# The Computational Content of the Hahn-Banach Theorem: Some Known Results - Some Open Questions 

## Vasco Brattka

Universität der Bundeswehr München, Germany<br>University of Cape Town, South Africa


third CORE meeting
LMU München - January 2018

## Theorem

Let $X$ be a normed space and $Y \subseteq X$ a linear subspace. Every linear bounded functional $f: Y \rightarrow \mathbb{R}$ admits a linear bounded extension $g: X \rightarrow \mathbb{R}$ such that $\|f\|=\|g\|$.

Here $\|f\|:=\sup _{\|x\| \leq 1}|f(x)|$ denotes the usual operator norm

## We are interested in questions such as:

- How difficult is it to find some suitable $g$, given $f$, i.e., how difficult is it to compute the map $f \mapsto g$ ?
- If we fix a computable $f$, how difficult can a suitable $g$ be to compute?
- How does all this depend on properties of the space $X$ and the subspace $Y$ ?


## Theorem

Let $X$ be a normed space and $Y \subseteq X$ a linear subspace. Every linear bounded functional $f: Y \rightarrow \mathbb{R}$ admits a linear bounded extension $g: X \rightarrow \mathbb{R}$ such that $\|f\|=\|g\|$.

Here $\|f\|:=\sup _{\|x\| \leq 1}|f(x)|$ denotes the usual operator norm.
We are interested in questions such as:

- How difficult is it to find some suitable $g$, given $f$, i.e., how difficult is it to compute the map $f \mapsto g$ ?
- If we fix a computable $f$, how difficult can a suitable $g$ be to compute?
- How does all this depend on properties of the space $X$ and the subspace $Y$ ?


## Varieties of Reverse Mathematics

## Theorem

The following are equivalent:

- The Hahn-Banach Theorem (for separable spaces).
- Weak Kőnig's Lemma.


## This "equivalence" was proved in the following settings: <br> - Over RCA $A_{0}$ in reverse mathematics (Brown, Simnson 1986) <br> - In Bishop's style constructive analysis (Ishihara 1990) <br> - In the Weihrauch lattice (Gherardi, Marcone 2009)

resource
sensitivity

## Varieties of Reverse Mathematics

## Theorem

The following are equivalent:

- The Hahn-Banach Theorem (for separable spaces).
- Weak Kőnig's Lemma.

This "equivalence" was proved in the following settings:

- Over RCA $\mathrm{R}_{0}$ in reverse mathematics (Brown, Simpson 1986).
- In Bishop's style constructive analysis (Ishihara 1990).
- In the Weihrauch lattice (Gherardi, Marcone 2009).
resource
sensitivity
reverse mathematics


## Varieties of Reverse Mathematics

## Theorem

The following are equivalent:

- The Hahn-Banach Theorem (for separable spaces).
- Weak Kőnig's Lemma.

This "equivalence" was proved in the following settings:

- Over RCA $\mathrm{R}_{0}$ in reverse mathematics (Brown, Simpson 1986).
- In Bishop's style constructive analysis (Ishihara 1990).
- In the Weihrauch lattice (Gherardi, Marcone 2009).
\(\left.\begin{array}{c}resource <br>

sensitivity\end{array}\right\}\)| uniformity |
| :---: |
| reverse mathematics |

## Weihrauch Reducibility

Let $f: \subseteq X \rightrightarrows Y, g: \subseteq Z \rightrightarrows W$ be problems.

- $g: \subseteq X \rightrightarrows Y$ solves $f: \subseteq X \rightrightarrows Y$, if $\operatorname{dom}(f) \subseteq \operatorname{dom}(g)$ and $g(x) \subseteq f(x)$ for all $x \in \operatorname{dom}(f)$. We write $g \sqsubseteq f$.


## Weihrauch Reducibility

Let $f: \subseteq X \rightrightarrows Y, g: \subseteq Z \rightrightarrows W$ be problems.

- $g: \subseteq X \rightrightarrows Y$ solves $f: \subseteq X \rightrightarrows Y$, if $\operatorname{dom}(f) \subseteq \operatorname{dom}(g)$ and $g(x) \subseteq f(x)$ for all $x \in \operatorname{dom}(f)$. We write $g \sqsubseteq f$.


> ( $f$ is Weihrauch reducible to $g, f \leq \mathrm{W} g$, if there are computable $H: \subseteq X \times W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H\left(\mathrm{id}_{X}, g K\right) \sqsubseteq f$.

## Weihrauch Reducibility

Let $f: \subseteq X \rightrightarrows Y, g: \subseteq Z \rightrightarrows W$ be problems.

- $g: \subseteq X \rightrightarrows Y$ solves $f: \subseteq X \rightrightarrows Y$, if $\operatorname{dom}(f) \subseteq \operatorname{dom}(g)$ and $g(x) \subseteq f(x)$ for all $x \in \operatorname{dom}(f)$. We write $g \sqsubseteq f$.

- $f$ is Weihrauch reducible to $g, f \leq_{W} g$, if there are computable $H: \subseteq X \times W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H\left(\mathrm{id}_{X}, g K\right) \sqsubseteq f$.



## Weihrauch Reducibility

Let $f: \subseteq X \rightrightarrows Y, g: \subseteq Z \rightrightarrows W$ be problems.

- $g: \subseteq X \rightrightarrows Y$ solves $f: \subseteq X \rightrightarrows Y$, if $\operatorname{dom}(f) \subseteq \operatorname{dom}(g)$ and $g(x) \subseteq f(x)$ for all $x \in \operatorname{dom}(f)$. We write $g \sqsubseteq f$.

- $f$ is Weihrauch reducible to $g, f \leq_{W} g$, if there are computable $H: \subseteq X \times W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H\left(\mathrm{id}_{X}, g K\right) \sqsubseteq f$.
- $f$ is strongly Weihrauch reducible to $g, f \leq_{s W} g$, if there are computable $H: \subseteq W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H g K \sqsubseteq f$.
- Equivalences $f \equiv_{\mathrm{W}} g$ and $f \equiv_{\mathrm{sW}} g$ are defined as usual.


## Weihrauch Reducibility

Let $f: \subseteq X \rightrightarrows Y, g: \subseteq Z \rightrightarrows W$ be problems.

- $g: \subseteq X \rightrightarrows Y$ solves $f: \subseteq X \rightrightarrows Y$, if $\operatorname{dom}(f) \subseteq \operatorname{dom}(g)$ and $g(x) \subseteq f(x)$ for all $x \in \operatorname{dom}(f)$. We write $g \sqsubseteq f$.

- $f$ is Weihrauch reducible to $g, f \leq_{\mathrm{W}} g$, if there are computable $H: \subseteq X \times W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H\left(\mathrm{id}_{X}, g K\right) \sqsubseteq f$.
- $f$ is strongly Weihrauch reducible to $g, f \leq_{s W} g$, if there are computable $H: \subseteq W \rightrightarrows Y, K: \subseteq X \rightrightarrows Z$ such that $H g K \sqsubseteq f$.
- Equivalences $f \equiv_{\mathrm{W}} g$ and $f \equiv_{\mathrm{sW}} g$ are defined as usual.


## Algebraic Operations in the Weihrauch Lattice

For $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq W \rightrightarrows Z$ we define:

- $f \times g: \subseteq X \times W \rightrightarrows Y \times Z,(x, w) \mapsto f(x) \times g(w)$ (Product)
- $f \sqcup g: \subseteq X \sqcup W \rightrightarrows Y \sqcup Z, z \mapsto\left\{\begin{array}{l}f(z) \text { if } z \in X \\ g(z) \text { if } z \in W\end{array}\right.$ (Coproduct)
- $f \sqcap g: \subseteq X \times W \rightrightarrows Y \sqcup Z,(x, w) \mapsto f(x) \sqcup g(w)$
- $f^{*}: \subseteq X^{*} \rightrightarrows Y^{*}, f^{*}=\bigsqcup_{i=0}^{\infty} f^{i}$
- $\widehat{f}: \subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}, \widehat{f}=X_{i=0}^{\infty} f$ (Parallelization)
- $f * g:=\max \left\{f_{0} \circ g_{0}: f_{0} \leq \mathrm{w} f, g_{0} \leq \mathrm{w} g\right\}$ (Compos. product)


## Theorem (B., Gherardi, Pauly)

- Weihrauch reducibility induces a lattice with the coproduct $\sqcup$ as supremum and the sum $\Pi$ as infimum.
- Parallelization ^ and star operation * are closure operators in the Weihrauch lattice.


## Algebraic Operations in the Weihrauch Lattice

For $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq W \rightrightarrows Z$ we define:

- $f \times g: \subseteq X \times W \rightrightarrows Y \times Z,(x, w) \mapsto f(x) \times g(w)$ (Product)
- $f \sqcup g: \subseteq X \sqcup W \rightrightarrows Y \sqcup Z, z \mapsto\left\{\begin{array}{l}f(z) \text { if } z \in X \\ g(z) \text { if } z \in W\end{array}\right.$
- $f \sqcap g: \subseteq X \times W \rightrightarrows Y \sqcup Z,(x, w) \mapsto f(x) \sqcup g(w)$
- $f^{*}: \subseteq X^{*} \rightrightarrows Y^{*}, f^{*}=\bigsqcup_{i=0}^{\infty} f^{i}$
- $\widehat{f}: \subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}, \widehat{f}=X_{i=0}^{\infty} f$
(Parallelization)
- $f * g:=\max \left\{f_{0} \circ g_{0}: f_{0} \leq_{W} f, g_{0} \leq_{W} g\right\}$
(Compos. product)


## Theorem (B., Gherardi, Pauly)

- Weihrauch reducibility induces a lattice with the coproduct $\sqcup$ as supremum and the sum $\Pi$ as infimum.
- Parallelization ${ }^{\wedge}$ and star operation * are closure operators in the Weihrauch lattice.


## Definition

$C_{X}: \subseteq \mathcal{A}_{-}(X) \rightrightarrows X, A \mapsto A$ with $\operatorname{dom}\left(C_{X}\right):=\{A: A \neq \emptyset\}$ is called the choice problem of a computable metric space $X$.

## We consider the following restrictions of choice: <br> - $\mathrm{UC} C_{X}$ is $\mathrm{C}_{X}$ restricted to singletons <br> - $C_{X}$ is $C_{x}$ restricted to connected sets <br> - $X C_{X}$ is $C_{X}$ restricted to convex sets

$\square$

$$
>\mathrm{C}_{2 \mathbb{N}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}} \widehat{\mathrm{C}_{2}} \equiv_{\mathrm{sW}} \mathrm{WKL}
$$

$$
>X C_{[0,1]}=\mathrm{CC}_{[0,1]} \equiv_{\mathrm{sW}} \mathrm{IVT}
$$

## Definition

$C_{X}: \subseteq \mathcal{A}_{-}(X) \rightrightarrows X, A \mapsto A$ with $\operatorname{dom}\left(C_{X}\right):=\{A: A \neq \emptyset\}$ is called the choice problem of a computable metric space $X$.

We consider the following restrictions of choice:

- $U C_{X}$ is $C_{X}$ restricted to singletons
- $\mathrm{CC}_{X}$ is $\mathrm{C}_{X}$ restricted to connected sets
- $X C_{X}$ is $C_{X}$ restricted to convex sets
(unique choice)
(connected choice)
(convex choice)

Theorem (B. and Gherardi)

- $\mathrm{C}_{2} \equiv_{\mathrm{sW}}$ LLPO,
- $\mathrm{C}_{2 \mathrm{~N}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{s} W \mathrm{~V}}{\widehat{\mathrm{C}_{2}}} \equiv_{\mathrm{sW}} W \mathrm{WL}$,
- $\mathrm{XC}_{[0,1]}=\mathrm{CC}_{[0,1]} \equiv_{\mathrm{sW}}$ IVT.


## Definition

$C_{X}: \subseteq \mathcal{A}_{-}(X) \rightrightarrows X, A \mapsto A$ with $\operatorname{dom}\left(C_{X}\right):=\{A: A \neq \emptyset\}$ is called the choice problem of a computable metric space $X$.

We consider the following restrictions of choice:

- $U C_{X}$ is $C_{X}$ restricted to singletons (unique choice)
- $C_{X}$ is $C_{X}$ restricted to connected sets (connected choice)
- $X C_{X}$ is $C_{X}$ restricted to convex sets


## Theorem (B. and Gherardi)

- $\mathrm{C}_{2} \equiv_{\mathrm{sW}}$ LLPO,
- $\mathrm{C}_{2^{\mathbb{N}}} \equiv_{\mathrm{sW}} \mathrm{C}_{[0,1]} \equiv_{\mathrm{sW}}{\widehat{\mathrm{C}_{2}}} \equiv_{\mathrm{sW}}$ WKL,
- $\mathrm{XC}_{[0,1]}=\mathrm{CC}_{[0,1]} \equiv_{\mathrm{sW}}$ IVT.


## Choice in the Weihrauch Lattice



## The Weihrauch Degree of the Hahn-Banach Theorem

$\operatorname{HBT}(X, Y, f):=\left\{g \in \mathcal{C}(X, \mathbb{R}): g\right.$ linear, $\left.\left.g\right|_{Y}=f,\|g\|=\|f\|\right\}$.
Theorem (Gherardi and Marcone 2009)
HBT $\equiv_{W}$ WKL.
Proof. (Idea.)

- " $\leq_{\mathrm{w}}$ ": There is a computable version of the Banach-Alaoglu Theorem, that states that the unit ball in $X^{*}$ is compact with respect to the weak* topology (B. 2008)
- The set of solutions $\operatorname{HBT}(X, Y, f)$ of the extension problem can be seen as a closed subset of this compact space.
- Hence finding an extension can be reduced to finding a point in a compact set, which is known to be reducible to WKL.

Simpson (1990) that reduces the separation problem
(equivalent to WKL) to HBT
$\rightarrow$ This construction requires the construction of a Banach space
that depends on the instance of the problem

## The Weihrauch Degree of the Hahn-Banach Theorem

$\operatorname{HBT}(X, Y, f):=\left\{g \in \mathcal{C}(X, \mathbb{R}): g\right.$ linear, $\left.\left.g\right|_{Y}=f,\|g\|=\| f| |\right\}$.

## Theorem (Gherardi and Marcone 2009)

HBT $\equiv_{W}$ WKL.
Proof. (Idea.)

- " $\leq \mathrm{w}$ ": There is a computable version of the Banach-Alaoglu Theorem, that states that the unit ball in $X^{*}$ is compact with respect to the weak* topology (B. 2008).
- The set of solutions $\operatorname{HBT}(X, Y, f)$ of the extension problem can be seen as a closed subset of this compact space.
- Hence finding an extension can be reduced to finding a point in a compact set, which is known to be reducible to WKL.

Simpson (1990) that reduces the separation problem
(equivalent to WKL) to HBT

- This construction requires the construction of a Banach space
$\operatorname{HBT}(X, Y, f):=\left\{g \in \mathcal{C}(X, \mathbb{R}): g\right.$ linear, $\left.\left.g\right|_{Y}=f,\|g\|=\|f \mid\|\right\}$.


## Theorem (Gherardi and Marcone 2009)

## HBT $\equiv_{W}$ WKL.

Proof. (Idea.)

- " $\leq \mathrm{w}$ ": There is a computable version of the Banach-Alaoglu Theorem, that states that the unit ball in $X^{*}$ is compact with respect to the weak* topology (B. 2008).
- The set of solutions $\operatorname{HBT}(X, Y, f)$ of the extension problem can be seen as a closed subset of this compact space.
- Hence finding an extension can be reduced to finding a point in a compact set, which is known to be reducible to WKL.
- " $\geq \mathrm{w}$ ": the authors adapt a construction of Brown and Simpson (1990) that reduces the separation problem (equivalent to WKL) to HBT.
- This construction requires the construction of a Banach space that depends on the instance of the problem.


## The Weihrauch Degree of the Hahn-Banach Theorem

$\operatorname{HBT}(X, Y, f):=\left\{g \in \mathcal{C}(X, \mathbb{R}): g\right.$ linear, $\left.\left.g\right|_{Y}=f,\|g\|=\|f\|\right\}$.
Theorem (Gherardi and Marcone 2009)
HBT $\equiv_{W}$ WKL.
We immediately obtain the following non-uniform counter example.
Corollary (Metakides, Nerode and Shore 1985)
There exists a computable normed space $X$ with a computably separable closed linear subspace $Y \subseteq X$ and a computable linear $f: Y \rightarrow \mathbb{R}$ with computable norm $\|f\|$ such that every computable linear extension $g: X \rightarrow \mathbb{R}$ of $f$ has norm $\|g\|>\|f\|$.

A set $Y$ is called computably separable closed in $X$ if there is a computable sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $X$ with $Y=\overline{\left\{x_{n}: n \in \mathbb{N}\right\}}$.

## The Weihrauch Degree of the Hahn-Banach Theorem

$\operatorname{HBT}(X, Y, f):=\left\{g \in \mathcal{C}(X, \mathbb{R}): g\right.$ linear, $\left.\left.g\right|_{Y}=f,\|g\|=\|f \mid\|\right\}$.

## Theorem (Gherardi and Marcone 2009)

 HBT $\equiv_{W}$ WKL.We immediately obtain the following non-uniform positive result.

## Corollary

Let $X$ be a computable normed space $X$ with a computably separable closed linear subspace $Y \subseteq X$ and a computable linear $f: Y \rightarrow \mathbb{R}$ with computable norm $\|f\|$. Then $f$ has a low bounded linear extension $g: X \rightarrow \mathbb{R}$ with $\|g\|=\|f\|$.

That $g: X \rightarrow \mathbb{R}$ is low means here that it is low as a point in $\mathcal{C}(X, \mathbb{R})$ which means that it has a low name $p \in \mathbb{N}^{\mathbb{N}}$.
A $p \in \mathbb{N}^{\mathbb{N}}$ is called low if $p^{\prime} \leq_{\mathrm{T}} 0^{\prime}$.

## The Weihrauch Degree of the Hahn-Banach Theorem

$\operatorname{HBT}(X, Y, f):=\left\{g \in \mathcal{C}(X, \mathbb{R}): g\right.$ linear, $\left.\left.g\right|_{Y}=f,\|g\|=\|f\|\right\}$.
Theorem (Gherardi and Marcone 2009)
HBT $\equiv_{W}$ WKL.
Let us denote by $\mathrm{HBT}_{x}$ the problem HBT for a fixed space $X$.

## Question

Is there a computable Banach space $X$ with $\mathrm{HBT}_{X} \equiv_{\mathrm{W}}$ WKL?
As an example we denote the Banach Inverse Mapping Theorem by

$$
\mathrm{BIM}_{X}: \subseteq \mathcal{C}(X, Y) \rightarrow \mathcal{C}(Y, X), T \mapsto T^{-1}
$$

i.e., BIM is defined for bijective linear $T$. We obtain:

- $\operatorname{BIM}_{x, y} \leq_{W} C_{\mathbb{N}}$ for all computable Banach snaces $X, Y$
$\Rightarrow \mathrm{BIM}_{\ell_{2}, \ell_{2}} \equiv{ }_{W} C_{\mathbb{P}}$
- $\mathrm{BIM}_{X, Y}$ is computable for finite-dimensional computable Banach spaces $X, Y$


## The Weihrauch Degree of the Hahn-Banach Theorem

$\operatorname{HBT}(X, Y, f):=\left\{g \in \mathcal{C}(X, \mathbb{R}): g\right.$ linear, $\left.\left.g\right|_{Y}=f,\|g\|=\|f \mid\|\right\}$.
Theorem (Gherardi and Marcone 2009) HBT $\equiv_{W}$ WKL.

Let us denote by $\mathrm{HBT}_{x}$ the problem HBT for a fixed space $X$.

## Question

Is there a computable Banach space $X$ with $\mathrm{HB}_{X} \equiv_{\mathrm{W}} \mathrm{WKL}$ ?
As an example we denote the Banach Inverse Mapping Theorem by

$$
\mathrm{BIM}_{X}: \subseteq \mathcal{C}(X, Y) \rightarrow \mathcal{C}(Y, X), T \mapsto T^{-1}
$$

i.e., BIM is defined for bijective linear $T$. We obtain:

- $\mathrm{BIM}_{X, Y} \leq_{\mathrm{W}} \mathrm{C}_{\mathbb{N}}$ for all computable Banach spaces $X, Y$.
- $\mathrm{BIM}_{\ell_{2}, \ell_{2}} \equiv{ }_{W} \mathrm{C}_{\mathbb{N}}$.
- $\mathrm{BIM}_{X, Y}$ is computable for finite-dimensional computable Banach spaces $X, Y$.


## The Unique Case

## Proposition (B. and Gherardi)

$\mathrm{UC}_{2^{\mathbb{N}}}$ is computable.

- $(Y,\| \|)$ is called strictly convex, if $\|x+y\|<\|x\|+\|y\|$ holds for all linearly independent $x, y \in Y$.
- A normed spaces $X$ has a strictly convex dual space $X^{*}$ if and only if all linear bounded functionals $f: Y \rightarrow \mathbb{R}$ have unique extensions $g: X \rightarrow \mathbb{R}$ with $\|f\|=\|g\|$


## Corollary (B. 2008)

HBT $X_{x}$ is computable for all computable normed spaces $X$ with a strictly convex dual space $X$

## The Unique Case

## Proposition (B. and Gherardi)

$\mathrm{UC}_{2^{\mathbb{N}}}$ is computable.

- $(Y,\| \|)$ is called strictly convex, if $\|x+y\|<\|x\|+\|y\|$ holds for all linearly independent $x, y \in Y$.
- A normed spaces $X$ has a strictly convex dual space $X^{*}$ if and only if all linear bounded functionals $f: Y \rightarrow \mathbb{R}$ have unique extensions $g: X \rightarrow \mathbb{R}$ with $\|f\|=\|g\|$.
$\mathrm{HBT}_{X}$ is computable for all computable normed spaces $X$ with a strictly convex dual space $X^{*}$
- Examples of strictly convex spaces are $\ell_{p}$ for $1<p$
- All Hilbert spaces are strictly convex
- The spaces co, $\ell_{1}, \ell_{\infty}$ are not strictly convex.


## Proposition (B. and Gherardi)

$\mathrm{UC}_{2^{\mathbb{N}}}$ is computable.

- $(Y,\| \|)$ is called strictly convex, if $\|x+y\|<\|x\|+\|y\|$ holds for all linearly independent $x, y \in Y$.
- A normed spaces $X$ has a strictly convex dual space $X^{*}$ if and only if all linear bounded functionals $f: Y \rightarrow \mathbb{R}$ have unique extensions $g: X \rightarrow \mathbb{R}$ with $\|f\|=\|g\|$.


## Corollary (B. 2008)

$\mathrm{HBT}_{X}$ is computable for all computable normed spaces $X$ with a strictly convex dual space $X^{*}$.

- Examples of strictly convex spaces are $\ell_{p}$ for $1<p<\infty$.
- All Hilbert spaces are strictly convex.
- The spaces $c_{0}, \ell_{1}, \ell_{\infty}$ are not strictly convex.


## Proposition (B. and Gherardi)

$\mathrm{UC}_{2^{\mathbb{N}}}$ is computable.

- $(Y,\| \|)$ is called strictly convex, if $\|x+y\|<\|x\|+\|y\|$ holds for all linearly independent $x, y \in Y$.
- A normed spaces $X$ has a strictly convex dual space $X^{*}$ if and only if all linear bounded functionals $f: Y \rightarrow \mathbb{R}$ have unique extensions $g: X \rightarrow \mathbb{R}$ with $\|f\|=\|g\|$.


## Corollary (B. 2008)

$\mathrm{HBT}_{X}$ is computable for all computable normed spaces $X$ with a strictly convex dual space $X^{*}$.

- Examples of strictly convex spaces are $\ell_{p}$ for $1<p<\infty$.
- All Hilbert spaces are strictly convex.
- The spaces $c_{0}, \ell_{1}, \ell_{\infty}$ are not strictly convex.


## Finite Dimensional Extensions

## Lemma (Folklore)

Let $(X,\| \|)$ be a normed space, $Y \subseteq X$ a linear subspace, $x \in X$ and $Z$ the linear subspace generated by $Y \cup\{x\}$. Let $f: Y \rightarrow \mathbb{R}$ be a linear functional with $\|f\|=1$. A linear $g: Z \rightarrow \mathbb{R}$ with $\left.g\right|_{Y}=\left.f\right|_{Y}$ extends $f$ with $\|g\|=1$, if and only if

$$
\sup _{u \in Y}(f(u)-\|x-u\|) \leq g(x) \leq \inf _{v \in Y}(f(v)+\|x-v\|)
$$

## By $\mathrm{HBT}_{n}$ we denote the Hahn-Banach Theorem HBT restricted to

 subspaces $Y$ of codimension $\leq n$.

## Finite Dimensional Extensions

## Lemma (Folklore)

Let $(X,\| \|)$ be a normed space, $Y \subseteq X$ a linear subspace, $x \in X$ and $Z$ the linear subspace generated by $Y \cup\{x\}$. Let $f: Y \rightarrow \mathbb{R}$ be a linear functional with $\|f\|=1$. A linear $g: Z \rightarrow \mathbb{R}$ with $\left.g\right|_{Y}=\left.f\right|_{Y}$ extends $f$ with $\|g\|=1$, if and only if

$$
\sup _{u \in Y}(f(u)-\|x-u\|) \leq g(x) \leq \inf _{v \in Y}(f(v)+\|x-v\|) .
$$

By $\mathrm{HBT}_{n}$ we denote the Hahn-Banach Theorem HBT restricted to subspaces $Y$ of codimension $\leq n$.

## Corollary

$$
\mathrm{HBT}_{n} \leq \mathrm{W} \underbrace{\mathrm{CC}_{[0,1]} * \ldots * \mathrm{CC}_{[0,1]}}_{n \text {-times }}
$$

## Finite Dimensional Extensions

## Corollary

$$
\mathrm{HBT}_{n} \leq \mathrm{W} \underbrace{\mathrm{CC}_{[0,1]} * \ldots * \mathrm{CC}_{[0,1]}}_{n \text {-times }}
$$

$\mathrm{CC}_{[0,1]}$ is non-uniformly computable, i.e., every connected co-c.e. closed subset $A \subseteq[0,1]$ contains a computable point.

Corollary (Metakides and Nerode 1985)
Let $X$ be a finite-dimensional computable Banach space with some
closed linear subspace $Y \subseteq X$. For any computable linear
functional $f: Y \rightarrow \mathbb{R}$ with computable norm $\|f\|$ there exists a
computable linear extension $g: X \rightarrow \mathbb{R}$ with $\|g\|=\| f \mid$

## Finite Dimensional Extensions

## Corollary

$$
\mathrm{HBT}_{n} \leq \mathrm{W} \underbrace{\mathrm{CC}_{[0,1]} * \ldots * \mathrm{CC}_{[0,1]}}_{n \text {-times }}
$$

$\mathrm{CC}_{[0,1]}$ is non-uniformly computable, i.e., every connected co-c.e. closed subset $A \subseteq[0,1]$ contains a computable point.

> Corolary (Metakides and Nerode 1985)
> Let $X$ be a finite-dimensional computable Banach space with some closed linear subspace $Y \subseteq X$. For any computable linear
> functional $f: Y \rightarrow \mathbb{R}$ with computable norm $|\mid f \|$ there exists a computable linear extension $g: X \rightarrow \mathbb{R}$ with $\|g\|=\|f\|$
$\qquad$
$\square$

## Finite Dimensional Extensions

Corollary

$$
\mathrm{HBT}_{n} \leq_{\mathrm{W}} \underbrace{\mathrm{CC}_{[0,1]} * \ldots * \mathrm{CC}_{[0,1]}}_{n \text {-times }}
$$

$\mathrm{CC}_{[0,1]}$ is non-uniformly computable, i.e., every connected co-c.e. closed subset $A \subseteq[0,1]$ contains a computable point.

## Corollary (Metakides and Nerode 1985)

Let $X$ be a finite-dimensional computable Banach space with some closed linear subspace $Y \subseteq X$. For any computable linear functional $f: Y \rightarrow \mathbb{R}$ with computable norm $\|f\|$ there exists a computable linear extension $g: X \rightarrow \mathbb{R}$ with $\|g\|=\|f\|$.

Note however, that $\mathrm{LLPO} \equiv_{\mathrm{sW}} \mathrm{C}_{2} \leq_{\mathrm{sW}} \mathrm{HB}_{2}$ (this can be proved using ideas of Ishihara). Hence, $\mathrm{HBT}_{n}$ is not computable

Corollary

$$
\mathrm{HBT}_{n} \leq \mathrm{W} \underbrace{\mathrm{CC}_{[0,1]} * \ldots * \mathrm{CC}_{[0,1]}}_{n \text {-times }}
$$

$\mathrm{CC}_{[0,1]}$ is non-uniformly computable, i.e., every connected co-c.e. closed subset $A \subseteq[0,1]$ contains a computable point.

## Corollary (Metakides and Nerode 1985)

Let $X$ be a finite-dimensional computable Banach space with some closed linear subspace $Y \subseteq X$. For any computable linear functional $f: Y \rightarrow \mathbb{R}$ with computable norm $\|f\|$ there exists a computable linear extension $g: X \rightarrow \mathbb{R}$ with $\|g\|=\|f\|$.

Note however, that LLPO $\equiv_{s W} \mathrm{C}_{2} \leq_{\mathrm{sW}} \mathrm{HBT}_{2}$ (this can be proved using ideas of Ishihara). Hence, $\mathrm{HBT}_{n}$ is not computable.

## A Space of Maximal Complexity

## Question

Is there a computable Banach space $X$ with $\mathrm{HB}_{X} \equiv_{\mathrm{W}} \mathrm{WKL}$ ?
Some negative results on a possible $X$ :

- $X$ cannot have a strictly convex dual space $X^{*}$,
- X cannot be a Hilbert space,
- $X$ cannot be a space $\ell_{p}$ for $1<p<\infty$,
- $X$ cannot be finite-dimensional

We recall $\|x\|_{\ell_{p}}=\sqrt[p]{\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}}$
Question
IS HBT

## A Space of Maximal Complexity

## Question

Is there a computable Banach space $X$ with $\mathrm{HB}_{X} \equiv_{\mathrm{W}} \mathrm{WKL}$ ?
Some negative results on a possible $X$ :

- $X$ cannot have a strictly convex dual space $X^{*}$,
- X cannot be a Hilbert space,
- $X$ cannot be a space $\ell_{p}$ for $1<p<\infty$,
- $X$ cannot be finite-dimensional.

We recall $\|x\|_{\ell_{p}}=\sqrt[p]{\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}}$.
Question
Is $\mathrm{HBT}_{\ell_{1}} \equiv \mathrm{~W}$ WKL?
We definitely have LLPO $\equiv s w C_{2} \leq W H B T_{\ell_{1}}$, hence $H B T_{\ell_{1}}$ is not
computable.

## A Space of Maximal Complexity

## Question

Is there a computable Banach space $X$ with $\mathrm{HBT}_{X} \equiv_{\mathrm{W}} \mathrm{WKL}$ ?
Some negative results on a possible $X$ :

- $X$ cannot have a strictly convex dual space $X^{*}$,
- X cannot be a Hilbert space,
- $X$ cannot be a space $\ell_{p}$ for $1<p<\infty$,
- $X$ cannot be finite-dimensional.

We recall $\|x\|_{\ell_{p}}=\sqrt[p]{\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}}$.

## Question

Is $\mathrm{HBT}_{\ell_{1}} \equiv \mathrm{~W} \mathrm{WKL}$ ?
We definitely have $\operatorname{LLPO} \equiv_{s W} C_{2} \leq_{W} H B T_{\ell_{1}}$, hence $H B T_{\ell_{1}}$ is not
computable.

## A Space of Maximal Complexity

## Question

Is there a computable Banach space $X$ with $\mathrm{HB}_{X} \equiv_{\mathrm{W}} \mathrm{WKL}$ ?
Some negative results on a possible $X$ :

- $X$ cannot have a strictly convex dual space $X^{*}$,
- X cannot be a Hilbert space,
- $X$ cannot be a space $\ell_{p}$ for $1<p<\infty$,
- $X$ cannot be finite-dimensional.

We recall $\|x\|_{\ell_{p}}=\sqrt[p]{\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}}$.

## Question

Is $\mathrm{HBT}_{\ell_{1}} \equiv \mathrm{~W}$ WKL?
We definitely have $\operatorname{LLPO} \equiv_{s W} \mathrm{C}_{2} \leq_{W} \mathrm{HB}_{\ell_{1}}$, hence $\mathrm{HBT}_{\ell_{1}}$ is not computable.

## A Classification of the Finite Dimensional Case

Question
Can $\mathrm{HBT}_{n} \leq{ }_{\mathrm{W}} \mathrm{CC}_{[0,1]} * \ldots * \mathrm{CC}_{[0,1]}$ be improved?

A plausible candidate is the following:

## Question

Is $\mathrm{HBT}_{n} \leq_{\mathrm{w}} \times \mathrm{C}_{[0,1]^{n}}$ or even $\mathrm{HBT}_{n} \equiv \mathrm{w} \times \mathrm{C}_{[0,1]^{n}}$ ?
More specifically we can even ask:
Question
Is HBT

## A Classification of the Finite Dimensional Case

> Question
> Can $\mathrm{HBT}_{n} \leq_{\mathrm{W}} \mathrm{CC}_{[0,1]} * \ldots * \mathrm{CC}_{[0,1]}$ be improved?

A plausible candidate is the following:
Question
Is $\mathrm{HBT}_{n} \leq_{\mathrm{W}} \mathrm{XC}_{[0,1]^{n}}$ or even $\mathrm{HBT}_{n} \equiv_{\mathrm{W}} \mathrm{XC}_{[0,1]^{n}}$ ?
More specifically we can even ask
Question
Is $\mathrm{HBT}_{\rho_{1}(n)} \Xi_{\mathrm{W}} \times \mathrm{C}_{[0,1]_{n}}$ ?
Such a result would be nice since we have:

## A Classification of the Finite Dimensional Case

## Question

Can $\mathrm{HBT}_{n} \leq{ }_{\mathrm{W}} \mathrm{CC}_{[0,1]} * \ldots * \mathrm{CC}_{[0,1]}$ be improved?
A plausible candidate is the following:
Question
Is $\mathrm{HBT}_{n} \leq_{\mathrm{W}} \mathrm{XC}_{[0,1]^{n}}$ or even $\mathrm{HBT}_{n} \equiv_{\mathrm{W}} \mathrm{XC}_{[0,1]^{n}}$ ?
More specifically we can even ask:

## Question

Is $\mathrm{HBT}_{\ell_{1}(n)} \equiv{ }_{\mathrm{W}} \mathrm{XC}_{[0,1]^{n}}$ ?
Such a result would be nice since we have
Theorem (Le Roux and Pauly)
$X C_{[0,1]^{n}}<{ }_{W} X_{[0,1]^{n+1}}$ for all $n \in \mathbb{N}$

## A Classification of the Finite Dimensional Case

## Question

Can $\mathrm{HBT}_{n} \leq{ }_{\mathrm{W}} \mathrm{CC}_{[0,1]} * \ldots * \mathrm{CC}_{[0,1]}$ be improved?
A plausible candidate is the following:

## Question

Is $\mathrm{HBT}_{n} \leq_{W} \mathrm{XC}_{[0,1]^{n}}$ or even $\mathrm{HBT}_{n} \equiv_{\mathrm{W}} \mathrm{XC}_{[0,1]^{n}}$ ?
More specifically we can even ask:

## Question

Is $\mathrm{HBT}_{\ell_{1}(n)} \equiv_{\mathrm{W}} \mathrm{XC}_{[0,1]^{n}}$ ?
Such a result would be nice since we have:
Theorem (Le Roux and Pauly)
$\mathrm{XC}_{[0,1]^{n}}<\mathrm{W} \mathrm{XC}_{[0,1]^{n+1}}$ for all $n \in \mathbb{N}$.


## References

- Stéphane Le Roux, Arno Pauly, Arno, Finite choice, convex choice and finding roots, Logical Meth. Comp. Sci. 11:4 (2015) 4:6, 31
- Guido Gherardi, Alberto Marcone, How Incomputable is the Separable Hahn-Banach Theorem?, Notre Dame Journal of Formal Logic 50:4 (2009) 393-425
- Vasco Brattka, Borel Complexity and Computability of the Hahn-Banach Theorem, Archive Math. Logic 46:7-8 (2008) 547-564
- Hajime Ishihara, An omniscience principle, the König lemma and the Hahn-Banach theorem, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 36 (1990) 237-240
- Douglas K. Brown, Stephen G. Simpson, Which set existence axioms are needed to prove the separable Hahn-Banach theorem?, Annals of Pure and Applied Logic 31 (1986) 123-144.
- George Metakides, Anil Nerode, Richard A. Shore, Recursive limits on the Hahn-Banach theorem, in: M. Rosenblatt (ed.), Errett Bishop: Reflections on Him and His Research, vol. 39 of Cont. Math., AMS, Providence, 1985, pages 85-91


## A Survey on Weihrauch Complexity



