ If Um,n is not open, then there is f ∈ Um,n s.t.

for any k ∈ N there is gk /∈ Um,n with ||f − gk|| < 2−k.
▶ limk→∞ gk = f .
▶ By Bolzano-Weierstrass, there is x ∈ [0, 1] s.t.

∀y ∈ [0, 1]

(
0 < |y − x| < 1

m
→
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤ n

)
.

3. Um,n is dense.
▶ For any f ∈ C[0, 1] and ε > 0, there is piecewise-linear

p ∈ C[0, 1] s.t. ||f − p|| < ε.

4. By Baire category theorem A,
∩

m,n∈N Um,n is dense.



Sketch of the classical proof

1. Let Um,n = {f ∈ C[0, 1] : φm,n(f)}, where φm,n(f) is

∀x∃y ∈ [0, 1]

(
0 < |y − x| < 1

m
∧
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ > n

)
.

If f ∈ C[0, 1] is differentiable in some x ∈ [0, 1], f /∈ Um,n for
some m,n.

2. Um,n is open in C[0, 1].
▶ If Um,n is not open, then there is f ∈ Um,n s.t.

for any k ∈ N there is gk /∈ Um,n with ||f − gk|| < 2−k.
▶ limk→∞ gk = f .
▶ By Bolzano-Weierstrass, there is x ∈ [0, 1] s.t.

∀y ∈ [0, 1]

(
0 < |y − x| < 1

m
→
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤ n

)
.

3. Um,n is dense.
▶ For any f ∈ C[0, 1] and ε > 0, there is piecewise-linear

p ∈ C[0, 1] s.t. ||f − p|| < ε.

4. By Baire category theorem A,
∩

m,n∈N Um,n is dense.



Sketch of the classical proof

1. Let Um,n = {f ∈ C[0, 1] : φm,n(f)}, where φm,n(f) is

∀x∃y ∈ [0, 1]

(
0 < |y − x| < 1

m
∧
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ > n

)
.

If f ∈ C[0, 1] is differentiable in some x ∈ [0, 1], f /∈ Um,n for
some m,n.

2. Um,n is open in C[0, 1].
▶ If Um,n is not open, then there is f ∈ Um,n s.t.

for any k ∈ N there is gk /∈ Um,n with ||f − gk|| < 2−k.
▶ limk→∞ gk = f .
▶ By Bolzano-Weierstrass, there is x ∈ [0, 1] s.t.

∀y ∈ [0, 1]

(
0 < |y − x| < 1

m
→
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤ n

)
.

3. Um,n is dense.
▶ For any f ∈ C[0, 1] and ε > 0, there is piecewise-linear

p ∈ C[0, 1] s.t. ||f − p|| < ε.

4. By Baire category theorem A,
∩

m,n∈N Um,n is dense.



Sketch of the classical proof

1. Let Um,n = {f ∈ C[0, 1] : φm,n(f)}, where φm,n(f) is

∀x∃y ∈ [0, 1]

(
0 < |y − x| < 1

m
∧
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ > n

)
.

If f ∈ C[0, 1] is differentiable in some x ∈ [0, 1], f /∈ Um,n for
some m,n.

2. Um,n is open in C[0, 1].
▶ If Um,n is not open, then there is f ∈ Um,n s.t.

for any k ∈ N there is gk /∈ Um,n with ||f − gk|| < 2−k.
▶ limk→∞ gk = f .
▶ By Bolzano-Weierstrass, there is x ∈ [0, 1] s.t.

∀y ∈ [0, 1]

(
0 < |y − x| < 1

m
→
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤ n

)
.

3. Um,n is dense.
▶ For any f ∈ C[0, 1] and ε > 0, there is piecewise-linear

p ∈ C[0, 1] s.t. ||f − p|| < ε.

4. By Baire category theorem A,
∩

m,n∈N Um,n is dense.



Constructivising the proof

▶ Let C[0, 1] be the set of all uniformly continuous
f : [0, 1] → R.

▶ ||f || = sup{|f(x)| : x ∈ [0, 1]} is a norm on C[0, 1] and
d(f, g) = ||f − g|| is a distance on C[0, 1].

▶ We cannot prove Um,n = {f ∈ C[0, 1] : φm,n(f)} is open for
the following φm,n(f):

∀x∃y ∈ [0, 1]

(
0 < |y − x| < 1

m
∧
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ > n

)
.

▶ We cannot prove by contradiction.
▶ We cannot prove Bolzano-Weierstrass constructively.



Constructivising the proof

▶ Let Ũm,n = {f ∈ C[0, 1] : φ̃m,n(f)}, where φ̃m,n(f) is

∃ε>0∀g∈C[0, 1]

 ||f − g||<ε →

∀x∈ [0, 1]¬¬∃t ∈ [0, 1]

(
0 < |t− x| < 1

m

∧
∣∣∣g(t)−g(x)

t−x

∣∣∣>n

) .

▶ If f ∈ C[0, 1] is differentiable at some x ∈ [0, 1], f /∈ Ũm,n for
some m,n.

▶ Ũm,n is open.

▶ For f ∈ Ũm,n and ε > 0 witnessing f ∈ Ũm,n,

ε′ = ε− ||f − h|| > 0 witnesses h ∈ Ũm,n for h with
||f − h|| < ε.

▶ Ũm,n is dense.

▶ For any f ∈ C[0, 1] and ε > 0, we have to find g ∈ Ũm,n s.t.
||f − g|| < ε.



Constructivising the proof
▶ p : [0, 1] → R is piecewise-linear

if there is a division 0 = a0 < a1 < ... < an+1 = 1 of [0, 1] s.t.
p is linear on each [ai, ai+1].

▶ Let PL[0, 1] be the set of all piecewise-linear f ∈ C[0, 1].

Lemma 1
If p ∈ PL[0, 1] and |p′(x)| > n on all differentiable x, p ∈ Ũm,n.

Proof.
Assume 0 = a0 < a1 < ... < ak+1 = 1 and p is linear on each [ai, ai+1].
For g ∈ C[0, 1] set

s = min

{∣∣∣∣(p(ai+1)− p(ai))

(ai+1 − ai)

∣∣∣∣− n : 0 ≤ i ≤ k

}
s′ = min({ai+1 − ai : 0 ≤ i ≤ k} ∪ { 1

m
}), ε = s/16s′.

Then we have, for each g s.t. ||f − g|| < ε,

∀x ∈ [0, 1]¬¬∃t ∈ [0, 1]

(
0 < |t− x| < 1

m
∧
(∣∣∣∣g(t)− g(x)

t− x

∣∣∣∣ > n

))
.



Let ||g − p|| < ε and δx = min{|x− ai| : 0 ≤ i ≤ k + 1}.
For each x ∈ [0, 1], we have δx < s′/2 ∨ s′/4 ≤ δx.

Case 1. δx < s′/2: Take ai s.t. |x− ai| < s′/2.
If ai ≤ x, then p has the slope b on [x, x+ s′

2 ].
By |b| > n, we have b > n ∨ b < −n. If b > n, then

g(x+ s′

2 )− g(x)

x+ s′

2 − x
≥ 2

s′

(
p(x+

s′

2
)− ε− (p(x) + ε)

)
=b− 4

s′
ε ≥ s+ n− s

4
> n.

Similarly, we have

∣∣∣∣g(x− s′
2
)−g(x)

x− s′
2
−x

∣∣∣∣ > n when b < −n or x < a. Hence

ai≤x ∨ x<ai → ∃t∈[0, 1]
(
0<|t− x|< 1

m
∧
∣∣∣∣g(t)− g(x)

t− x

∣∣∣∣>n

)
, and

¬¬(ai≤x ∨ x<ai) → ¬¬∃t∈[0, 1]
(
0<|t− x|< 1

m
∧
∣∣∣∣g(t)− g(x)

t− x

∣∣∣∣>n

)
.

By ¬¬(ai≤x ∨ x<ai), we have the right-hand side of →.
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4 , x+ s′

4 ]. By
|b| > n, we have b > n ∨ b < −n. If b > n, then

g(x+ s′

4 )− g(x)

x+ s′

4 − x
≥ 4

s′

(
p(x+

s′

4
)− ε− (p(x) + ε)

)
=
4

s′

((
p(x+

s′

4
)− p(x)

)
− 2ε

)
=b− 8

s′
ε

≥s+ n− s

2
> n.

Similarly, we have
g(x+a

4
)−g(x)

x+a
4
−x < −n when b < −n.
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4 ]. By
|b| > n, we have b > n ∨ b < −n. If b > n, then

g(x+ s′

4 )− g(x)

x+ s′

4 − x
≥ 4

s′

(
p(x+

s′

4
)− ε− (p(x) + ε)

)
=
4

s′

((
p(x+

s′

4
)− p(x)

)
− 2ε

)
=b− 8

s′
ε

≥s+ n− s

2
> n.

Similarly, we have
g(x+a

4
)−g(x)

x+a
4
−x < −n when b < −n.
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For each x ∈ [0, 1], we have δx < s′/2 ∨ s′/4 ≤ δx.
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4 ]. By
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(
p(x+
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4
)− ε− (p(x) + ε)

)
=
4

s′

((
p(x+

s′

4
)− p(x)

)
− 2ε

)
=b− 8

s′
ε

≥s+ n− s

2
> n.

Similarly, we have
g(x+a

4
)−g(x)

x+a
4
−x < −n when b < −n.



Constructivising the proof

Lemma 2
PL[0, 1] is dense in C[0, 1].

Proof.
Let f ∈ C[0, 1] and ε > 0. Take k ∈ N s.t.

∀x, y ∈ [0, 1](|x− y| < 1

k
→ |f(x)− f(y)| < ε/3).

Let ai = i/k for 0 ≤ i ≤ k and define p0 : [0, 1] ∩Q → R by

p0(x) = k(f(ai+1)− f(ai))(x− ai) + f(ai).

We can extend this p0 to p ∈ PL[0, 1] by defining p(x) = {p(xi)}∞i=0

for x = {xi}∞i=0. Then there is ai s.t. |x− ai| < 1
k and

|p(x)− f(ai)| <
2

3
ε.

Since |f(x)− f(ai)| < ε/3, we have |p(x)− f(x)| < ε.



Constructivising the proof

Lemma 3
For each f ∈ C[0, 1], ε > 0 and n, there is p ∈ PL[0, 1] s.t.
||f − p|| < ε and |p′(x)| > n for all differentiable x.

Proof.
Let f ∈ C[0, 1]. By Lemma 2, there are k and p ∈ PL[0, 1]
||f − p|| < ε/2 and p is linear on each [ ik ,

i+1
k ].

Take M ∈ N s.t. |p′(x)| < M for all differentiable x ∈ [0, 1] and
l > 2(M + n)/ε. There is q(x) ∈ PL[0, 1] s.t. |q(x)| ≤ 1 for all
[0, 1] and q′(x) = ±k for all differentiable x ∈ [0, 1]. Let

g(x) = p(x) +
ε

2
q(x).

Since ||f − p|| < ε/2 and ||g − p|| < ε/2, we have ||f − g|| < ε.
For each differentiable x ∈ [0, 1], we have

|g′(x)| =
∣∣∣p′(x) + ε

2
q′(x)

∣∣∣ ≥ ∣∣∣|p′(x)| − ε

2
k
∣∣∣ = ∣∣|p′(x)| − (M + n)

∣∣ > n.



Constructivising the proof

By Lemma 1, 2 and 3, Ũm,n is dense in C[0, 1].

Theorem
There are densely many functions in C[0, 1] which are nowhere
differentiable on [0, 1].

Proof.
Since Ũm,n is dense open in C[0, 1],∩

m,n∈N Um,n is also dense in C[0, 1] by Baire category theorem A.

If f ∈ C[m,n] is differentiable at some x, then f /∈ Ũm,n for some
m,n. Therefore f ∈

∩
m,n∈N Um,n is nowhere differentiable.



Some observations

▶ In classical proof, we used

∀x∃y ∈ [0, 1]

(
0 < |y − x| < 1

m
∧
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ > n

)
Um,n = {f ∈ C[0, 1] : φm,n(f)} .

For each f ∈ Um,n, how to calculate ε > 0 s.t.
B(f, ε) ⊆ Um,n? What information of f is needed?

▶ It is easy for f ∈ Um,n ∩ PL[0, 1].

▶ For general f ∈ Um,n, how to calculate the following values?

inf

{
sup

{∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣− n : 0 < |y − x| < 1

m

}
: x∈[0, 1]

}
inf

{
sup

{
|x− y| : 0<|y − x|< 1

m
∧
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣>n

}
: x∈[0, 1]

}
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