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A short history

I Aczel (2006) introduced the notion of a set-generated class
for dcpos using some terminology from domain theory.

I van den Berg (2013) introduced the principle NID on
non-deterministic inductive definitions and set-generated
classes in the constructive Zermelo-Frankel set theory CZF.

I Aczel et al. (2015) characterized set-generated classes using
generalized geometric theories and a set generation axiom
SGA in CZF.

I I-Kawai (2015) constructed coequalisers in the category of
basic pairs in the extension of CZF with SGA.

I I-Nemoto (2016) introduced another NID principle, called
nullary NID, and proved that nullary NID is equivalent to
Fullness in a subsystem ECST of CZF.



The elementary constructive set theory

The language of a constructive set theory contains variables for
sets and the binary predicates = and ∈. The axioms and rules are
those of intuitionistic predicate logic with equality. In addition,
ECST has the following set theoretic axioms:

Extensionality: ∀a∀b[∀x(x ∈ a↔ x ∈ b)→ a = b].

Pairing: ∀a∀b∃c∀x(x ∈ c ↔ x = a ∨ x = b).

Union: ∀a∃b∀x [x ∈ b↔∃y ∈ a(x ∈ y)].

Restricted Separation:

∀a∃b∀x(x ∈ b↔ x ∈ a ∧ ϕ(x))

for every restricted formula ϕ(x). Here a formula
ϕ(x) is restricted, or ∆0, if all the quantifiers
occurring in it are bounded, i.e. of the form ∀x ∈ c
or ∃x ∈ c .



The elementary constructive set theory

Replacement:

∀a[∀x ∈ a∃!yϕ(x , y)→∃b∀y(y ∈ b↔∃x ∈ aϕ(x , y))]

for every formula ϕ(x , y).

Strong Infinity:

∃a[0 ∈ a ∧ ∀x(x ∈ a→ x + 1 ∈ a)

∧ ∀y(0 ∈ y ∧ ∀x(x ∈ y → x + 1 ∈ y)→ a ⊆ y)],

where x + 1 is x ∪ {x}, and 0 is the empty set ∅.



The elementary constructive set theory

I Using Replacement and Union, the cartesian product a× b of
sets a and b consisting of the ordered pairs
(x , y) = {{x}, {x , y}} with x ∈ a and y ∈ b can be
introduced in ECST.

I A relation r between a and b is a subset of a× b. A relation
r ⊆ a× b is total (or is a multivalued function) if for every
x ∈ a there exists y ∈ b such that (x , y) ∈ r .

I A function from a to b is a total relation f ⊆ a× b such that
for every x ∈ a there is exactly one y ∈ b with (x , y) ∈ f .



The elementary constructive set theory

The class of total relations between a and b is denoted by mv(a, b):

r ∈ mv(a, b)⇔ r ⊆ a× b ∧ ∀x ∈ a∃y ∈ b((x , y) ∈ r).

The class of functions from a to b is denoted by ba:

f ∈ ba⇔f ∈ mv(a, b)

∧ ∀x ∈ a∀y , z ∈ b((x , y) ∈ f ∧ (x , z) ∈ f → y = z).



The constructive set theory CZF

The constructive set theory CZF is obtained from ECST by
replacing Replacement by

Strong Collection:

∀a[∀x ∈ a∃yϕ(x , y)→∃b(∀x ∈ a∃y ∈ bϕ(x , y)

∧ ∀y ∈ b∃x ∈ aϕ(x , y))]

for every formula ϕ(x , y),



The constructive set theory CZF

and adding

Subset Collection:

∀a∀b∃c∀u[∀x ∈ a∃y ∈ bϕ(x , y , u)→
∃d ∈ c(∀x ∈ a∃y ∈ dϕ(x , y , u)

∧ ∀y ∈ d∃x ∈ aϕ(x , y , u))]

for every formula ϕ(x , y , u), and

∈-Induction:
∀a(∀x ∈ aϕ(x)→ ϕ(a))→∀aϕ(a),

for every formula ϕ(a).



The constructive set theory CZF

I In ECST, Subset Collection implies

Fullness:

∀a∀b∃c(c ⊆ mv(a, b)

∧ ∀r ∈ mv(a, b)∃s ∈ c(s ⊆ r)),

and Fullness and Strong Collection imply Subset Collection.

I The notable consequence of Fullness is that ba forms a set:

Exponentiation: ∀a∀b∃c∀f (f ∈ c ↔ f ∈ ba).

I For a set S , we write Pow(S) for the power class of S which
is not a set in ECST nor in CZF:

a ∈ Pow(S)⇔ a ⊆ S .



Set-generated classes

Definition 1
Let S be a set, and let X be a subclass of Pow(S). Then X is
set-generated if there exists a subset G , called a generating set, of
X such that

∀α ∈ X∀x ∈ α∃β ∈ G (x ∈ β ⊆ α).

Remark 2
The power class Pow(S) of a set S is set-generated with a
generating set

{{x} | x ∈ S}.



Rules

Definition 3
Let S be a set. Then a rule on S is a pair (a, b) of subsets a and b
of S . A rule is called

I nullary if a is empty;

I elementary if a is a singleton;

I finitary if a is finitely enumerable.

A subset α of S is closed under a rule (a, b) if

a ⊆ α→ b G α.

For a set R of rules on S , we call a subset α of S R-closed if it is
closed under each rule in R.

Remark 4
Note that if a rule is nullary or elementary, then it is finitary.



NID principles

Definition 5
Let NID denote the principles that

I for each set S and set R of rules on S , the class of R-closed
subsets of S is set-generated.

The principles obtained by restricting R in NID to a set of nullary,
elementary and finitary rules are denoted by NID0, NID1 and
NID<ω, respectively.

Remark 6
Note that NID<ω implies NID0 and NID1.



The nullary NID

Theorem 7 (I-Nemoto 2015)

The following are equivalent over ECST.

1. NID0.

2. Fullness.

Proposition 8 (I-Nemoto 2015)

NID1 implies NID0.

Remark 9

NID0 NID1
oo NID<ω

oo



Basic pairs

Definition 10
A basic pair is a triple (X ,
,S) of sets X and S , and a relation 

between X and S .



Relation pairs

Definition 11
A relation pair between basic pairs X1 = (X1,
1,S1) and
X2 = (X2,
2,S2) is a pair (r , s) of relations r ⊆ X1 × X2 and
s ⊆ S1 × S2 such that


2 ◦ r = s ◦ 
1,

that is, the following diagram commute.

X1

1 //

r

��

S1

s

��

X2 
2

// S2



Relation pairs

Definition 12
Two relation pairs (r1, s1) and (r2, s2) between basic pairs X1 and
X2 are equivalent, denoted by (r1, s1) ∼ (r2, s2), if


2 ◦ r1 = 
2 ◦ r2,

or equivalently s1 ◦ 
1 = s2 ◦ 
1.



The category of basic pairs

Notation 13
For a basic pair (X ,
,S), we write

♦D = 
 (D) and extU = 
−1 (U)

for D ∈ Pow(X ) and U ∈ Pow(S).

Proposition 14 (I-Kawai 2015)

Basic pairs and relation pairs form a category BP.



Coequalisers

Definition 15

A coequaliser of a parallel pair A
f
⇒
g

B in a category C is a pair of

an object C and a morphism B
e→ C such that e ◦ f = e ◦ g , and it

satisfies a universal property in the sense that for any morphism

B
h→ D with h ◦ f = h ◦ g , there exists a unique morphism C

k→ D
for which the following diagram commutes.

A
f //

g
// B

e //

h ��@
@
@
@
@
@
@

C

k
��

D



Coequalisers

Proposition 16 (I-Kawai 2015)

Let X1

(r1,s1)

⇒
(r2,s2)

X2 be a parallel pair of relation pairs in BP. If a

subclass

Q = {U ∈ Pow(S2) | ext1 s−11 (U) = ext1 s−12 (U)}

of Pow(S2) is set-generated, then the parallel pair has a
coequaliser.



A NID principle

Definition 17
Let S be a set. Then a subset α of S is biclosed under a rule (a, b)
if

a G α↔ b G α.

For a set R of rules on S , we call a subset α of S R-biclosed if it is
biclosed under each rule in R.

Definition 18
Let NIDbi denotes the principles that

I for each set S and set R of rules on S , the class of R-biclosed
subsets of S is set-generated.



A NID principle

Proposition 19

I NID1 implies NIDbi.

I NIDbi implies NID0.

Remark 20

NID0 NIDbi
oo NID1

oo NID<ω
oo



Proof

Let R be a set of rules on a set S , and define a set R ′ of
elementary rules on S by

R ′ = {({x}, b) | (a, b) ∈ R, x ∈ a} ∪ {({y}, a) | (a, b) ∈ R, y ∈ b}.

Then it is straightforward to show that a subset α of S is
R-biclosed if and only if it is R ′-closed.
Therefore any generating set of the class of R ′-closed subsets of S
is a generating set of the class of R-biclosed subsets of S . Thus
NID1 implies NIDbi.



Proof

Let R be a set of nullary rules on a set S , and define a set R ′ of
rules on S ∪ {∗S} by

R ′ = {({∗S}, b) | (∅, b) ∈ R},

where ∗S = {x ∈ S | x 6∈ x}. Since α is R-closed if and only if
α ∪ {∗S} is R ′-biclosed for each α ∈ Pow(S), if G is a generating
set of the class of R ′-biclosed subsets of S ∪ {∗S}, then the set

G ′ = {β ∩ S | β ∈ G , ∗S ∈ β}

is a generating set of the class of R-closed subsets of S .
Therefore NIDbi implies NID0.



BP has coequalisers

Theorem 21
The following are equivalent over ECST.

1. NIDbi.

2. BP has coequalisers.

Remark 22
Since BP has small coproducts, in the presence of NIDbi, the
category BP is cocomplete.



Proof

Suppose that NIDbi holds, and let X1

(r1,s1)

⇒
(r2,s2)

X2 be a parallel pair of

relation pairs in BP. Then, by Proposition 16, it suffices to show
that the class

Q = {U ∈ Pow(S2) | ext1 s−11 (U) = ext1 s−12 (U)}

is set-generated. Since for each U ∈ Pow(S2) and x ∈ X1,

x ∈ ext1 s−11 (U)↔ ♦x G s−11 (U)↔ s1(♦x) G U

and, similarly, x ∈ ext1 s−12 (U)↔ s2(♦x) G U, we have

U ∈ Q↔∀x ∈ X1[s1(♦x) G U ↔ s2(♦x) G U]

for each U ∈ Pow(S2). Therefore Q is the class of subsets of S2

biclosed under the set {(s1(♦x), s2(♦x)) | x ∈ X1} of rules on S2,
and so Q is set-generated by NIDbi.



Proof

Conversely, suppose that BP has coequalisers, and let R be a set
of rules on a set S . Define basic pairs X1 and X2 by

X1 = (R,∆R ,R) and X2 = (S ,∆S ,S),

and define relations r and s between R and S by

(a, b) r u⇔ u ∈ a and (a, b) s u⇔ u ∈ b

for each (a, b) ∈ R and u ∈ S . Then (r , r) and (s, s) are relation

pairs between X1 and X2, and hence X1

(r ,r)

⇒
(s,s)
X2 is a parallel pair in

BP. Since BP has coequalisers, there exist an object

Y = (Y ,
,T ) and a relation pair X2
(p,q)→ Y such that

(p, q) ◦ (r , r) = (p, q) ◦ (s, s), and satisfy the universal property.



Proof

For each v ∈ T , since

a G q−1(v)↔ (a, b) (q ◦ r) v ↔ (a, b) (q ◦ s) v ↔ b G q−1(v)

for each (a, b) ∈ R, q−1(v) is an R-biclosed subset.
Let α be an R-biclosed subset of S , and consider a basic pair
Z = ({∗},∆{∗}, {∗}) and a relation t between S and {∗} defined
by

u t ∗⇔ u ∈ α.

Then (t, t) is a relation pair between X2 and Z, and, since

(a, b) (t ◦ r) ∗↔ a G α↔ b G α↔ (a, b) (t ◦ s) ∗

for each (a, b) ∈ R, we have (t, t) ◦ (r , r) = (t, t) ◦ (s, s).
Therefore there exists a relation pair (j , k) between Y and Z such
that (t, t) = (j , k) ◦ (p, q), by the universal property.



Proof

Since

y ∈ α↔ y t ∗↔ y (k ◦ q) ∗↔ ∃v ∈ T (y q v ∧ v k ∗)

for each y ∈ S , if x ∈ α, then x ∈ q−1(v) ⊆ α for some v ∈ T .
Therefore the subset G of Pow(S) defined by

G = {q−1(v) | v ∈ T}

is a generating set of the class of R-biclosed subsets of S .



Work in progress

Definition 23
A rule (a, b) on a set S is called n-ary if there exists a surjection
n→ a.

Remark 24
Note that if a rule is n + 1-ary, then it is n + 2-ary.

Definition 25
The principles obtained by restricting R in NID to a set of n-ary
rules is denoted by NIDn.



Work in progress

Proposition 26

NID2 implies NID<ω.

Remark 27

NID0 NIDbi
oo NID1

oo NID2
oo // · · ·oo // NID<ω

oo
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