The fan theorem for uniform coconvex bars

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Third CORE meeting, January 26, 2018

- Josef Berger and Gregor Svindland recently gave a constructive proof of the fan theorem for "coconvex" bars.
- They call a set $b \subseteq\{0,1\}^{*}$ coconvex if for every n and path s

$$
\bar{s}(n) \in b \rightarrow \exists_{m}\left(\forall_{v \leq \bar{s}(m)}(v \in b) \vee \forall_{v \geq \bar{s}(m)}(v \in b)\right),
$$

where $v \leq w$ means $|v|=|w|$ and v is left of w. Equivalently

$$
\begin{array}{r}
\bar{s}(n) \in b \rightarrow \exists_{p, m}\left(\left(p=0 \rightarrow \forall_{v \leq \bar{s}(m)}(v \in b)\right) \wedge\right. \\
\left.\left(p=1 \rightarrow \forall_{v \geq \bar{s}(m)}(v \in b)\right)\right) .
\end{array}
$$

Two "moduli" p and m, depending on s, n and b. Better name: finally coconvex.

Uniform coconvexity with modulus d (direction)

- Simplification: p only, depending on node u (i.e., $p=d(u)$).
- Coconvex in the sense that the b-nodes at height n form the complement of a convex set.
- Special case of the B\&S concept. Goal: better algorithm.

Definition

A set $b \subseteq\{0,1\}^{*}$ is uniformly coconvex with modulus d if for all u we have: if the innermost path from $u * p$ (where $p:=d(u)$) hits b in some node $v \in b$, then

$$
\begin{cases}\forall_{w}(w \leq v \rightarrow w \in b) & \text { if } p=0 \\ \forall_{w}(w \geq v \rightarrow w \in b) & \text { if } p=1\end{cases}
$$

Data

- Keep type levels low: paths are streams, not functions.
- Use corecursion instead of choice axioms or recursion.
- Free algebra $\mathbb{S}(\rho)$: given by one unary constructor C of type $\rho \rightarrow \mathbb{S}(\rho) \rightarrow \mathbb{S}(\rho)$. No nullary constructors: "cototal" objects, of the form $\mathrm{C}_{x}(s)$ with x of type ρ and s cototal. To construct such objects we use the corecursion operator ${ }^{\text {co }} \mathcal{R}_{\S(\rho)}^{\tau}$, of type

$$
\tau \rightarrow(\tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)) \rightarrow \mathbb{S}(\rho)
$$

It is defined by

$$
{ }^{\mathrm{co}} \mathcal{R} \times f= \begin{cases}y * z & \text { if } f(x)=\langle y, \operatorname{InL}(z)\rangle \\ y *\left({ }^{\mathrm{co}} \mathcal{R} x^{\prime} f\right) & \text { if } f(x)=\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle .\end{cases}
$$

Lemma (Cototality of corecursion)

Let $f: \tau \rightarrow \rho \times(\mathbb{S}(\rho)+\tau)$ be of InR-form, i.e., $f(x)$ has the form $\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle$ for all x. Then ${ }^{\text {co }} \mathcal{R} x f \in{ }^{\mathrm{co}} T_{\mathbb{S}(\rho)}$ for all x.

Proof.
By coinduction with competitor predicate

$$
X:=\left\{z \mid \exists_{x}^{1}\left(z={ }^{\mathrm{co}} \mathcal{R} x f\right)\right\}
$$

Need to prove that X satisfies the clause defining ${ }^{\mathrm{co}} T_{\mathbb{S}(\rho)}$:

$$
\forall_{z}\left(z \in X \rightarrow \exists_{y}^{\mathrm{d}} \exists_{z^{\prime}}^{\mathrm{r}}\left(z^{\prime} \in X \wedge z=y * z^{\prime}\right)\right) .
$$

Let $z={ }^{\text {co }} \mathcal{R} x f$ for some x. Since f is assumed to be of InR-form we have y, x^{\prime} such that $f(x)=\left\langle y, \operatorname{InR}\left(x^{\prime}\right)\right\rangle$. By the definition of ${ }^{\text {co }} \mathcal{R}_{\mathbb{S}(\rho)}^{\tau}$ we obtain ${ }^{\text {co }} \mathcal{R} x f=y *\left({ }^{\text {co }} \mathcal{R} x^{\prime} f\right)$. Use ${ }^{\text {co }} \mathcal{R} x^{\prime} f \in X$.

- View trees as sets of nodes u, v, w of type $\mathbb{L}(\mathbb{B})$ (lists of booleans), which are downward closed.
- Paths are seen as cototal objects s of type $\mathbb{S}(\mathbb{B})$ (streams of booleans; no nullary constructor).
- Sets of nodes are given by (not necessarily total) functions b of type $\mathbb{R}(\mathbb{B}) \rightarrow \mathbb{B}$. To be or not to be in b is expressed by saying that $b(u)$ is defined with 1 or 0 as its value.
- A set b of nodes is a bar if every path s hits the bar, i.e., there is an n such that $\bar{s}(n) \in b$.

For simplicity assume: all bars b considered are upwards closed (i.e., $\forall_{u, p}(u \in b \rightarrow u * p \in b)$). This does not restrict generality.

Lemma (Distance)

Let b be a uniformly coconvex bar with modulus d. Then

$$
\forall_{u} \exists_{m}\left(u * d(u) \in D_{b, m}:=\left\{u \mid \forall_{v}(|v|=m \rightarrow u * v \in b)\right\}\right) .
$$

Proof. Given $u: \mathbb{L}(\mathbb{B})$, extend $u * d(u)$ by appending 1^{∞} if $d(u)=0$, and 0^{∞} if $d(u)=1$. Assume $d(u)=0$. Since b is a bar, the path $u * 0 * 1^{\infty}$ hits b at $u * 0 * 1^{m}$ for some m. By uniform coconvexity, all $u * 0 * v$ with $|v|=m$ will be in b. Hence $u * 0 \in D_{b, m}$.

The escape path $s_{d} \in \mathbb{S}(\mathbb{B})$ is constructed from d corecursively, as follows. Start with the root node. At any node u, take the opposite direction to what $d(u)$ says, and continue.
Lemma (Escape)
Let b be a uniformly coconvex bar with modulus d. Then

$$
\forall_{n, u}\left(|u|=n \rightarrow u \neq \overline{s_{d}}(n) \rightarrow \exists_{m}\left(u \in D_{b, m}\right) .\right.
$$

Proof. Induction on $n . n=0$: false premise.
Step: let $|u * p|=n+1$.

Case $\bar{u}(\ell) \neq \overline{s_{d}}(\ell)$ for some $\ell \leq n$. By IH $\bar{u}(\ell) \in D_{b, m}$ for some m, hence $u \in D_{b, m-(n+1-\ell)}$.

Case $\bar{u}(n)=\overline{s_{d}}(n)$ and $p \neq\left(s_{d}\right)_{n}$. Then $p=d(u)$ by definition of s_{d}. Hence $u * p \in D_{b, m}$ for some m, by the Distance lemma.

Lemma (Bounds)

Let b be a uniformly coconvex bar with modulus d. Then for every n there are bounds ℓ_{n}, r_{n} for the b-distances of all nodes of the same length n that are left / right of $\overline{s_{d}}(n)$.
Proof. For $n=0$ there are no such nodes.

Consider $\overline{s_{d}}(n+1)=u *\left(s_{d}\right)_{n}$ of length $n+1$. Assume $\left(s_{d}\right)_{n}=0$. Then every node to the left of $u * 0$ is a successor node of one to the left of u, and hence $\ell_{n+1}=\ell_{n}-1$. The nodes to the right of $u * 0$ are $u * 1$ and then nodes which are all successor nodes of one to the right of u. Since $u * 1$ is $u * d(u)$, lemma Distance gives its b-distance m. Let $r_{n+1}=\max \left(m, r_{n}-1\right)$.

Theorem
Let b be a uniformly coconvex bar with modulus d. Then b is a uniform bar, i.e.,

$$
\exists_{m} \forall_{u}(|u|=m \rightarrow u \in b) .
$$

Let s_{d} be the escape path. Since b is a bar, the escape path s_{d} hits b at some length n. Use lemma Bounds: the uniform bound is $n+\max \left(\ell_{n}, r_{n}\right)$

