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A short history

> Aczel (2006) introduced the notion of a set-generated class
for dcpos using some terminology from domain theory.

» van den Berg (2013) introduced the principle NID on
non-deterministic inductive definitions and set-generated
classes in the constructive Zermelo-Frankel set theory CZF.

» Aczel et al. (2015) characterized set-generated classes using

generalized geometric theories and a set generation axiom
SGA in CZF.

» |-Kawai (2015) constructed coequalisers in the category of
basic pairs in the extension of CZF with SGA.

» |-Nemoto (2016) introduced another NID principle, called
nullary NID, and proved that nullary NID is equivalent to
Fullness in a subsystem ECST of CZF.



The elementary constructive set theory

The language of a constructive set theory contains variables for
sets and the binary predicates = and €. The axioms and rules are
those of intuitionistic predicate logic with equality. In addition,
ECST has the following set theoretic axioms:

Extensionality: VaVb[Vx(x € a<» x € b) — a = b].
Pairing: VYaVb3cVx(x € c <> x =aV x = b).
Union: VadbVx[x € b+ Jy € a(x € y)].

Restricted Separation:
VadbVx(x € b+ x € aA p(x))

for every restricted formula ¢(x). Here a formula
©(x) is restricted, or Ay, if all the quantifiers
occurring in it are bounded, i.e. of the form Vx € ¢
or Ix € c.



The elementary constructive set theory

Replacement:
Va[Vx € adlyp(x, y)—=3bVy(y € b+ Ix € ap(x,y))]

for every formula ¢(x, y).

Strong Infinity:

Ja[0 e aAVx(x €a— x+ 1€ a)
AVy(Dey AVx(x ey —x+1ey)—aly),

where x + 1 is x U {x}, and 0 is the empty set ().



The elementary constructive set theory

» Using Replacement and Union, the cartesian product a x b of
sets a and b consisting of the ordered pairs
(x,y) = {{x},{x,y}} with x € aand y € b can be
introduced in ECST.

> A relation r between a and b is a subset of a x b. A relation
r C a x b is total (or is a multivalued function) if for every
X € a there exists y € b such that (x,y) € r.

» A function from a to b is a total relation f C a x b such that
for every x € a there is exactly one y € b with (x,y) € f.



The elementary constructive set theory

The class of total relations between a and b is denoted by mv(a, b):
remv(a,b)erCaxbAVxeady e b((x,y) €r).
The class of functions from a to b is denoted by b?:

f € bP<f € mv(a, b)
AVx € aVy,z € b((x,y) e f N(x,z) € f =y = z).



The constructive set theory CZF

The constructive set theory CZF is obtained from ECST by
replacing Replacement by

Strong Collection:

Va[Vx € adyp(x,y) — 3b(Vx € ady € bp(x,y)
AVy € b3x € ap(x,y))]

for every formula ¢(x, y),



The constructive set theory CZF

and adding

Subset Collection:

Vavb3cVul[Vx € ady € by(x,y,u) —
3d € c(Vx € ady € dy(x,y, u)
AVy € d3x € ap(x, y, u))]

for every formula ¢(x, y, u), and

€-Induction:
Va(Vx € ap(x) — ¢(a)) — Yap(a),

for every formula ¢(a).



The constructive set theory CZF

» In ECST, Subset Collection implies
Fullness:

Vav¥b3c(c C mv(a, b)
AYr e mv(a,b)ds € c(s C r)),

and Fullness and Strong Collection imply Subset Collection.
» The notable consequence of Fullness is that b2 forms a set:
Exponentiation: VaVb3cVf(f € c <> f € b?).

» For a set S, we write Pow(S) for the power class of S which
is not a set in ECST nor in CZF:

acPow(S)<acCs.



Set-generated classes

Definition 1

Let S be a set, and let X be a subclass of Pow(S). Then X is
set-generated if there exists a subset G, called a generating set, of
X such that

Va e XVx € adf € G(x € f C ).

Remark 2
The power class Pow(S) of a set S is set-generated with a

generating set

{{x} | x € S}.



Rules

Definition 3
Let S be a set. Then a rule on S is a pair (a, b) of subsets a and b
of S. A rule is called

> nullary if a is empty;
» elementary if a is a singleton;
» finitary if a is finitely enumerable.

A subset « of S is closed under a rule (a, b) if
aCa—b(a.

For a set R of rules on S, we call a subset & of S R-closed if it is
closed under each rule in R.

Remark 4
Note that if a rule is nullary or elementary, then it is finitary.



NID principles

Definition 5
Let NID denote the principles that
» for each set S and set R of rules on S, the class of R-closed
subsets of S is set-generated.

The principles obtained by restricting R in NID to a set of nullary,
elementary and finitary rules are denoted by NIDg, NID; and
NID.,, respectively.

Remark 6
Note that NID_,, implies NIDg and NID;.



The nullary NID

Theorem 7 (I-Nemoto 2015)
The following are equivalent over ECST.
1. NIDg.

2. Fullness.

Proposition 8 (I-Nemoto 2015)
NID; implies NIDg.

Remark 9

NIDg <—— NID; <—— NID,,



Basic pairs

Definition 10
A basic pair is a triple (X,IF, S) of sets X and S, and a relation I-
between X and S.



Relation pairs

Definition 11

A relation pair between basic pairs X3 = (Xi,lF1,51) and

Xo = (Xa,1k2,S2) is a pair (r,s) of relations r C Xy x X3 and
s C 51 X S5 such that

lFoor=solkq,

that is, the following diagram commute.



Relation pairs

Definition 12
Two relation pairs (r1,s1) and (r2, s2) between basic pairs X7 and

X> are equivalent, denoted by (r1,s1) ~ (r2, 52), if

”—2 on = ||—2 o r,

or equivalently s; olFy = sp oIk,



The category of basic pairs

Notation 13
For a basic pair (X, I, S), we write

OD =1IF (D) and extU=I-"1(U)
for D € Pow(X) and U € Pow(S).

Proposition 14 (I-Kawai 2015)
Basic pairs and relation pairs form a category BP.



Coequalisers

Definition 15

f
A coequaliser of a parallel pair A= B in a category C is a pair of
g

an object C and a morphism B = C such that eof = eog, and it
satisfies a universal property in the sense that for any morphism

B Dwith hof=ho g, there exists a unique morphism C ~AD
for which the following diagram commutes.

f
A:;B%(;

\k
h ™\ v

D



Coequalisers

Proposition 16 (I-Kawai 2015)
(r1,s1)

Let X1 == A, be a parallel pair of relation pairs in BP. If a
(r2,52)

subclass

Q = {U € Pow(S2) | exty sfl(U) = ext S;l(U)}

of Pow(Sy) is set-generated, then the parallel pair has a
coequaliser.



A NID principle

Definition 17
Let S be a set. Then a subset a of S is biclosed under a rule (a, b)
if

ajaeb(a.
For a set R of rules on S, we call a subset o of S R-biclosed if it is
biclosed under each rule in R.

Definition 18
Let NIDy,; denotes the principles that

» for each set S and set R of rules on S, the class of R-biclosed
subsets of S is set-generated.



A NID principle

Proposition 19

» NID; implies NIDy;.
» NIDy,; implies NIDy.

Remark 20

NID, NIDy;

NID; < NID_,,



Proof

Let R be a set of rules on a set S, and define a set R’ of
elementary rules on S by

R'={({x},b) | (a,b) € R,x € a} U{({y},a) | (a,b) € R,y € b}.

Then it is straightforward to show that a subset a of S is
R-biclosed if and only if it is R’-closed.

Therefore any generating set of the class of R’-closed subsets of S
is a generating set of the class of R-biclosed subsets of S. Thus
NID; implies NIDy;.



Proof

Let R be a set of nullary rules on a set S, and define a set R’ of
rules on S U {xs} by

R'={({xs},b) | (0, b) € R},

where xg = {x € S | x € x}. Since a is R-closed if and only if
aU{xs} is R'-biclosed for each a € Pow(S), if G is a generating
set of the class of R’-biclosed subsets of S U {*s}, then the set

G'={BNS|BeG x*sep}

is a generating set of the class of R-closed subsets of S.
Therefore NIDy,; implies NIDg.



BP has coequalisers

Theorem 21
The following are equivalent over ECST.

1. NIDy;.

2. BP has coequalisers.

Remark 22
Since BP has small coproducts, in the presence of NIDy;, the
category BP is cocomplete.



Proof

(r1751)

Suppose that NIDy; holds, and let X7 = A5 be a parallel pair of
(r2,52)

relation pairs in BP. Then, by Proposition 16, it suffices to show

that the class
Q = {U € Pow(Sy) | exty s; H(U) = exty s, H(U)}
is set-generated. Since for each U € Pow(S;) and x € Xi,
x € exty s; H(U) < Ox § 571 (U) > s1(Ox) ) U
and, similarly, x € exty s, 1(U) < 52(Ox) § U, we have
Ue Q<+ ¥x e Xi[s1(0x) § U<+ 52(0x) ( U]

for each U € Pow(S,). Therefore Q is the class of subsets of S,
biclosed under the set {(s1(0x),s2(0x)) | x € X1} of rules on S,
and so @ is set-generated by NIDy,;.



Proof

Conversely, suppose that BP has coequalisers, and let R be a set
of rules on a set S. Define basic pairs X7 and X, by

Xl = (R, AR, R) and Xz = (S,As, S),
and define relations r and s between R and S by
(a,b)rucueca and (a,b)susuch

for each (a,b) € R and u€ S. Then (r,r) and (s,s) are relation

(r,r)
pairs between X; and A%, and hence A7 = A is a parallel pair in

(s,5)
BP. Since BP has coequalisers, there exist an object
Y =(Y,IF, T) and a relation pair X> (p—’g) Y such that
(p,q)o(r,r) =(p,q)o(s,s), and satisfy the universal property.



Proof
For each v € T, since

a0 g t(v)<(a,b)(gor)ve(a,b)(gos)ve b qgi(v)

for each (a, b) € R, g1(v) is an R-biclosed subset.
Let « be an R-biclosed subset of S, and consider a basic pair
Z = ({*}, A, {*}) and a relation t between S and {*} defined
by
utx<sucao.

Then (t,t) is a relation pair between X5 and Z, and, since
(a,b) (tor)x<>afa<ba<+ (ab)(tos)x

for each (a, b) € R, we have (t,t)o(r,r) = (t,t)o(s,s).
Therefore there exists a relation pair (j, k) between ) and Z such
that (t,t) = (j, k) o (p, q), by the universal property.



Proof

Since
yeawrytxery(kog)x+3Ive T(yqvAvkx)

for each y € S, if x € , then x € g71(v) C a for some v € T.
Therefore the subset G of Pow(S) defined by

G={q'(v)|veT}

is a generating set of the class of R-biclosed subsets of S.



Work in progress

Definition 23
A rule (a, b) on a set S is called n-ary if there exists a surjection
n— a.

Remark 24
Note that if a rule is n + 1-ary, then it is n + 2-ary.

Definition 25
The principles obtained by restricting R in NID to a set of n-ary
rules is denoted by NID,.



Work in progress

Proposition 26
NID»> implies NID .

Remark 27

NIDg NIDy; NID; =<—— NIDp <— - -~

<~ NID_,,
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