
;

The Computational Content of the Hahn-Banach Theorem:
Some Known Results – Some Open Questions

Vasco Brattka

Universität der Bundeswehr München, Germany

University of Cape Town, South Africa

third CORE meeting

LMU München – January 2018



;
The Hahn-Banach Theorem

Theorem

Let X be a normed space and Y ⊆ X a linear subspace. Every
linear bounded functional f : Y → R admits a linear bounded
extension g : X → R such that ||f || = ||g ||.

Here ||f || := sup||x ||≤1 |f (x)| denotes the usual operator norm.

We are interested in questions such as:

I How difficult is it to find some suitable g , given f , i.e., how
difficult is it to compute the map f 7→ g?

I If we fix a computable f , how difficult can a suitable g be to
compute?

I How does all this depend on properties of the space X and
the subspace Y ?
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Varieties of Reverse Mathematics

Theorem

The following are equivalent:

I The Hahn-Banach Theorem (for separable spaces).

I Weak Kőnig’s Lemma.

This “equivalence” was proved in the following settings:

I Over RCA0 in reverse mathematics (Brown, Simpson 1986).

I In Bishop’s style constructive analysis (Ishihara 1990).

I In the Weihrauch lattice (Gherardi, Marcone 2009).

resource
sensitivity

uniformity

constructive analysis

reverse mathematics

computable analysis



;
Varieties of Reverse Mathematics

Theorem

The following are equivalent:

I The Hahn-Banach Theorem (for separable spaces).
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I Weak Kőnig’s Lemma.

This “equivalence” was proved in the following settings:

I Over RCA0 in reverse mathematics (Brown, Simpson 1986).

I In Bishop’s style constructive analysis (Ishihara 1990).

I In the Weihrauch lattice (Gherardi, Marcone 2009).

resource
sensitivity

uniformity

constructive analysis

reverse mathematics

computable analysis



;
Weihrauch Reducibility

Let f :⊆ X ⇒ Y , g :⊆ Z ⇒W be problems.

I g :⊆ X ⇒ Y solves f :⊆ X ⇒ Y , if dom(f ) ⊆ dom(g) and
g(x) ⊆ f (x) for all x ∈ dom(f ). We write g v f .

K Hg

f

x f (x)

I f is Weihrauch reducible to g , f ≤W g , if there are computable
H :⊆ X ×W ⇒ Y , K :⊆ X ⇒ Z such that H(idX , gK ) v f .

I f is strongly Weihrauch reducible to g , f ≤sW g , if there are
computable H :⊆W ⇒ Y , K :⊆ X ⇒ Z such that HgK v f .

I Equivalences f ≡W g and f ≡sW g are defined as usual.
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Algebraic Operations in the Weihrauch Lattice

For f :⊆ X ⇒ Y and g :⊆W ⇒ Z we define:

I f × g :⊆ X ×W ⇒ Y × Z , (x ,w) 7→ f (x)× g(w) (Product)

I f t g :⊆ X tW ⇒ Y t Z , z 7→
{
f (z) if z ∈ X
g(z) if z ∈W

(Coproduct)

I f u g :⊆ X ×W ⇒ Y t Z , (x ,w) 7→ f (x) t g(w) (Sum)

I f ∗ :⊆ X ∗ ⇒ Y ∗, f ∗ =
⊔∞

i=0 f
i (Star)

I f̂ :⊆ XN ⇒ Y N, f̂ = X∞i=0 f (Parallelization)

I f ∗ g := max{f0 ◦ g0 : f0≤W f , g0≤W g} (Compos. product)

Theorem (B., Gherardi, Pauly)

I Weihrauch reducibility induces a lattice with the coproduct t
as supremum and the sum u as infimum.

I Parallelization ̂ and star operation ∗ are closure operators in
the Weihrauch lattice.
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The Choice Problem

Definition

CX :⊆ A−(X )⇒ X ,A 7→ A with dom(CX ) := {A : A 6= ∅} is
called the choice problem of a computable metric space X .

We consider the following restrictions of choice:

I UCX is CX restricted to singletons (unique choice)

I CCX is CX restricted to connected sets (connected choice)

I XCX is CX restricted to convex sets (convex choice)

Theorem (B. and Gherardi)

I C2≡sW LLPO,

I C2N ≡sW C[0,1]≡sW Ĉ2≡sW WKL,

I XC[0,1] = CC[0,1]≡sW IVT.
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Choice in the Weihrauch Lattice

BCT1≡W CN

KN≡W C∗2≡W LLPO∗

WWKL≡W PC2N

WKL≡W C2N ≡W Ĉ2≡W L̂LPO

CR≡W CN × C2N

PCR≡W CN × PC2N

lim≡W ĈN≡W L̂PO

CNN

UCNN

C1 RCA∗0

BΣ0
1

IΣ0
1

ACA0

ATR0

WKL∗0

WKL0

WWKL0

WWKL∗0
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The Weihrauch Degree of the Hahn-Banach Theorem

HBT(X ,Y , f ) := {g ∈ C(X ,R) : g linear, g |Y = f , ||g || = ||f ||}.

Theorem (Gherardi and Marcone 2009)

HBT≡W WKL.

Proof. (Idea.)
I “≤W”: There is a computable version of the Banach-Alaoglu

Theorem, that states that the unit ball in X ∗ is compact with
respect to the weak∗ topology (B. 2008).

I The set of solutions HBT(X ,Y , f ) of the extension problem
can be seen as a closed subset of this compact space.

I Hence finding an extension can be reduced to finding a point
in a compact set, which is known to be reducible to WKL.

I “≥W”: the authors adapt a construction of Brown and
Simpson (1990) that reduces the separation problem
(equivalent to WKL) to HBT.

I This construction requires the construction of a Banach space
that depends on the instance of the problem. �
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The Weihrauch Degree of the Hahn-Banach Theorem

HBT(X ,Y , f ) := {g ∈ C(X ,R) : g linear, g |Y = f , ||g || = ||f ||}.

Theorem (Gherardi and Marcone 2009)

HBT≡W WKL.

We immediately obtain the following non-uniform counter example.

Corollary (Metakides, Nerode and Shore 1985)

There exists a computable normed space X with a computably
separable closed linear subspace Y ⊆ X and a computable linear
f : Y → R with computable norm ||f || such that every computable
linear extension g : X → R of f has norm ||g || > ||f ||.

A set Y is called computably separable closed in X if there is a
computable sequence (xn)n∈N in X with Y = {xn : n ∈ N}.
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The Weihrauch Degree of the Hahn-Banach Theorem

HBT(X ,Y , f ) := {g ∈ C(X ,R) : g linear, g |Y = f , ||g || = ||f ||}.

Theorem (Gherardi and Marcone 2009)

HBT≡W WKL.

We immediately obtain the following non-uniform positive result.

Corollary

Let X be a computable normed space X with a computably
separable closed linear subspace Y ⊆ X and a computable linear
f : Y → R with computable norm ||f ||. Then f has a low bounded
linear extension g : X → R with ||g || = ||f ||.

That g : X → R is low means here that it is low as a point in
C(X ,R) which means that it has a low name p ∈ NN.
A p ∈ NN is called low if p′≤T 0′.
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The Weihrauch Degree of the Hahn-Banach Theorem

HBT(X ,Y , f ) := {g ∈ C(X ,R) : g linear, g |Y = f , ||g || = ||f ||}.

Theorem (Gherardi and Marcone 2009)

HBT≡W WKL.

Let us denote by HBTX the problem HBT for a fixed space X .

Question

Is there a computable Banach space X with HBTX ≡W WKL?

As an example we denote the Banach Inverse Mapping Theorem by

BIMX :⊆ C(X ,Y )→ C(Y ,X ),T 7→ T−1,

i.e., BIM is defined for bijective linear T . We obtain:

I BIMX ,Y ≤W CN for all computable Banach spaces X ,Y .

I BIM`2,`2 ≡W CN.

I BIMX ,Y is computable for finite-dimensional computable
Banach spaces X ,Y .
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The Unique Case

Proposition (B. and Gherardi)

UC2N is computable.

I (Y , || ||) is called strictly convex, if ||x + y || < ||x ||+ ||y ||
holds for all linearly independent x , y ∈ Y .

I A normed spaces X has a strictly convex dual space X ∗ if and
only if all linear bounded functionals f : Y → R have unique
extensions g : X → R with ||f || = ||g ||.

Corollary (B. 2008)

HBTX is computable for all computable normed spaces X with a
strictly convex dual space X ∗.

I Examples of strictly convex spaces are `p for 1 < p <∞.

I All Hilbert spaces are strictly convex.

I The spaces c0, `1, `∞ are not strictly convex.
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Finite Dimensional Extensions

Lemma (Folklore)

Let (X , || ||) be a normed space, Y ⊆ X a linear subspace, x ∈ X
and Z the linear subspace generated by Y ∪ {x}. Let f : Y → R
be a linear functional with ||f || = 1. A linear g : Z → R with
g |Y = f |Y extends f with ||g || = 1, if and only if

sup
u∈Y

(f (u)− ||x − u||) ≤ g(x) ≤ inf
v∈Y

(f (v) + ||x − v ||).

By HBTn we denote the Hahn-Banach Theorem HBT restricted to
subspaces Y of codimension ≤ n.

Corollary

HBTn≤W CC[0,1] ∗ ... ∗ CC[0,1]︸ ︷︷ ︸
n–times

.
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Finite Dimensional Extensions

Corollary

HBTn≤W CC[0,1] ∗ ... ∗ CC[0,1]︸ ︷︷ ︸
n–times

.

CC[0,1] is non-uniformly computable, i.e., every connected co-c.e.
closed subset A ⊆ [0, 1] contains a computable point.

Corollary (Metakides and Nerode 1985)

Let X be a finite-dimensional computable Banach space with some
closed linear subspace Y ⊆ X . For any computable linear
functional f : Y → R with computable norm ||f || there exists a
computable linear extension g : X → R with ||g || = ||f ||.

Note however, that LLPO≡sW C2≤sW HBT2 (this can be proved
using ideas of Ishihara). Hence, HBTn is not computable.
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A Space of Maximal Complexity

Question

Is there a computable Banach space X with HBTX ≡W WKL?

Some negative results on a possible X :

I X cannot have a strictly convex dual space X ∗,

I X cannot be a Hilbert space,

I X cannot be a space `p for 1 < p <∞,

I X cannot be finite-dimensional.

We recall ||x ||`p = p
√∑∞

i=1 |xi |p.

Question

Is HBT`1 ≡W WKL?

We definitely have LLPO≡sW C2≤W HBT`1 , hence HBT`1 is not
computable.
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I X cannot be a space `p for 1 < p <∞,

I X cannot be finite-dimensional.

We recall ||x ||`p = p
√∑∞

i=1 |xi |p.

Question

Is HBT`1 ≡W WKL?

We definitely have LLPO≡sW C2≤W HBT`1 , hence HBT`1 is not
computable.
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A Classification of the Finite Dimensional Case

Question

Can HBTn≤W CC[0,1] ∗ ... ∗ CC[0,1] be improved?

A plausible candidate is the following:

Question

Is HBTn≤W XC[0,1]n or even HBTn≡W XC[0,1]n?

More specifically we can even ask:

Question

Is HBT`1(n)≡W XC[0,1]n?

Such a result would be nice since we have:

Theorem (Le Roux and Pauly)

XC[0,1]n <W XC[0,1]n+1 for all n ∈ N.
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The Hahn-Banach Theorem in the Weihrauch Lattice

C2N ≡W C[0,1]n ≡W CC[0,1]n+2 ≡W WKL≡W HBT

XC[0,1]n+1

XC[0,1]n

CC[0,1] = XC[0,1] ≡W IVT

C2 ≡W LLPO

HBT`1

HBT`1(n+1)

HBT`1(n)

?

?

?
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