Coequalisers in the category of basic pairs

Hajime Ishihara
joint work with Takako Nemoto
School of Information Science
Japan Advanced Institute of Science and Technology
(JAIST)
Nomi, Ishikawa 923-1292, Japan

Third CORE meeting, LMU München, 26 January 2018

A short history

- Aczel (2006) introduced the notion of a set-generated class for dcpos using some terminology from domain theory.
- van den Berg (2013) introduced the principle NID on non-deterministic inductive definitions and set-generated classes in the constructive Zermelo-Frankel set theory CZF.
- Aczel et al. (2015) characterized set-generated classes using generalized geometric theories and a set generation axiom SGA in CZF.
- I-Kawai (2015) constructed coequalisers in the category of basic pairs in the extension of CZF with SGA.
- I-Nemoto (2016) introduced another NID principle, called nullary NID, and proved that nullary NID is equivalent to Fullness in a subsystem ECST of CZF.

The elementary constructive set theory

The language of a constructive set theory contains variables for sets and the binary predicates $=$ and \in. The axioms and rules are those of intuitionistic predicate logic with equality. In addition, ECST has the following set theoretic axioms:
Extensionality: $\forall a \forall b[\forall x(x \in a \leftrightarrow x \in b) \rightarrow a=b]$.
Pairing: $\forall a \forall b \exists c \forall x(x \in c \leftrightarrow x=a \vee x=b)$.
Union: $\forall a \exists b \forall x[x \in b \leftrightarrow \exists y \in a(x \in y)]$.
Restricted Separation:

$$
\forall a \exists b \forall x(x \in b \leftrightarrow x \in a \wedge \varphi(x))
$$

for every restricted formula $\varphi(x)$. Here a formula $\varphi(x)$ is restricted, or Δ_{0}, if all the quantifiers occurring in it are bounded, i.e. of the form $\forall x \in c$ or $\exists x \in c$.

The elementary constructive set theory

Replacement:

$$
\begin{aligned}
& \forall a[\forall x \in a \exists!y \varphi(x, y) \rightarrow \exists b \forall y(y \in b \leftrightarrow \exists x \in a \varphi(x, y))] \\
& \text { for every formula } \varphi(x, y) .
\end{aligned}
$$

Strong Infinity:

$$
\begin{aligned}
& \exists a[0 \in a \wedge \forall x(x \in a \rightarrow x+1 \in a) \\
& \wedge \forall y(0 \in y \wedge \forall x(x \in y \rightarrow x+1 \in y) \rightarrow a \subseteq y)]
\end{aligned}
$$

where $x+1$ is $x \cup\{x\}$, and 0 is the empty set \emptyset.

The elementary constructive set theory

- Using Replacement and Union, the cartesian product $a \times b$ of sets a and b consisting of the ordered pairs $(x, y)=\{\{x\},\{x, y\}\}$ with $x \in a$ and $y \in b$ can be introduced in ECST.
- A relation r between a and b is a subset of $a \times b$. A relation $r \subseteq a \times b$ is total (or is a multivalued function) if for every $x \in a$ there exists $y \in b$ such that $(x, y) \in r$.
- A function from a to b is a total relation $f \subseteq a \times b$ such that for every $x \in a$ there is exactly one $y \in b$ with $(x, y) \in f$.

The elementary constructive set theory

The class of total relations between a and b is denoted by $\operatorname{mv}(a, b)$:

$$
r \in \operatorname{mv}(a, b) \Leftrightarrow r \subseteq a \times b \wedge \forall x \in a \exists y \in b((x, y) \in r)
$$

The class of functions from a to b is denoted by b^{a} :

$$
\begin{aligned}
f \in b^{a} \Leftrightarrow & f \in \operatorname{mv}(a, b) \\
& \wedge \forall x \in a \forall y, z \in b((x, y) \in f \wedge(x, z) \in f \rightarrow y=z) .
\end{aligned}
$$

The constructive set theory CZF

The constructive set theory CZF is obtained from ECST by replacing Replacement by
Strong Collection:

$$
\left.\left.\left.\begin{array}{rl}
\forall a[\forall x \in a \exists y \varphi(x, y) \rightarrow & \exists b(\forall x \in a \exists y
\end{array}\right) b \varphi(x, y), ~(x, y)\right)\right] .
$$

for every formula $\varphi(x, y)$,

The constructive set theory CZF

and adding
Subset Collection:

$$
\begin{aligned}
& \forall a \forall b \exists c \forall u[\forall x \in a \exists y \in b \varphi(x, y, u) \rightarrow \\
& \qquad \begin{array}{l}
\\
\exists d \in c(\forall x \in a \exists y \in d \varphi(x, y, u) \\
\\
\wedge \forall y \in d \exists x \in a \varphi(x, y, u))]
\end{array}
\end{aligned}
$$

for every formula $\varphi(x, y, u)$, and
\in-Induction:

$$
\forall a(\forall x \in a \varphi(x) \rightarrow \varphi(a)) \rightarrow \forall a \varphi(a)
$$

for every formula $\varphi(a)$.

The constructive set theory CZF

- In ECST, Subset Collection implies

Fullness:

$$
\begin{aligned}
\forall a \forall b \exists c(c \subseteq & \operatorname{mv}(a, b) \\
& \wedge \forall r \in \operatorname{mv}(a, b) \exists s \in c(s \subseteq r)),
\end{aligned}
$$

and Fullness and Strong Collection imply Subset Collection.

- The notable consequence of Fullness is that b^{a} forms a set:

Exponentiation: $\forall a \forall b \exists c \forall f\left(f \in c \leftrightarrow f \in b^{a}\right)$.

- For a set S, we write $\operatorname{Pow}(S)$ for the power class of S which is not a set in ECST nor in CZF:

$$
a \in \operatorname{Pow}(S) \Leftrightarrow a \subseteq S
$$

Set-generated classes

Definition 1

Let S be a set, and let X be a subclass of $\operatorname{Pow}(S)$. Then X is set-generated if there exists a subset G, called a generating set, of X such that

$$
\forall \alpha \in X \forall x \in \alpha \exists \beta \in G(x \in \beta \subseteq \alpha)
$$

Remark 2
The power class $\operatorname{Pow}(S)$ of a set S is set-generated with a generating set

$$
\{\{x\} \mid x \in S\}
$$

Rules

Definition 3

Let S be a set. Then a rule on S is a pair (a, b) of subsets a and b of S. A rule is called

- nullary if a is empty;
- elementary if a is a singleton;
- finitary if a is finitely enumerable.

A subset α of S is closed under a rule (a, b) if

$$
a \subseteq \alpha \rightarrow b \nmid \alpha
$$

For a set R of rules on S, we call a subset α of $S R$-closed if it is closed under each rule in R.

Remark 4
Note that if a rule is nullary or elementary, then it is finitary.

NID principles

Definition 5

Let NID denote the principles that

- for each set S and set R of rules on S, the class of R-closed subsets of S is set-generated.
The principles obtained by restricting R in NID to a set of nullary, elementary and finitary rules are denoted by NID $_{0}$, NID $_{1}$ and $\mathrm{NID}_{<\omega}$, respectively.

Remark 6
Note that $\mathrm{NID}_{<\omega}$ implies NID_{0} and NID_{1}.

The nullary NID

Theorem 7 (I-Nemoto 2015)
The following are equivalent over ECST.

1. NID ${ }_{0}$.
2. Fullness.

Proposition 8 (I-Nemoto 2015)
NID $_{1}$ implies NID $_{0}$.
Remark 9

$$
\mathrm{NID}_{0} \longleftarrow \mathrm{NID}_{1} \longleftarrow \mathrm{NID}_{<\omega}
$$

Basic pairs

Definition 10
A basic pair is a triple (X, \Vdash, S) of sets X and S, and a relation \Vdash between X and S.

Relation pairs

Definition 11
A relation pair between basic pairs $\mathcal{X}_{1}=\left(X_{1}, \vdash_{1}, S_{1}\right)$ and $\mathcal{X}_{2}=\left(X_{2}, \Vdash_{2}, S_{2}\right)$ is a pair (r, s) of relations $r \subseteq X_{1} \times X_{2}$ and $s \subseteq S_{1} \times S_{2}$ such that

$$
\Vdash_{2} \circ r=s \circ \Vdash_{1},
$$

that is, the following diagram commute.

Relation pairs

Definition 12

Two relation pairs $\left(r_{1}, s_{1}\right)$ and $\left(r_{2}, s_{2}\right)$ between basic pairs \mathcal{X}_{1} and \mathcal{X}_{2} are equivalent, denoted by $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$, if

$$
\Vdash_{2} \circ r_{1}=\Vdash_{2} \circ r_{2}
$$

or equivalently $s_{1} \circ \Vdash_{1}=s_{2} \circ \Vdash_{1}$.

The category of basic pairs

Notation 13
For a basic pair (X, \Vdash, S), we write

$$
\diamond D=\Vdash(D) \quad \text { and } \quad \operatorname{ext} U=\Vdash^{-1}(U)
$$

for $D \in \operatorname{Pow}(X)$ and $U \in \operatorname{Pow}(S)$.
Proposition 14 (I-Kawai 2015)
Basic pairs and relation pairs form a category BP.

Coequalisers

Definition 15

A coequaliser of a parallel pair $A \underset{g}{\underset{\rightrightarrows}{f}} B$ in a category \mathbf{C} is a pair of an object C and a morphism $B \xrightarrow{e} C$ such that $e \circ f=e \circ g$, and it satisfies a universal property in the sense that for any morphism $B \xrightarrow{h} D$ with $h \circ f=h \circ g$, there exists a unique morphism $C \xrightarrow{k} D$ for which the following diagram commutes.

Coequalisers

Proposition 16 (I-Kawai 2015)
$\left(r_{1}, s_{1}\right)$
Let $\mathcal{X}_{1} \rightrightarrows \mathcal{X}_{2}$ be a parallel pair of relation pairs in BP. If a $\left(r_{2}, s_{2}\right)$
subclass

$$
Q=\left\{U \in \operatorname{Pow}\left(S_{2}\right) \mid \operatorname{ext}_{1} s_{1}^{-1}(U)=\operatorname{ext}_{1} s_{2}^{-1}(U)\right\}
$$

of $\operatorname{Pow}\left(S_{2}\right)$ is set-generated, then the parallel pair has a coequaliser.

A NID principle

Definition 17

Let S be a set. Then a subset α of S is biclosed under a rule (a, b) if

$$
a \ell \alpha \leftrightarrow b \emptyset \alpha .
$$

For a set R of rules on S, we call a subset α of $S R$-biclosed if it is biclosed under each rule in R.

Definition 18
Let $\mathrm{NID}_{\text {bi }}$ denotes the principles that

- for each set S and set R of rules on S, the class of R-biclosed subsets of S is set-generated.

A NID principle

Proposition 19

- NID $_{1}$ implies NID $_{\text {bi }}$.
- NID ${ }_{\text {bi }}$ implies NID $_{0}$.

Remark 20

$$
\mathrm{NID}_{0}<\mathrm{NID}_{\mathrm{bi}}<\mathrm{NID}_{1}<\mathrm{NID}_{<\omega}
$$

Proof

Let R be a set of rules on a set S, and define a set R^{\prime} of elementary rules on S by

$$
R^{\prime}=\{(\{x\}, b) \mid(a, b) \in R, x \in a\} \cup\{(\{y\}, a) \mid(a, b) \in R, y \in b\}
$$

Then it is straightforward to show that a subset α of S is R-biclosed if and only if it is R^{\prime}-closed.
Therefore any generating set of the class of R^{\prime}-closed subsets of S is a generating set of the class of R-biclosed subsets of S. Thus NID $_{1}$ implies NID $_{\text {bi }}$.

Proof

Let R be a set of nullary rules on a set S, and define a set R^{\prime} of rules on $S \cup\left\{*_{s}\right\}$ by

$$
R^{\prime}=\{(\{* s\}, b) \mid(\emptyset, b) \in R\}
$$

where $*_{S}=\{x \in S \mid x \notin x\}$. Since α is R-closed if and only if $\alpha \cup\left\{*_{s}\right\}$ is R^{\prime}-biclosed for each $\alpha \in \operatorname{Pow}(S)$, if G is a generating set of the class of R^{\prime}-biclosed subsets of $S \cup\left\{*_{s}\right\}$, then the set

$$
G^{\prime}=\{\beta \cap S \mid \beta \in G, * S \in \beta\}
$$

is a generating set of the class of R-closed subsets of S.
Therefore NID $_{\text {bi }}$ implies NID $_{0}$.

BP has coequalisers

Theorem 21
The following are equivalent over ECST.

1. $\mathrm{NID}_{\mathrm{bi}}$.
2. BP has coequalisers.

Remark 22
Since BP has small coproducts, in the presence of NID $_{\text {bi }}$, the category BP is cocomplete.

Proof

Suppose that $\mathrm{NID}_{\mathrm{bi}}$ holds, and let $\mathcal{X}_{1} \stackrel{\left(r_{1}, s_{1}\right)}{\rightrightarrows} \mathcal{X}_{2}$ be a parallel pair of $\left(r_{2}, s_{2}\right)$ relation pairs in BP. Then, by Proposition 16, it suffices to show that the class

$$
Q=\left\{U \in \operatorname{Pow}\left(S_{2}\right) \mid \operatorname{ext}_{1} s_{1}^{-1}(U)=\operatorname{ext}_{1} s_{2}^{-1}(U)\right\}
$$

is set-generated. Since for each $U \in \operatorname{Pow}\left(S_{2}\right)$ and $x \in X_{1}$,

$$
x \in \operatorname{ext}_{1} s_{1}^{-1}(U) \leftrightarrow \diamond x \gamma s_{1}^{-1}(U) \leftrightarrow s_{1}(\diamond x) \gamma U
$$

and, similarly, $x \in \operatorname{ext}_{1} s_{2}^{-1}(U) \leftrightarrow s_{2}(\nabla x) \gamma U$, we have

$$
U \in Q \leftrightarrow \forall x \in X_{1}\left[s_{1}(\diamond x) \gamma U \leftrightarrow s_{2}(\diamond x) \gamma U\right]
$$

for each $U \in \operatorname{Pow}\left(S_{2}\right)$. Therefore Q is the class of subsets of S_{2} biclosed under the set $\left\{\left(s_{1}(\diamond x), s_{2}(\diamond x)\right) \mid x \in X_{1}\right\}$ of rules on S_{2}, and so Q is set-generated by $\mathrm{NID}_{\text {bi }}$.

Proof

Conversely, suppose that BP has coequalisers, and let R be a set of rules on a set S. Define basic pairs \mathcal{X}_{1} and \mathcal{X}_{2} by

$$
\mathcal{X}_{1}=\left(R, \Delta_{R}, R\right) \quad \text { and } \quad \mathcal{X}_{2}=\left(S, \Delta_{S}, S\right)
$$

and define relations r and s between R and S by

$$
(a, b) r u \Leftrightarrow u \in a \quad \text { and } \quad(a, b) s u \Leftrightarrow u \in b
$$

for each $(a, b) \in R$ and $u \in S$. Then (r, r) and (s, s) are relation pairs between \mathcal{X}_{1} and \mathcal{X}_{2}, and hence $\mathcal{X}_{1} \underset{(s, s)}{\rightrightarrows} \mathcal{X}_{2}$ is a parallel pair in BP. Since BP has coequalisers, there exist an object $\mathcal{Y}=(Y, \Vdash, T)$ and a relation pair $\mathcal{X}_{2} \xrightarrow{(p, q)} \mathcal{Y}$ such that $(p, q) \circ(r, r)=(p, q) \circ(s, s)$, and satisfy the universal property.

Proof

For each $v \in T$, since

$$
a \ell q^{-1}(v) \leftrightarrow(a, b)(q \circ r) v \leftrightarrow(a, b)(q \circ s) v \leftrightarrow b \emptyset q^{-1}(v)
$$

for each $(a, b) \in R, q^{-1}(v)$ is an R-biclosed subset.
Let α be an R-biclosed subset of S, and consider a basic pair $\mathcal{Z}=\left(\{*\}, \Delta_{\{*\}},\{*\}\right)$ and a relation t between S and $\{*\}$ defined by

$$
u t * \Leftrightarrow u \in \alpha
$$

Then (t, t) is a relation pair between \mathcal{X}_{2} and \mathcal{Z}, and, since

$$
(a, b)(t \circ r) * \leftrightarrow a \ell \alpha \leftrightarrow b \gamma \alpha \leftrightarrow(a, b)(t \circ s) *
$$

for each $(a, b) \in R$, we have $(t, t) \circ(r, r)=(t, t) \circ(s, s)$.
Therefore there exists a relation pair (j, k) between \mathcal{Y} and \mathcal{Z} such that $(t, t)=(j, k) \circ(p, q)$, by the universal property.

Proof

Since

$$
y \in \alpha \leftrightarrow y t * \leftrightarrow y(k \circ q) * \leftrightarrow \exists v \in T(y q v \wedge v k *)
$$

for each $y \in S$, if $x \in \alpha$, then $x \in q^{-1}(v) \subseteq \alpha$ for some $v \in T$.
Therefore the subset G of $\operatorname{Pow}(S)$ defined by

$$
G=\left\{q^{-1}(v) \mid v \in T\right\}
$$

is a generating set of the class of R-biclosed subsets of S.

Work in progress

Definition 23
A rule (a, b) on a set S is called n-ary if there exists a surjection $n \rightarrow a$.

Remark 24
Note that if a rule is $n+1$-ary, then it is $n+2$-ary.
Definition 25
The principles obtained by restricting R in NID to a set of n-ary rules is denoted by NID $_{n}$.

Work in progress

Proposition 26
NID_{2} implies NID $_{<\omega}$.
Remark 27
$\mathrm{NID}_{0} \longleftarrow \mathrm{NID}_{\mathrm{bi}} \longleftarrow \mathrm{NID}_{1} \longleftarrow \mathrm{NID}_{2} \longleftrightarrow \cdots \longleftrightarrow \mathrm{NID}_{<\omega}$

Acknowledgment

The speaker thanks the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks) and Grant-in-Aid for Scientific Research (C) No.16K05251 for supporting the research.

References

- Peter Aczel, Aspects of general topology in constructive set theory, Ann. Pure Appl. Logic 137 (2006), 3-29.
- Peter Aczel, Hajime Ishihara, Takako Nemoto and Yasushi Sangu, Generalized geometric theories and set-generated classes, Math. Structures Comput. Sci. 25 (2015), 1466-1483.
- Peter Aczel and Michael Rathjen, Notes on constructive set theory, Report No. 40, Institut Mittag-Leffler, The Royal Swedish Academy of Sciences, 2001.
- Peter Aczel and Michael Rathjen, CST Book draft, August 19, 2010, http://www1.maths.leeds.ac.uk/~rathjen/book.pdf.

References

- Hajime Ishihara and Tatsuji Kawai, Completeness and cocompleteness of the categories of basic pairs and concrete spaces, Math. Structures Comput. Sci. 25 (2015), 1626-1648.
- Hajime Ishihara and Takako Nemoto, Non-deterministic inductive definitions and fullness, Concepts of proof in mathematics, philosophy, and computer science, 163-170, Ontos Math. Log., 6, De Gruyter, Berlin, 2016.
- Giovanni Sambin, Some points in formal topology, Topology in computer science (Schloß Dagstuhl, 2000), Theoret. Comput. Sci. 305 (2003), 347-408.
- Benno van den Berg, Non-deterministic inductive definitions, Arch. Math. Logic 52 (2013), 113-135.

