
Ludwig-Maximilians-Universität München

Diplomarbeit

The Geometric Phase in
Quantum Electrodynamics

Dustin Lazarovici

betreut von Prof. Dr. Detlef Dürr,
Mathematisches Institut der Ludwig-Maximilians-Universität

München

- Zur Erlangung des Grades eines Diplom-Physikers -

München, den 04. Januar 2011



Ludwig-Maximilians-Universität München

Diploma Thesis

The Geometric Phase in
Quantum Electrodynamics

Dustin Lazarovici

under supervision of Prof. Dr. Detlef Dürr,
Mathematisches Institut der Ludwig-Maximilians-Universität

München

- For the achievement of the degree : Diploma in Physics -

Submitted: January 4th, 2011



Erstgutachter: Prof. Dr. D. Dürr

Zweitgutachter: Prof. Dr. P. Mayr







The Geometric Phase in Quantum Electrodynamics

Dustin Lazarovici ∗

Abstract

This work is concerned with the problem of second quantization of the Dirac time evolution
in the external field setting in Quantum Electrodynamics with time-varying fields.
It refers mainly to two publications on this subject:

• D.-A. Deckert, D. Duerr, F. Merkl and M. Schottenloher: "Time Evolution of the
External Field Problem in QED" (2010) [DeDuMeScho]

where the time evolution is realized as unitary transformations between time-varying Fock
spaces, leaving the freedom of a complex phase. And

• E. Langmann, J. Mickelsson: "Scattering matrix in external field problems" (1996)
[LaMi96]

where the authors construct a “renormalization” of the time evolution and propose a method
to fix the phase of the second quantized scattering operator by parallel transport in the prin-
ciple fibre bundle G̃Lres(H)→ GLres(H).

In this work, I will inquire in what sense a time-evolution in the second-quantized Dirac
theory can exist. Furthermore, I will present a systematic study of the second quantization
by parallel transport as introduced in [LaMi96] and identify all freedoms contained in the
proposed construction. To this end, I will develop the mathematical framework necessary
for a rigorous treatment of the external field problem in QED. During my research I have
found that the discrepancies between the mathematical and the physical treatment of the
problem are dramatic. My hope is to make a little contribution to bridging this gap by
adding some intuition to the abstract mathematical formalism.

What’s new?
New results from this thesis include the following:

• It is shown that the construction of the fermionic Fock space as an “infinite wedge
space” as developed in [DeDuMeScho] is equivalent to the more common construction
of the Fock space from holomorphic sections in the dual of the determinant bundle
over the infinite-dimensional Grassmann manifold (c.f.[PreSe]).

• I give an interpretation of the renormalizations introduced in [LaMi96] and show how
they can be used to translate between the second quantization procedure on time-
varying Fock spaces and the second quantization of the renormalized time evolution.

• I compute the holonomy group of the principle bundle Ũres(H) which turns out to equal
the entire structure group U(1). It is argued that this corresponds to an additional
freedom in the construction of the second quantized time evolution in [LaMi96] that
might not have been fully appreciated in the original paper.

• I provide rigorous proof for the fact that the second quantization by parallel transport
preserves causality. These findings seem to refute claims made in [Scha] that the
phase of the second quantized S-matrix is essentially determined by the requirement
of causality.

• I outline how the second quantization procedure could be made gauge-invariant by
construction of a suitable renormalization.

∗Mathematisches Institut, LMU München. Dustin.Lazarovici@mathematik.uni-muenchen.de
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4.1 The central extension of GLres . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 The central extension of Ures and its local trivialization . . . . . . 39
4.1.2 The complete G̃Lres . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Non-Triviality of the central extensions . . . . . . . . . . . . . . . . . . . . 42

5 Three routes to the Fock space 45
5.1 CAR Algebras and Representations . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 The Field Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 C∗ - and CAR- Algebras . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.3 Representations of the CAR Algebra . . . . . . . . . . . . . . . . . 55

5.2 The Infinite Wedge Space Construction . . . . . . . . . . . . . . . . . . . . 57
5.3 The Geometric Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Equivalence of Fock space constructions . . . . . . . . . . . . . . . . . . . . 70
5.5 Relationship to CAR representations . . . . . . . . . . . . . . . . . . . . . 71

6 Time-Varying Fock spaces 73
6.1 Identification of polarization classes . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Second Quantization on time-varying Fock spaces . . . . . . . . . . . . . . 75

6.2.1 Gauge Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 77

ii



7 The Parallel Transport of Langmann & Mickelsson 79
7.1 The Maurer-Cartan forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 The Langmann-Mickelsson Connection . . . . . . . . . . . . . . . . . . . . 81

7.2.1 Classification of Connections . . . . . . . . . . . . . . . . . . . . . . 83
7.2.2 Local Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Parallel Transport in the G̃Lres−bundle . . . . . . . . . . . . . . . . . . . . 85

8 Geometric Second Quantization 87
8.1 Renormalization of the Time Evolution . . . . . . . . . . . . . . . . . . . . 88

8.1.1 Renormalization - Differential Form . . . . . . . . . . . . . . . . . . 91
8.1.2 Outlook: On Renormalizations . . . . . . . . . . . . . . . . . . . . 94

8.2 Geometric Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2.1 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3 Holonomy of the Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.4 Outlook: Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9 Résumé 107

Appendix 111
A.1 Commensurable Polarizations and Polarization Classes . . . . . . . . . . . 111
A.2 Derivation of the Charge Conjugation . . . . . . . . . . . . . . . . . . . . . 112
A.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

iii



NOTATION

Notation and Mathematical Preliminaries

Throughout this work we use “natural units” in which ~ = c = 1.
We use the Minkowski metric with signature (+,−,−,−).

Furthermore, we introduce the following notations:

H a separable, complex Hilbert space.

B(H) the space of bounded operators on H.

GL(H) the space of bounded automorphisms of H.

U(H) the group of unitary automorphisms of H.

Ip(H,H′) the p-th Schatten class of linear operators T : H → H′ for which

(‖T‖p)p := tr[(T ∗T )p/2] <∞.

‖·‖p is a norm that makes Ip(H,H′) a Banach space. It satisfies
‖AT‖p ≤ ‖A‖ ‖T‖p and ‖TB‖p ≤ ‖B‖ ‖T‖p, for A ∈ B(H′), B ∈ B(H). Thus,
Ip(H,H) =: Ip(H) is a two-sided ideal in the algebra of bounded operators on H.
If T =

∑
k≥0

µk|fk〉〈ek| is a singular-value decomposition, the p-th Schatten norm cor-

responds to the `p norm on the sequence (µk)k of singular values.
If an operator T is in Ip(H,H′) for some p, then T is compact.

In particular,

I1(H) the ideal of trace-class operators for which tr(T ) :=
∑
k≥0

〈ek, T ek〉 is well-defined and

independent of the Hilbert basis (ek)k≥0 of H.

I2(H,H′) the class of Hilbert-Schmidt operators H → H′. The product of two Hilbert-
Schmidt operators is in the trace class with ‖ST‖1 ≤ ‖S‖2 ‖T‖2.

Id+ I1(H) = {A = Id+ T | T ∈ I1(H)} the set of operators for which the
Fredholm determinant is well defined.
If (ek)k≥0 is on ONB of H, then det(A) = lim

N→∞
det
(
〈ei, Aej〉

)
i,j≤N

GL1(H) := GL(H)∩
(
Id+ I1(H)

)
the set of bdd. isomorphism that do have a determinant.

All further notations will be introduced in the course of the work.
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Preface

Quantum Electrodynamics, or short: QED, is widely considered to be the most successful
theory in entire physics. Indeed, its predictions have been confirmed time and time again
with remarkable precision by various experiments in particle accelerators and laboratories
all over the world. Probably the most famous and most spectacular demonstration of the
potency of Quantum Electrodynamics is the prediction of the anomalous magnetic moment
of the electron, known as "g - 2" in the physical literature. This electron g-factor has been
measured with an accuracy of 7.6 parts in 1013, i.e. with a stupendous precision of 12 deci-
mal places and found to be in full agreement with the theoretical prediction (Odom et.al.,
Phys. Rev. Lett. 97, 030801 (2006)). Actually, we have to be more precise: since the fine
structure constant α enters every QED-calculation as a free parameter, we have to gauge it
by other experiments or, equivalently, express every QED-measurement as an independent
measurement of α. In this sense, theory and experiment are in agreement up to 0.37 parts
per billion i.e. to 10 decimal places in the determination of α (Hanneke et.al., Phys. Rev.
Lett. 100, 120801 (2008)). This has often been called the best prediction in physics and
whether this is factual or not, it is certainly very impressive.
In one of the standard textbooks on Quantum Field Theory it is even said that “Quantum
Electrodynamics (QED) is perhaps the best fundamental physical theory we have”. (Peskin,
Schröder, "An Introduction to Quantum Field Theory", 1995 ).

In this light it might seem surprising, that many of the brilliant minds that actually came
up with the theory were not quite as enthusiastic about it. In a talk given in 1975, P.A.M.
Dirac famously expressed:

“Most physicists are very satisfied with the situation. They say, Quantum elec-
trodynamics is a good theory, and we do not have to worry about it any more. I
must say that I am very dissatisfied with the situation, because this so-called good
theory does involve neglecting infinities which appear in its equations, neglect-
ing them in an arbitrary way. This is just not sensible mathematics. Sensible
mathematics involves neglecting a quantity when it turns out to be small - not
neglecting it just because it is infinitely great and you do not want it!” 2

Cited after: H. Kragh, Dirac: A scientific biography, CUP 1990

And even in his Nobel lecture, where the occasion would have certainly excused some en-
thusiasm, Richard Feynman said:

2What I find most remarkable about this quote is that it takes such a great scientist to state
something so obvious and be taken seriously.
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PREFACE

“That is, I believe there is really no satisfactory quantum electrodynamics, but
I’m not sure. [...] I don’t think we have a completely satisfactory relativistic
quantum-mechanical model, even one that doesn’t agree with nature, but, at
least, agrees with the logic that the sum of probability of all alternatives has to
be 100%. Therefore, I think that the renormalization theory is simply a way to
sweep the difficulties of the divergences of electrodynamics under the rug. I am,
of course, not sure of that.”

R.P. Feynman: "The Development of the Space-Time View of Quantum
Electrodynamics", Nobel Lecture (1965)3

Comparing these two statements with the assessment of Peskin and Schröder and really
with the general spirit of the scientific community of today, one might think that great
progress has been made on the foundations of QED ever since. Quite frankly, I don’t see
where. Of course, experimental success has steadily strengthened our trust in the useful-
ness of the framework of Quantum Field Theory, but I don’t think that this was really the
major concern of the Monsieurs Feynman and Dirac. Over the years we might have become
desensitized to the problems of QED, but we haven’t done a very good job at fixing them.
So, what then is wrong with QED?

For once, more then 50 years after its development, Quantum Electrodynamics still lacks
a rigorous mathematical formulation. It is well-known that QED (just as all realistic Quan-
tum Field Theories) relies on different “renormalization” schemes to render its predictions
(more or less) finite. And even after renormalization, the S-matrix expansion is widely be-
lieved to have zero radius of convergence in the coupling constant α. No matter how crafty
physicists have gotten at manipulating infinities, this fact remains highly unsatisfying from
a mathematical point of view.

It is also well known that the Wightman axioms, a minimal set of formal requirements
that one would demand from a sensible field theory, are not satisfied by (3+1 - dimensional)
QED (or any other known realistic Quantum field theory, for that matter). Interestingly
enough, this realization had not so much shaken confidence in the theories themselves but
rather ended the program of axiomatizing fundamental physics. A fact remarkably little
known among physicist is that the mathematical deficiencies of QED do not start at the
computational level but are really much more basic. We don’t even know how to write
down a theory that is mathematically meaningful, i.e. without objects that are intrinsi-
cally ill-defined. Most physicists seem either not to know or not to care about these kind
of problems. This has created the somewhat tragicomical situation that nowadays, with
very few exceptions, neither physicists nor mathematicians are working on the foundations
of the theory, physicists because they find the theory so good that there’s nothing left to
do; mathematicians because they find the theory so bad that they don’t know where to start.

But apart from all mathematical problems, QED (and really the entire Standard Model
of particle physics) is incomplete in a very different sense: it’s lacking an “ontology”, a
meaningful interpretation of the mathematical framework providing a clear and coherent
picture of what the theory is really about.

3http://nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lecture.html
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Naively spoken, a complete physical theory has to give us a list of all the physical objects
that are assumed to be “real” as opposed to mere formal constructions or artifacts of the
mathematical description. Then it has to tell us how these objects of our physical reality
correspond to formal objects in the theory. Thinking about Quantum Electrodynamics, just
try in all honesty to answer the question: what is it actually about? What are the funda-
mental physical objects of the theory?

Is QED essentially a theory about charged particles? At first glance, this seems like a
good guess. However, the particle ontology was abandoned a long time ago by standard
Quantum Theory. And indeed, taking a look into any textbook on Quantum Field Theory,
we’re going to find plenty of “particles” neatly listed in various tables or swirling around in
funny little diagrams - yet, there aren’t actually any particles in the theory. 4 So, maybe
QED is a theory about “Quantum Fields”? The expression “Quantum Field Theory” might
suggest that kind, but the answer is not too convincing as the role of the “fields” in the theory
remains rather obscure. Mainly, they seem to appear as a formal device for setting up the
perturbation expansions or for deriving the equations of motion from an action principle. I
might be wrong about that. Even then, however, explaining what exactly “Quantum Fields”
are supposed to be and how they constitute the physical world that we live in seems like a
formidable task and not many people who invoke this answer like to engage in it.
Maybe QED is merely about “transition amplitudes”. To my understanding, this very prag-
matic standpoint was advocated by such distinguished scientists as Werner Heisenberg, for
example, and it might very well be logically consistent, although I think it requires some
mental gymnastics to avoid questions like what transitions from what into what?

One might call questions of this kind “metaphysical”, but to me, they are as physical as
it gets. And with such considerations in mind, the state of modern physics in general and
of Quantum Electrodynamics in particular seems pretty bad. I have to repeat, though, that
the vast majority of physicists does not share this kind of pessimism. I can only speculate
about the reasons, of course, and a detailed discussion of this would certainly be beyond
the scope of this introduction. However, I like the irony in the idea that the very genius of
Richard Feynman might have to take a little of the blame for this. His ingenious method
of visualizing the formal expansions of Quantum Field Theories by means of the famous
diagrams that carry its name provided us with most of the intuition we have for the phys-
ical processes in Particle Physics and coined the way we use to think and talk about the
theory. We are so used to talk about particles scattering from each other, about photons
being emitted and absorbed or about pairs of virtual particles “screening" the charges and
so on, that we tend to forget that none of this is actually in the theory. As my first teacher
on Quantum Field Theory used to say: “it’s just a nice, cartoonish way to talk about these
things.”

Above, I have suggested that physicists don’t work on the foundations of QED anymore
because they don’t see any problems with the theory. This is just partly true. Actually,
many physicists do acknowledge that the theory is deeply flawed, but have - de facto -
given up on it. Instead they have adopted the point of view that QED (or rather the entire

4Indeed, in the Standard Model particles can have mass, charge, spin, even color, flavor or
families, but no location in space-time. And therefore no substance as a physical object.
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Standard Model) is indeed not a fundamental theory of nature but merely a low energy
approximation of a fundamental theory (maybe a “theory of everything”) still waiting to be
discovered and that the problems we’re facing today will vanish, once said theory is found.
String Theory is usually considered to be the best candidate for such a fundamental theory
of nature. Personally, I am sceptical whether the results of String Theory after 20 years
of intensive research justify this kind of optimism, but that’s a different debate. Anyways,
claiming that QED will have to wait for the next big scientific revolution to resolve its
various issues might be a valid standpoint. I just have two objections that I would like to
mention.
First: it has never been like that in the history of physics. Classical Mechanics were perfectly
well defined and well understood before Special Relativity and Quantum Mechanics came to
extend the picture. The Maxwell-Lorentz theory of electromagnetism is a beautiful theory,
both physically and mathematically, except for one little detail: the electron self-interaction.
This problem was not solved but inherited by the “more fundamental” Quantum Electrody-
namics, where it made quite a prominent career under the name “ultraviolet divergence”.5

My second objection is this: even if the final answers do lie beyond QED, isn’t it still
important to understand as well as possible what exactly goes wrong and what can and
cannot be done? Isn’t it possible, even likely, that insights of this kind will lead the way to
a new, better behaved, maybe more fundamental description? As John Bell put it 6:

“Suppose that when formulation beyond FAPP [for all practical purposes] is
attempted, we find an unmovable finger obstinately pointing outside the subject,
to the mind of the observer, to the Hindu scriptures, to God, or even only
Gravitation? Would not that be very, very interesting?”

J. Bell, "Against Measurement" in Speakable and Unspeakable in Quantum
Mechanics

It is in this spirit that I wrote my thesis and that the research program started by my
teachers and colleagues has to be understood. The goal is ambitious and very humble at
the same time. We do not expect to “fix” QED or solve all the problems that have troubled
so many greater physicists before us. We just hope to get a better understanding of the
difficulties, approach them in a systematic way and see how far one can get with rigorous
mathematics. The work I am presenting here is of rather technical nature and mostly
concerned with the task of lifting the unitary time evolution to the fermionic Fock space
(“second quantization”) in the exterior field problem of QED. I hope that this will provide
some insights into the fundamental difficulties of QED and of relativistic Quantum theory
in general. To me, at least, it was a humbling realization to learn at what basic level the
formalism already fails. Ultimately, though, my personal believe is that if we want to make
significant progress towards a meaningful, well-defined, fundamental theory we need to think
the formal aspects and the conceptual aspects together and return to a way of doing physics
that takes rigorous mathematics seriously and takes ontology seriously.

5Above all, to this divergence, QED added the “infrared divergence” so things really got worse
on that front.

6Actually, Bell wrote this about non-relativistic Quantum Mechanics, but his appeal seems even
more urgent in the context of modern Quantum field theories
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Chapter 1

Introduction

1.1 The Dirac equation

Our study of Quantum Electrodynamics starts with the one-particle Hilbert space H :=
L2(R3,C4) of square-integrable C4-valued functions. The fundamental equation of motion
is the famous Dirac equation

(i∂/−m)Ψ(t) = (iγµ∂µ −m)Ψ(t) = 0 (1.1.1)

where Ψ(t) ∈ L2(R3,C4) for every fixed t. The gamma matrices {γ0, γ1, γ2, γ3} form
a 4-dimensional complex representation of the Clifford algebra Cl(1, 3), i.e. they satisfy
{γµ, γν} = 2gµν · 1 where gµν is the Minkowski metric tensor.

Using (γ0)2 = 1 we can rewrite the Dirac equation in Hamiltonian form as

i ∂t Ψ = D0 Ψ :=
(
−iα · ∇+mβ

)
Ψ (1.1.2)

Here the notations β = γ0 and αµ = γ0γµ are common.
In the presence of an electromagnetic field described by a vector potential A = (Aµ)µ=0,1,2,3 =
(Φ,−A), the partial derivative in the Dirac equation (1.1.1) is replaced by the covariant
derivative ∂µ −→ ∂µ + ieAµ. This adds the interaction potential

V (t) = e αµAµ = −e α ·A+ eΦ (1.1.3)

to the Hamiltonian.

Just as a side-note we remark that a mathematically more sophisticated description would
start with a space-time M × R, where M is a (3-dimensional) compact manifold with spin-
structure and realize H as the space of L2-sections in a spinor-bundle over M (cf. [LM]).

It is well known that the free Dirac Hamiltionan D0 is unstable. It has the continuous
spectrum (−∞,−m] ∪ [+m,+∞) which gives rise to a splitting of the one-particle Hilbert
space H = L2(R3,C4) into two spectral subspaces H = H+ ⊕H−.

5



1.1. THE DIRAC EQUATION

Physical interpretation of the negative-energy free states is difficult and has troubled physi-
cists for many years. In particular, as the Hamiltonian is unbounded from below, it would
be possible to extract an arbitrary amount of energy from the system, which is unphysical.
To deal with this problems, P.A.M. Dirac proposed the so called Dirac Sea theory :

“Admettons que dans l’Univers tel que nous le connaissons, les états d’energie
négative soient presque tous occupés par des électrons, et que la distribution ainsi
obtenue ne soit pas accessible à notre observation à cause de son uniformité dans
toute l’etendue de l’espace. Dans ces conditions, tout état d’energie négative
non occupé représentant une rupture de cette uniformité, doit se révévler à
observation comme une sorte de lacune. Il es possible d’admettre que ces lacunes
constituent les positrons.”

P.A.M. Dirac, Théorie du Positron (1934), in Selected Papers on Quantum
Electrodynamics, Ed. J. Schwinger, Dover Pub. (1958)

According to Dirac, the negative energy states are (almost entirely) occupied by an infinite
number of electrons - the Dirac Sea - which due to its homogeneous distribution is hidden
from physical observation. The Pauli exclusion principle will then prevent transition of pos-
itive energy electrons to negative energy states, which keeps the system stable. “Holes” in
the otherwise homogeneously filled Dirac Sea will appear as particles of positive energy but
opposite charge - we call them positrons.
Transition of an electron from the negative energy spectrum to the positive energy spec-
trum in the presence of an electromagnetic field will look like the simultaneous creation
of an electron and a positron to the outside observer. Conversely, when a positive-energy
electrons drops into an unoccupied state of negative energy, we see the annihilation of an
electron/positron pair with energy being emitted in form of radiation.

Despite of the obvious peculiarities, that give us headaches, this is an ingenious picture
which explains the most important phenomena of relativistic Quantum theory in a clear
and elegant way. In todays physics, the Dirac Sea is usually not any more part of modern
descriptions of Quantum Electrodynamics, but it seems to me that it hasn’t been replaced
with an equally compelling physical picture. Anyway, Dirac’s theory provides a very good
intuition for the difficulties of relativistic Quantum theory and will motivate most of the
mathematically rigorous approaches to the external field problem in QED that we will
present in this work.

6



1.2. AN INTUITIVE APPROACH

1.2 An intuitive approach
From nonrelativistic Quantum Mechanics we are familiar with the fact that the n-Fermion
Hilbert space is the n-fold exterior product

∧nH of the one-particle Hilbert space H.
This space is spanned by decomposable states of the form v1 ∧ · · · ∧ vn.
The Hermitian scalar product is given by:

〈v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wn〉 = det(〈vi, wj〉)i,j (1.2.1)

Under a unitary (Schrödinger) time evolution U = U(t1, t0) the states evolve in the obvious
way:

v1 ∧ · · · ∧ vn
U(t1,t0)−−−−−→ Uv1 ∧ · · · ∧ Uvn (1.2.2)

Projectively, (i.e. mod C) such states are in one-to-one correspondence with n-dimensional
subspaces of the Hilbert space H, by

v1 ∧ · · · ∧ vn 7−→ span(v1, . . . , vn) =: V ⊂ H (1.2.3)

for if we take w1, . . . , wn ∈ H with span(w1, . . . , wn) = span(v1, . . . vn) (i.e. a different basis
of V), then

w1 ∧ · · · ∧ wn = det(R) v1 ∧ · · · ∧ vn (1.2.4)

with R the matrix in GLn(C) transforming the basis (v1, . . . , vn) into (w1, . . . , wn).
(Note that if v1, . . . , vn are not linearly independent, then v1 ∧ · · · ∧ vn = 0).

In the setting of relativistic Quantum Electrodynamics, however, we have a Dirac sea
containing infinitely many particles, which makes the situation more complicated. Projec-
tive decomposable states are now in correspondence with infinite dimensional subspaces of
H, so called polarizations, which will be precisely defined in Def. 2.1.1. For example, in
the unperturbed Dirac sea (the ground state) all negative energy states are occupied and
all positive energy states empty. So this state of the Dirac sea corresponds to the subspace
V := H− ⊂ H. Under a unitary transformation U, a time evolution U = U(t1, t0) let’s say,
V evolves into W := U(V ) = UV .

To give this some physical meaning, we would like to ask: “How many electrons and how
many positrons (holes) were created?”. Thanks to Diracs ingenious picture, we have a very
simple intuition of how to answer this question: we just count! The negative energy states
that remain occupied correspond to W ∩ H−. Consequently, the number of holes is simply
the codimension of W ∩ H− in H−, i.e. the dimension of the factor space H−/(W ∩ H−).
Similarly, the Dirac sea picture tells us that we can think of the “parts” ofW complementary
to W ∩H− as electrons that have been lifted from the Sea to positive energies.
In conclusion:

#electrons ≈ dim
(
W/(W ∩H−)

)
(1.2.5)

#holes ≈ dim
(
H−/(W ∩H−)

)
(1.2.6)

The net-charge of W is then:

dim
(
W/(W ∩H−)

)
− dim

(
H−/(W ∩H−)

)
(1.2.7)

In order for all of this to make sense, we have to require that both (1.2.5) and (1.2.6) are
finite. We call polarizations V and W satisfying

dim
(
W/(W ∩ V )

)
<∞ and dim

(
V/(W ∩ V )

)
<∞ (1.2.8)

commensurable.
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There is a natural generalization of this (in fact corresponding to a closure in a topological
sense): If PV and PW are the orthogonal projections onto V and W, respectively, we require
that

PV − PW is a Hilbert-Schmidt operator

In this case we will say that V and W belong to the same polarization class. At first glance,
this looks nothing like the condition of “commensurabilty” formulated above. But note that
PV − PW being of Hilbert-Schmidt type just means that (PV − PW )∗(PV − PW ) is in the
trace-class, i.e. (since orthogonal projections are self-adjoint)

tr(PV − PWPV + PW − PV PW ) <∞ (1.2.9)

Aside we note that (1.2.9) can also be written as

tr(PW⊥PV + PV ⊥PW ) <∞ (1.2.10)

Now this starts to look more like what we’re after. Orthogonal projections are self-adjoint
operators with eigenvalues 1 (on the respective subspace) and zero (on the orthogonal com-
plement). Thus, tr(PV ) = dim(V ) whenever this is finite. And if PV and PW commute
(which in general they don’t) PV PW = PWPV = PV ∩W and so tr(PV − PWPV ) really
counts the dimension of the orthogonal complement of W ∩ V in V and so forth. Therefore
it does indeed make sense to regard (1.2.9) as a generalization of “commensurablity” (1.2.8).
The precise relationship between (1.2.9) and (1.2.8) is discussed in appendix A, but I hope
that at this point the reader is convinced that polarization classes are an adequate concept.

Similarly, there’s an abstract generalization of (1.2.7) counting the net-charges of polar-
izations : If V and W are in the same polarization class then ind(PW |V→W ) is well defined
and we will call this number the relative charge of V andW . Again, the motivation becomes
more clear if we remember that

ind(PW |V→W ) = dim ker(PW |V→W ))− dim coker(PW |V→W )
= dim ker(PW |V→W ))− dim (W/PW (V ))

This coincides with (1.2.7), whenever the latter is well defined (see appendix A).

Now let’s go back to our initial setup with V = H− and W = UV , for the unitary
transformation U ∈ U(H). We denote by P− the orthogonal projection onto H− and by P+

the orthogonal projection onto H+. In particular, P− + P+ = 1. As W results from H− by
the unitary transformation U , the orthogonal projection is PW = UP−U

∗.
Therefore:

PV − PW Hilbert-Schmidt ⇐⇒ P− − UP−U∗ Hilbert-Schmidt
⇐⇒ P−U − UP− Hilbert-Schmidt
⇐⇒ P−U(P− + P+)− (P− + P+)UP−

= P−UP+ − P+UP− Hilbert-Schmidt

As P−UP+ and P+UP− map from and into complementary subspaces, this is satisfied if
and only if both

U−+ := P−UP+|H+→H− and U+− := P+UP−|H−→H+ (1.2.11)

are of Hilbert-Schmidt type. This is known as the Shale-Stinespring Condition.
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1.2. AN INTUITIVE APPROACH

In the remainder of this work we will invoke lots of fancy mathematics to construct the
fermionic Fock space and implement unitary transformations on it, but in the end, whatever
path we take, it always comes down to this. The unitary time evolution has to fulfill the
Shale-Stinespring condition in order to make sense on QED-states. Otherwise, the Dirac sea
becomes too stormy: infinitely many particles are being created and we have no chance to
compare initial and final state in a meaningful way. In other words: we cannot accommodate
initial and final state in one and the same Fock space. There is no way around this, at least
not in the usual formulations of the theory.

We have stumbled upon a serious difficulty, but it might not yet be clear how severe the
problem really is as it’s probably not obvious how restrictive the Shale-Stinespring criterion
is. We might hope that in physically relevant situations everything turns out to be so nice
that we don’t have to worry about it. Actually, we shouldn’t expect that. We should and
would expect it if the difficulties were of merely technical nature. But this is not the case.
The Shale-Stinespring criterion is not a mathematical prerequisite of the type “let f twice
continuously differentiable”. The Shale-Stinespring criterion reflects the problem of infinite-
particle creation which seems to be deeply inherent to relativistic Quantum theory.
Finally, all remaining hopes that this might to out to be a minor hurdle are destroyed by
the following theorem:

Theorem 1.2.1 (Ruijsenaars, 1976).
Let A = (A0,−A) ∈ C∞c (R4,R4) be an external vector potential and UA(t, t′) the correspond-
ing one-particle Dirac time evolution. Then UA(t, t′) fulfills the Shale-Stinespring criterion
if and only if A = 0, i.e. iff the spatial part of the A-field vanishes identically.1

I think that this result has not received the resonance that it deserves. It shows that typi-
cally the unitary time evolution can not be lifted to the Fock space.

Why only the spatial part of the vector potential (≈ the magnetic field) is the evil-doer
is not obvious. The following considerations might provide some intuition:
The free Dirac-Hamiltonian in momentum-space is

D0(p) = α · p+ βm (1.2.12)

which reduces to D0(0) = βm for a particle at rest. In the so called Dirac representation,

β =
(
1 0
0 −1

)
Obviously, the standard basis vectors represent eigenstates with energy ±m.
In the presence of a vector potential A = (Aµ)µ=0,1,2,3, the interaction term

V = e

3∑
µ=0

αµÂµ

is added, where α0 = 1 and Âµ is the Fourier transform of Aµ (acting as convolution opera-
tors). The electric potential Φ = A0 is harmless, it just shifts the energy of the particle. But
the alpha-matrices satisfy βαj = −αjβ for j = 1, 2, 3 and therefore map the negative-energy
eigenstates of D0 to positive energy eigenstates (and vice-versa).
So, intuitively, the magnetic field “rotates” the Dirac sea into H+.

1To physicists it might seem suspicious that the condition A = 0 is not gauge-invariant, obviously.
This, however, just points to another deficiency of QED. Against all common intuition, the theory is
not gauge-invariant in a trivial sense. Gauge-transformations (except constant ones) do not satisfy
the Shale-Stinespring condition and therefore we have the very same problem as with the time
evolution: they cannot be implemented as unitary transformations on the Fock space. See §6.2.1.
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Note that so far, we have only acted with unitary transformations on “polarizations”,
which correspond to projective fermion states. If we have a unitary transformation U that
does satisfy the Shale-Stinespring condition, a different problem arises when we try to act
with it on proper (non-projective) fermion states: the action of U on the Fock space is
defined only up to a phase. This is a well-known result e.g. from representation theory but
our simplistic considerations are good enough to see why it must be so.

Let’s again try to generalize the description of n-fermion systems represented in
∧nH to

QED-states with infinitely many particles. We may think of such a state as in infinite wedge
product, i.e. a formal expression

Ψ =̂ v0 ∧ v1 ∧ v2 ∧ v3 ∧ . . .

where the subspace spanned by the vj is in the polarization class of H−. Now, let’s consider
the simplest case, where the vj are all eigenstates of the operator U with eigenvalues eiϕj .
On the n-fermion state v0 ∧ v1 ∧ . . . ∧ vn, U acts like

v0 ∧ v1 ∧ . . . ∧ vn
U−−→ eiϕ0v0 ∧ eiϕ1v1 ∧ . . . ∧ eiϕnvn = e

i
( nP

j=1
ϕj

) (
v0 ∧ v1 ∧ . . . ∧ vn

)
But again, things are difficult for infinitely many particles.
On Ψ = v0 ∧ v1 ∧ v2 ∧ . . ., the unitary transformation U would have to act like

v0 ∧ v1 ∧ v2 ∧ . . .
U−−→ Uv0 ∧ Uv1 ∧ Uv2 ∧ . . . = eiϕ0v0 ∧ eiϕ1v1 ∧ eiϕ2v2 ∧ . . .

“ = “ ei(?) (v0 ∧ v1 ∧ v2 ∧ . . .
)

The product of infinitely many phases does not converge, in general and thus the phase of
the “second quantization” of U , acting on the Fock space, is not well-defined.
This U(1)-freedom is also known as the geometric phase in QED. “Geometric” because we
will identify it as the structure group of a principle fibre bundle over the Lie group of
implementable unitary operators.

1.3 Dirac Sea versus electron-positron picture
Considering the problems described so far, the careful reader might say that all difficul-
ties originate in the fact that we are dealing with an infinite number of particles. And some
might go on to suggest that we can solve them by abandoning the Dirac sea with its infinitely
many electrons and switch from the “electron-hole picture” to the “particle-antiparticle” pic-
ture which has been established in modern Quantum field theory2. The first statement is,
of course, correct. The second one is not. To see why, we have to understand what all of
this actually means.

What I’m referring to as the “particle-antiparticle-picture”, or “electron-positron-picture”,
as opposed to the Dirac sea - or electron-hole- picture is the physical description in which
the problematic negative spectrum of the Dirac Hamiltonian is fixed in a rather ad hoc way
by mapping negative energy solutions to positive energy solutions with opposite charge and
interpreting them as describing “antiparticles” (positrons). The Dirac sea is then omitted
altogether as part of the physical description. This re-interpretation is also reflected in the
mathematical formalism. In standard physics textbooks this is usually done in a more or
less naive way :

2Indeed, most textbooks suggest, implicitly or explicitly, that this is a major improvement.
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1.3. DIRAC SEA VERSUS ELECTRON-POSITRON PICTURE

The formal quantization of the Dirac field yields the expression

Ψ(x) =
∫

d3p

(2π)3

1√
2Ep

∑
s

(aspu
s(p)e−ipx + bsp v

s(p)eipx) (1.3.1)

which leads to the second quantized Hamiltonian

H =
∫

d3p

(2π)3

∑
s

(E(p) as∗p a
s
p − E(p) bs∗p b

s
p) (1.3.2)

This Hamiltonian is unstable, i.e. unbounded from below, as every particle of the type
created by b∗ decreases the total energy by, at least, its rest-mass m.
So one uses the canonical commutation relations

{brp, bs∗q } = brpb
s∗
q + bs∗q b

r
p = (2π)3δ3(p− q)δr,s (1.3.3)

to write −bs∗q bsp = +bspb
s∗
q − (2π)3 δ(0) and simply interchanges the roles of b and b∗.

After renaming the operators accordingly, one gets the stable Hamiltonian

H =
∫

d3p

(2π)3

∑
s

(E(p) as∗p a
s
p + E(p) bs∗p b

s
p) (1.3.4)

plus an infinite “vacuum energy” that physicists boldly get right of by “shifting the energy”
or, in other words, ignoring it.
A less playful approach would use the charge conjugation operator C, an anti-unitary oper-
ator mapping negative-energy solutions to positive energy solutions of the Dirac equation
with opposite charge. Then we construct the Fock space

F =
∧
H+ ⊗

∧
C(H−) (1.3.5)

and define the field operator Ψ which is a complex anti-linear map into the space B(F) of
bounded operators on F . Explicitely,

Ψ : H → B(F), Ψ(f) = a(P+f) + b(P−f) (1.3.6)

where a is the annihilation operator on
∧
H+ and b∗ the creation operator on

∧
C(H−)

(i.e. for g ∈ H−, b∗(g) creates the state Cg in
∧
C(H−) ).

The idea behind all this is that
∧
H+ contains the electron-states and

∧
C(H−) the positron-

states, all of positive energy. The vacuum state Ω is just 1 = 1⊗1 ∈ F . If the reader excuses
some physics jargon, we can say that the field operator Ψ “creates” antiparticles and “anni-
hilates” particles. Consequently, Ψ∗ “creates” particles and “annihilates” antiparticles.
This construction is carried out in more detail in the next chapter but clearly, as it involves
only states of positive energy, it leads to a positive definite second quantized Hamiltonian
on the Fock space.

We can relate this construction to the Dirac sea description in the following way:
In the Dirac sea description, the role of the vacuum is played by the unperturbed sea in
which all the free, negative-energy states are occupied by electrons. Formally, we may think
of this state as an “infinite-wedge product”. We pick a basis (ek)k∈Z of H, s.t. (ek)k≤0 is a
basis of H− and (ek)k>0 a basis of H+, and represent the “vacuum” by the formal expression

Ω = e0 ∧ e−1 ∧ e−2 ∧ e−3 ∧ . . .

Now we can define “field operators” Ψ and Ψ∗ acting on Ω in the following:

Ψ∗(ek)Ω = e0 ∧ e−1 ∧ e−2 ∧ · · · ∧ ek+1 ∧��ek ∧ ek−1 ∧ . . . for k < 0
Ψ(ek′) Ω = ek′ ∧ e0 ∧ e−1 ∧ e−2 ∧ e−3 ∧ . . . for k ∈ Z

(1.3.7)
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We see that Ψ∗ acting on Ω creates positive-energy states and Ψ annihilates negative energy
states, i.e creates holes. In particular:

Ψ∗(g)Ω = 0, for g ∈ H−
Ψ (f) Ω = 0, for f ∈ H+

Acting successively with these operators on Ω we reach configurations of the Dirac sea (i.e.
infinite-particle states) where finitely many positive energy states and almost all negative
energy states are occupied. Formally, those are (linear combinations of) states of the form

Φ = ei0 ∧ ei1 ∧ ei2 ∧ . . . (1.3.8)

where (i0, i1, i2, ...) is a strictly decreasing sequence in Z with i(k+1) = ik − 1 for all large
enough indices k.
On the formal level, the transition from the Dirac sea description to what we dubbed
electron-positron description now just results in mapping (linear combinations of) states
of the form (1.3.8) into the Fock-space F =

∧
H+⊗

∧
C(H−), such that the holes in the sea

(∼ the missing negative indices) are mapped to antiparticle-states and the positive energy
states (∼ positive indices) are mapped to the corresponding particle states. The idea is
really very simple, although it’s somewhat tedious to express it formally, so we will spare
the reader the formal details until §5.4. But after introducing the appropriate Fock-space
structure on Dirac seas, it is fairly easy to see that this assignments do indeed define an
isomorphism and that under this isomorphism, the operator Ψ as defined in (1.3.7) acts just
as the field operator in (1.3.6).

So it turns out that the two descriptions are really mathematically equivalent. If we carry
out the whole process of second quantization in the electron-positron picture without any
reference to the Dirac sea whatsoever (and we will do exactly that in the next chapter), we
arrive at the very same obstacles. In particular, we will find the Shale-Stinespring condition
for second quantization of unitary operators, although I would say that its meaning remains
more obscure without infinite-particle states in mind. Indeed, certain features of the theory
seem to indicate that the Dirac sea picture is really the more honest description. For example,
in the formal quantization of the Dirac field, the vacuum-charge, just as the vacuum-energy
above, appears as an infinite constant even with the renamed creators and annihilators.
Nevertheless, my personal experience is that most physicists nowadays strongly favor the
electron-positron description, often calling the idea of a Dirac sea an outdated concept that
got obsolete as soon as the theory was properly understood.

On the other hand, my personal teachers strongly advocate Dirac’s idea. What they
ultimately have in mind is that the Dirac sea is just an approximate description of a universe
consisting of a very large, yet finite, number of charged particles and that what we call
electrons or holes are in fact only deviations from an equilibrium state in which the particles
are so homogeneously distributed that the net-interaction is zero and therefore the sea
“invisible”. Until we have a consistent, fully-interacting theory of Quantum Electrodynamics,
the choice between the two descriptions ultimately remains a matter of personal taste.
However, it should be clear that at this level of description no serious problems can be
solved by choosing one over the other.
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Chapter 2

Polarization Classes and the Restricted
Transformation Groups

In this chapter we give precise definitions for the concepts introduced in chapter 1 and study
the restricted unitary- and general-linear group of automorphism that do satisfy the Shale-
Stinespring condition (1.2.11) and can be implemented on the fermionic Fock space.

By H we will always denote an infinite-dimensional, complex, separable Hilbert space.

Note: In the light of the physical problem, we would think of H = H+⊕H− as the spectral
decomposition w.r.to the free Dirac Hamiltonian and think ofH− (projectively) as the “Dirac
Sea”. However, for some reason, mathematicians prefer to work with the subspace denoted
by H+ and we will follow this convention in order to match the mathematical literature.
Therefore, H+ will play the role of what one might think of as the Dirac sea.

2.1 Polarization Classes
Definition 2.1.1 (Polarizations).

A polarization of H is an infinite dimensional, closed subspace V ⊂ H with infinite dimen-
sional orthogonal complement V ⊥.

Accordingly, we will call H a polarized Hilbert space if we have a distinct splitting
H = V ⊕ V ⊥ for a polarization V .

The set of all polarizations of H is denoted by Pol(H).

By PV : H → H we denote the orthogonal projection of H onto V , so PV + PV ⊥ = 1H.

Definition 2.1.2 (Polarization Classes).
On Pol(H), we introduce the equivalence relation

V ≈W ⇐⇒ PV − PW ∈ I2(H)

The equivalence classes C ∈ Pol(H) are called polarization classes.

Lemma 2.1.3 (Characterization of ≈).
For V,W ∈ Pol(H), the following are equivalent:

i) V ≈W

ii) PW⊥PV , PWPV ⊥ ∈ I2(H)

iii) PW |V→W is a Fredholm operator and PW⊥ |V→W⊥ ∈ I2(V )
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Proof.

i)⇒ii): If V ≈W , i.e. PV − PW ∈ I2(H) then

PW⊥PV =(IdH − PW )PV = (PV − PW )PV ∈ I2(H)
PWPV ⊥ =PW (IdH − PV ) = −PW (PV − PW ) ∈ I2(H)

ii)⇒iii): We write the identity on H in matrix form as

IdH : V ⊕ V ⊥ →W ⊕W⊥ =
(

PW |V→W PW |V ⊥→W
PW⊥ |V→W⊥ PW⊥ |V ⊥→W⊥

)
By ii) the off-diagonal terms are of Hilbert-Schmidt type, so the operator(

PW |V→W 0
0 PW⊥ |V ⊥→W⊥

)
is a compact perturbation of the identity. Consequently, PW |V→W and PW⊥ |V ⊥→W⊥
are Fredholm-operators.

ii)⇒i): If

PW⊥PV = (PV − PW )PV ∈ I2(H),
PWPV ⊥ = −PW (PV − PW ) ∈ I2(H)

then
(PV − PW ) = (PV − PW )PV + PW (PV − PW ) ∈ I2(H)

iii)⇒ii): PWPV ⊥ ∈ I2(H) by assumption and as PW |V→W is a Fredholm operator,
the cokernel of PWPV in W is finite-dimensional. Hence, PW⊥PV is a finite-rank
operator, in particular Hilbert-Schmidt.

By this Lemma, the following is well-defined:

Definition 2.1.4 (Relative Charge).
For V,W ∈ Pol(H) with V ≈ W , we define the relative charge of V,W to be the Fredholm
index of PW |V→W . I.e.:

charge(V,W ) := ind(PW |V→W )
= dim ker(PW |V→W )− dim coker(PW |V→W )

= dim ker(PW |V→W )− dim ker
(
(PW |V→W )∗

) (2.1.1)

Lemma 2.1.5 (Properties of relative charge).
The relative charge has the following intuitive properties:

charge(V,W ) = − charge(W,V ) and
charge(V,W ) + charge(W,X) = charge(V,X)

for V ≈W ≈ X ∈ Pol(H).

Proof. For V,W,X from the same polarization class in Pol(H)/ ≈ we find

charge(V,W ) + charge(W,X)
= ind(PW |V→W ) + ind(PX |W→X) = ind(PXPW |V→X)

= ind
(
PXPX + PX(PW − PX)

∣∣
V→X

)
= ind(PX |V→X)

= charge(V,X)
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The equality in the third line holds because PW−PX is of Hilbert-Schmidt type, in particular
a compact perturbation, and therefore doesn’t change the index. As a special case we get
charge(V,W ) + charge(W,V ) = charge(V, V ) = 0 which proves the first identity.

It follows from the Lemma that we get a finer equivalence relation ” ≈0 ”, by setting

V ≈0 W :⇐⇒ V ≈W and charge(V,W ) = 0 (2.1.2)

For our purposes it is more convenient to work with these equal charge classes. Also, the
physical principle of charge conservation tells us that the Dirac time evolution should pre-
serve the relative charge.

In general, unitary transformations do NOT preserve the polarization class - they will
map one polarization class into another. This is the source of all evil when we try to
implement the unitary time evolution on Fock spaces. However, a unitary transformation
induces at a well-defined map between polarization classes by U [V ] = [UV ] ∈ Pol(H)/ ≈.
This is true, because PUV − PUW = UPV U

∗ − UPWU∗ = U(PV − PW )U∗ is of Hilbert-
Schmidt type if and only PV −PW is. The analogous map is also well-defined between equal
charge classes, because unitary transformation do not change the index.

Definition 2.1.6 (Restricted Unitary Operators).

For polarization classes C,C ′ ∈ Pol(H)/ ≈ we define

Ures(H, C;H, C ′) = {U : H → H unitary | ∀V ∈ C : UV ∈ C ′}
= {U : H → H unitary | ∃V ∈ C with UV ∈ C ′}

as the set of unitary operators mapping the polarization class C into C’.
If we want to restrict to equal charge classes, we write U0

res(H, C0;H, C ′0) for C0, C
′
0 ∈

Pol(H)/ ≈0 etc. The definition can be immediately generalized to unitary maps between
different Hilbert spaces H and H′.

Note that Ures(H, C;H, C ′) is not a group, unless C = C ′. However, they compose as

Ures(H, C ′;H, C ′′)Ures(H, C;H, C ′) = Ures(H, C;H, C ′′) (2.1.3)

The group Ures(H, C;H, C) of unitarities preserving a fixed polarization class C will be of
crucial importance to us. In particular, as argued in the introductory sections, it will turn
out that a unitary transformation can be lifted to the (standard) Fock space if and only if
it is compatible with the natural polarization H = H+ ⊕H− in the sense that it preserves
the polarization class C = [H+].
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2.2 The restricted unitary and general linear group
We want to study the restricted unitary group consisting of those operators which do preserve
the polarization class [H+] and will turn out to be implementable on the Fock space.

Definition 2.2.1 (Restricted Unitary Group).
The group

Ures(H) := Ures(H, [H+];H, [H+])

is called the restricted unitary group on H.

We introduce the notation ε = P+ − P− for the sign of the free Dirac-Hamiltonian.

Lemma 2.2.2 (Characterization of Ures(H)).
For a unitary operator U ∈ U(H) the following statements are equivalent:

i) U ∈ Ures(H)

ii) U+− ∈ I2(H−,H+) and U−+ ∈ I2(H+,H−)

iii) [ε, U ] ∈ I2(H)

Note that ii) is the Shale-Stinespring criterion we’ve been talking so much about. It appears
very naturally in this setting.

Proof. Let U ∈ U(H). Then:

U ∈ Ures(H) ⇐⇒ UH+ ≈ H+ ∈ Pol(H) ⇐⇒ P+ − UP+U
∗ ∈ I2(H)

⇐⇒ P+U − UP+ ∈ I2(H)
⇐⇒ P+U(P+ + P−)− (P+ + P−)UP− = P+UP− − P−UP+ ∈ I2(H)
⇐⇒ U+− ∈ I2(H−,H+) and U−+ ∈ I2(H+,H−)

where we have used that PUV = UPV U
∗ for any U ∈ U(H) and any subspace V ⊂ H.

Furthermore we compute

[ε, U ] = (P+ − P−)U − U(P+ − P−)
= (P+ − P−)U(P+ + P−)− (P+ + P−)U(P+ − P−)
= P+UP− − P−UP+ + P+UP− − P−UP+

= 2
(
P+UP− − P−UP+

)
And therefore1:

1
4
‖[ε, U ]‖22 =‖(P+UP− − P−UP+)∗(P+UP− − P−UP+)‖1

=‖(P−U∗P+ − P+U
∗P−)(P+UP− − P−UP+)‖1

=‖P−U∗P+UP− + P+U
∗P−UP+‖1

=‖U∗−+U+−‖1 + ‖U∗+−U−+‖1
=‖U+−‖22 + ‖U−+‖22

(2.2.1)

as the traces of the odd parts vanish. This finishes the proof.

Thus, we can describe the restricted unitary group as

Ures(H) = {U ∈ U(H) | [ε, U ] ∈ I2(H)}
= {U ∈ U(H) | U+− and U−+ are Hilbert-Schmidt operators}

(2.2.2)

1Note that we use the notation U∗+− for (U∗)+− and not for (U+−)∗ = (U∗)−+
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This alternative definition extends immediately to arbitrary isomorphisms. The unitary
case is the most relevant one for physical applications, but for the development of the
mathematical framework it is very natural and convenient to study the more general case.

Definition 2.2.3 (Restricted General Linear Group).
In analogy to (2.2.2) we define the group2

GLres(H) := {A ∈ GL(H) | [ε, A] ∈ I2(H)}
= {A ∈ GL(H) | U+− and U−+ are Hilbert-Schmidt operators}

It is called the restricted general linear group of H.

With respect to the decomposition H = H+ ⊕H− we can write any A ∈ GL(H) in matrix
form as

A =
(
A++ A+−
A−+ A−−

)
=
(
a b
c d

)
(2.2.3)

Then A is in GLres(H) if and only if the off-diagonal parts b and c are Hilbert-Schmidt
operators. In this case, as the off-diagonal part is just a compact perturbation, it follows
immediately that a and d are Fredholm operators with ind(a) = − ind(d), since

0 = ind(A) = ind
(
a b
c d

)
= ind

(
a 0
0 d

)
= ind(a) + ind(d) (2.2.4)

N.B. that for A ∈ GL(H), A ∈ GLres(H) is not equivalent to [AH+] ≈ [H+] in Pol(H), but
the first implies the latter. Using Lemma, 2.1.3 iii), we see that for [AH+] ≈ [H+] it suffices
that c is Hilbert-Schmidt and a a Fredholm operator, which for general isomorphisms is less
restrictive than A ∈ GLres(H).

We can regard GLres as the group of units in the algebra Bε(H) of all bounded operators
A : H → H with [ε, A] ∈ I2(H). Bε(H) is a Banach algebra when equipped with the norm
‖·‖ε, defined by

‖A‖ε := ‖A‖+ ‖[ε, A]‖2 (2.2.5)

Great news: with the topology induced by ‖·‖ε, GLres(H) carries the structure of a complex
Banach Lie group and Ures(H) that of a real Banach Lie group.
The corresponding Lie algebras are

gl1 := {X bounded operator on H | [ε,X] ∈ I2(H)} (2.2.6)

and
ures := {X Hermitian operator on H | [ε,X] ∈ I2(H)}3, (2.2.7)

respectively. The Lie algebras are Banach spaces with respect to the norm (2.2.5).
It is readily checked that exp(X) ∈ GLres(H) for X ∈ gl1 and exp(iX) ∈ Ures(H) for
X ∈ ures, since it is true for every single term in the series expansion. Indeed, both Lie
groups are locally exponential, i.e. the exponential map is diffeomorphic in a neighborhood
of the identity. Geometrically, GLres(H) can also be understood as the complexification of
Ures(H). In particular, it inhibits Ures(H) as a real subgroup and gl1

∼= ures ⊗R C.

2That GLres(H) is indeed a subgroup of GL(H), i.e. closed under multiplication, can be easily
checked using the fact that the Hilbert-Schmidt operators are a two-sided ideal in the space of
bounded operators.

3For ures we use the physicist convention with an additional factor of i−1 in front of the commu-
tator and i in the exponential map.
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2.2. THE RESTRICTED UNITARY AND GENERAL LINEAR GROUP

Finally, two more results about the topology of GLres(H).

Lemma 2.2.4 (Homotopy type of GLres(H)).
The map

A =
(
a b
c d

)
7−→ a

from GLres(H) to the space Fred(H+) of Fredholm operators on H+ is a homotopy equiv-
alence. In particular, GLres(H) has infinitely many connected components indexed by Z,
corresponding to the index of the (++)-component a of A.

The last conclusion is true, because ind : Fred → Z is a continuous. We denote the n-th
connected component by GLnres(H). In particular, GL0

res(H) denotes the identity component
of GLres(H). Analogously for Ures(H), of course.

The Fredholm-index of a has a very important physical interpretation.
For V ≈ H+ ∈ Pol(H) and A ∈ GLres(H), we find that

charge(AV,H+) = ind(P+|AV→H+) = ind(P+A|V→H+)

= ind
(
P+A(P+ + P−)|V→H+

)
= ind

(
(P+AP+ + P+AP−)|AV→H+

)
= ind(P+AP+|V→H+) = ind(P+AP+ ◦ P+|V→H+)
= ind(P+|V→H+) + ind(P+AP+|H+ → H+)

Thus:

charge(AV,H+) = charge(V,H+) + ind(a) (2.2.8)

So, physically, the index of the (++)-component corresponds to the net-charge that the
transformation A “creates” from the vacuum (∼ H+, in this convention).

Lemma 2.2.5 (Homotopy groups of GL0
res).

The homotopy groups of the connected Lie group GL0
res(H) are for k ≥ 0

π2k+1(GL0
res) = {0} and π2k+2(GL0

res) ∼= Z

In particular, GL0
res(H) and U0

res(H) are simply-connected.

For the proofs of the Lemmatas see [PreSe] §6 or [Wurz06],for a more complete version.
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2.3. THE RESTRICTED GRASSMANNIAN

2.3 The restricted Grassmannian

To the spectral decomposition H = H+ ⊕H− corresponds the polarization class
[H+] ∈ Pol(H)/≈. This set, consisting of subspaces of H, is known in the literature as
the (restricted) Grassmannian of the Hilbert space H and denoted by Gr(H). 4 From the
mathematical point of view it is a remarkably nice object. It can actually be given the
structure of an infinite dimensional complex (Kähler) manifold ([PreSe]).

By Lemma 2.1.3 we can describe Gr(H) as the set of all closed subspaces W of H such that

i) the orthogonal projection P+ : W → H+ is a Fredholm operator

ii) the orthogonal projection P− : W → H− is a Hilbert-Schmidt operator

This is the definition most commonly found in the mathematical literature (e.g. [PreSe],
Def. 7.1.1). Another way of saying the same is thing is the following:
A subspace W belongs to Gr(H) if and only if it is the image of an operator
w : H+ → H with P+ ◦ w ∈ Fred(H+) and P− ◦ w ∈ I2(H+,H−).

We can cover Gr(H) by the sets
(
UW

)
W∈Gr(H)

, where

UW := {W ′ ∈ Gr(H) | PW |W ′→W is an isomorphism }. (2.3.1)

The elements of UW are “close” to W in the sense that they differ from W only by a Hilbert-
Schmidt operator T : W →W⊥. We make this more precise:

Lemma 2.3.1 (Characterization of UW ).
The set UW consists of all the graphs of Hilbert-Schmidt operators W →W⊥.
There is a one-to-one correspondence between UW ⊂ Gr(H) and I2(W,W⊥).

Proof. Let w : H+ → W ⊂ H an isomorphism with image W . Let T : W → W⊥ be a
Hilbert-Schmidt operator. Then Graph(T) = {(w, T w) | w ∈W} = im(w + T w).
P+(w+T ◦w) = P+w+P+Tw is Fredholm and P−(w+T ◦w) = P−w+P−Tw is of Hilbert-
Schmidt type, therefore Graph(T ) ∈ Gr(H). Furthermore, the orthogonal projection onto
W is obviously an isomorphism, so that Graph(T ) ∈ UW .

Conversely, if W ′ ∈ UW , it is the image of a map w′ = w + Tw : H+ → H, where
T : W →W⊥ is uniquely determined by w. Since W ′ ≈W we know from Lemma 2.1.3 that
PW⊥ |W ′→W⊥ is Hilbert-Schmidt, hence PW⊥w′ = Tw is Hilbert-Schmidt. But because w is
invertible, T itself is also of Hilbert-Schmidt type.

It is easy to see that the assignments T ←→ W ′ = Graph(T ) are inverses of each other, so
the statement of the Lemma is proven.

Proposition 2.3.2 (Manifold structure of Gr(H)).
Gr(H) is a complex Hilbert manifold modelled on I2(H+,H−).
The sets UW ,W ∈ Gr(H) form an open covering of Gr(H).

Proof. [PreSe] Prop. 7.1.2

By definition, a unitary transformation maps Gr(H) into Gr(H) iff it is in Ures(H). Con-
versely, for any two polarizations W,W ′ of H there is of course a unitary transformation
mapping one to the other and if W,W ′ ∈ Gr(H), this transformation is necessarily in
Ures(H). The same is true for general isomorphisms and GLres(H).

4The notations Grres(H) or Gr1(H) are also used.
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2.3. THE RESTRICTED GRASSMANNIAN

In other words: Ures(H) and GLres(H) act transitively on Gr(H). This leads us to a different
description of the Grassmann manifold as a homogeneous space under Ures(H) or GLres(H).
The corresponding isotropy groups of H+ ∈ Gr(H) are

P :=

{
A =

(
a b
c d

)
∈ GLres(H)

∣∣∣∣∣ c = 0

}

respectively

Q :=

{
U =

(
a b
c d

)
∈ Ures(H)

∣∣∣∣∣ b = c = 0

}

This means:

GLres(H)/P ∼= Ures(H)/Q ∼= Gr(H) (2.3.2)

In particular, it follows that just as GLres(H) and Ures(H), the Grassmannian Gr(H) has Z
connected components corresponding to the relative charges

charge(W,H+) = ind(P+|W→H+).

Alternatively, we could have noted that

charge(W ′,H+) = charge(W,H+), ∀W ′ ∈ UW ∀W ∈ Gr(H)

and hence the sets Gr(c)(H) := {W ∈ Gr(H) | charge(W,H+) = c ∈ Z} are open and
disjoint. They are connected, because U0

res(H) acts continuously and transitively on each of
them. Consequently, they correspond to different connected components.

It is a nice feature of the mathematical structure that different charges are separated
topologically. This does also reflect the physical intuition that a continuous time evolution
preserves the total charge i.e. that particles and anti-particles are always created in pairs.
We hope that the reader excuses that we won’t always be too careful in distinguishing
between GLres(H)/Gr(H) and their identity components GL0

res(H)/Gr0(H). Often, it is
just the latter that we care for. Extension to arbitrary charges is usually unproblematic,
but can become rather tedious. We will discuss it for example on §4.1.2.
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Chapter 3

Projective Representations a Central
Extensions

In this section we introduce the concept of central extensions of (Lie-)Groups, which is
essential for the treatment of representations of Lie Groups in a QuantumMechanical setting.
Some of the results will go a little beyond what we actually need for our further discussion,
but as we develop the formalism anyways, it would be a pity not to mention them. Again,
we will start with a rather intuitive approach to motivate the concept.

3.1 Motivation
We have argued, and will state rigorous results, that a unitary operator can be lifted to the
fermionic Fock space F if and only it satisfies the Shale-Stinespring condition i.e. if and
only if it is in Ures(H). And even in this case, this lift is determined only up to a phase. 1

Suppose we choose any prescription for fixing this phase and denote by Γ(U) the corre-
sponding lift of U ∈ Ures to an operator on the Fock space F . This gives a map

Γ : Ures(H)→ U(F) (3.1.1)

from Ures(H) into the group of unitary automorphisms of the Fock space. What is - some-
what mysteriously - called a “second quantization” of unitary operators is really nothing
more than such a map. But if we fix the phases of the lifts in some arbitrary way, we have
no reason to hope that those lifts will preserve the group structure: for any U, V ∈ Ures(H),
Γ(U)Γ(V ) and Γ(UV ) are both implementations of the same unitary transformation but
will, in general, differ by a complex phase. In other words, Γ will fail to be a representation
of the restricted unitary group Ures on F . Instead, we just get a projective representation
of Ures on the projective Fock space P(F) = F mod C.

So the first question that comes to mind is: is there a way to fix the phases of the imple-
mentations that does preserve the group structure? In other words:

Is there a proper representation of Ures on the Fock space?

To answer this question, a somewhat deeper study of the problem is required.

We can always write

Γ(U)Γ(V ) = χ(U, V )Γ(UV ) ; U, V ∈ Ures (3.1.2)

with χ(U, V ) ∈ U(1). This defines a map χ : Ures×Ures → U(1). It is reasonable to demand
Γ(1) = 1F , which implies χ(1,1) = 1. Such a map χ is called a 2-cocycle.

1We will make all this precise on in chapter 5 when we construct the Fock space and the action
of Ures on it in several different ways.
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3.2. CENTRAL EXTENSIONS OF GROUPS

We can now define a group U(1)×χ Ures as the direct product U(1)× Ures with the multi-
plication

(a, U) ·χ (b, V ) :=
(
χ(U, V ) ab, UV

)
(3.1.3)

and set Γ̂((a, U)) := aΓ(U).
But the multiplication on U(1)×χ Ures was just defined in such a way as to compensate the
cocycle coming from Γ and make Γ̂ a homomorphism of groups:

Γ̂
(
(a, U)(b, V )

)
= Γ̂

(
(χ(U, V ) ab, UV )

)
= ab χ(U, V )Γ

(
UV

)
= abΓ(U)Γ(V ) = Γ̂

(
(a, U)

)
Γ̂
(
(b, V )

)
This group U(1)×χ Ures is a central extension of Ures by U(1).

This is quite nice. The study of such central extensions will help us to get a hold on the
freedom we have in choosing the phases of the lifts and ultimately leads us to the answer of
our question about the existence of a proper representation.

Of course, things aren’t quite as simple as we have presented them so far. For once, we
usually don’t have the cocycle χ in our hands. If we take into consideration questions of
continuity and differentiability that we have neglected so far, we will have reasonable phase-
prescriptions and the corresponding cocycles only locally. Thus, a more general approach
to the problem is necessary.

3.2 Central Extensions of Groups
Throughout this section let G be an arbitrary group and A an abelian group. The trivial
group consisting of the neutral element only is denoted by 1. All the definitions and results
apply naturally to Lie groups, if the respective structures on the groups and smoothness of
the maps is implied.

Definition 3.2.1 (Central Extension).
A central extension of G by A is a short exact sequence of group homomorphisms

1 −→ A
ı−−→ E

π−−→ G −→ 1

such that ı(A) is in the center of E, i.e commutes with all the elements of E.

Let’s dissect this abstract definition. The sequence being exact means that the kernel of
every map equals the image of the previous map. So, ı must be injective, π surjective and
ker(π) = im(ı) ∼= A. Thus, E covers G with the preimage of every g ∈ G being isomorphic
to A. The requirement that ı(A) is central in E makes much sense in regard of studying
representations of G or E, respectively. Because then, Schurr’s Lemma ensures that in any
irreducible representation the images of A in E will be constant multiples of the identity.
In a certain sense, A will carry the information about the phases that lead to ambiguities
when trying to lift a projective representation of G to a proper one.

Examples 3.2.2 (Trivial extension and universal covering group).

1. A trivial extension has the form

1 −→ A
ı−−→ A×G pr2−−−→ G −→ 1

where E is just the direct product of A and G and i(a) = (a, 1), ∀a ∈ A.
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3.2. CENTRAL EXTENSIONS OF GROUPS

2. Let G be a connected topological group, Ĝ the universal covering group and
A = π1(G) ∼= Cov(Ĝ,G) the fundamental group of G. Then

1 −→ π1(G) ı−−→ Ĝ
π−−→ G −→ 1

is a central extension ofG by its fundamental group, where π is the covering-homomorphism
and ı is given by the action of the covering group Cov(Ĝ,G) ∼= π1(G) on 1 ∈ Ĝ.

Proof. It is easily checked that the sequence is exact. Furthermore, the orbit of 1Ĝ
under the action of Cov(Ĝ,G) is by definition the preimage of 1G under π. Thus:
i(π1(G)) = π−1(1G) = ker(π). The interesting part is to show that ı(π1(G)) is central
in Ĝ. To this end note that ı(π1(G)) = π−1(1G) is a discrete set by definition of
covering spaces. As the kernel of π, it is also a normal subgroup of Ĝ. Now, for any
fixed a ∈ ı(π1(G)) we can consider the map

Ĝ 3 g 7→ g−1ag

This is a continuous map from Ĝ into ı(π1(G)) mapping 1 to a. As Ĝ is connected
and ı(π1(G)) is discrete, the map must be constant. Thus, g−1ag = a ∀g ∈ Ĝ, i.e. a
lies in the center of Ĝ.

3. As a special case of 3. , we can consider the well known covering

1 −→ {±1} → SU(2)→ SO(3) −→ 1

From the discussion of spin in non-relativistic Quantum Mechanics, we know that
there is no irreducible 2-dimensional unitary representation of SO(3) but there is one
of its universal covering group SU(2) (generated by the Pauli matrices).

Definition 3.2.3 (Equivalence of Central Extensions).
Two central extension E and E′ of a group G by A are equivalent, if there exists an iso-
morphism ϕ : E → E′ compatible with the extensions i.e. such that the following diagram
commutes.

1 // A //

Id

��

E

ϕ

��

// G

Id

��

// 1

1 // A // E′ // G // 1

(3.2.1)

Lemma 3.2.4 (Trivial Extensions).

A central extension 1 −→ A
ı−−→ E

π−−→ G −→ 1 is equivalent to the trivial extension if and
only if there is a homomorphism σ : G→ E with π ◦ σ = IdG.

In other words: σ is a section of G in E which is also a homomorphism of groups.
In this case, σ is also called a splitting map and the extension is said to split.

We emphasize that for topological groups or Lie groups the appropriate requirements on
continuity/smoothness of the section are implied.

Proof. If the extension is trivial i.e. E ∼= A×G set σ(g) := (1, g) ∈ A×G.
Conversely, suppose there exists σ : G→ E as above. Set ϕ : A×G→ E; (a, g) 7→ ı(a)σ(g).
It is easily checked that this is a homomorphism compatible with the extension in the sense
of (3.2.3). Furthermore, ϕ is bijective, since for every g ∈ G and ξ ∈ π−1(g) ⊂ E there is
one and only one a ∈ A with ξ = ı(a)σ(g).
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3.3. PROJECTIVE REPRESENTATIONS

3.3 Projective Representations

Definition 3.3.1 (Projective Hilbert space).
Let H be a complex Hilbert space of finite or infinite dimension.
The projective Hilbert space P(H) is the space of rays in H, i.e.

P(H) := (H\{0})/C×

where the equivalence relation is given by ϕ ∼ λϕ , for λ ∈ C\{0}.
The topology on P(H) is the quotient topology induced by the quotient map γ : H → P(H).
We will also write ϕ̂ for γ(ϕ).

Obviously, the projective Hilbert space is no linear space any more. What is still well-
defined, though, is what we one might call the transition probability. This is the map
δ : P(H)× P(H)→ [0, 1] defined by

δ(ϕ̂, ψ̂) :=
|〈ϕ,ψ〉|2

‖ϕ‖2‖ψ‖2
(3.3.1)

where 〈·, ·〉 is the Hermitian scalar product on H. Now, just as on the Hilbert space we
are interested in unitary transformations that preserve the scalar product, on P(H) we are
interested in transformations that preserve the transition probability δ.

Definition 3.3.2 (Projective Automorphisms).
A projective automorphism is a bijective map T : P(H)→ P(H) that preserves the transition
probability i.e. that satisfies

δ(T ϕ̂, T ψ̂) = δ(ϕ̂, ψ̂) , ∀ϕ̂, ψ̂ ∈ P(H)

We denote the set of all projective automorphisms by Aut(P(H)).

If U is a unitary map on H, we can define Û on P(H) by

Û(ϕ̂) = Û(ϕ) (3.3.2)

This is clearly a projective automorphism. We thus get a group-homomorphism

γ̂ : U(H)→ Aut(P(H)) ,

U 7→ γ̂(U) = Û

As the projective Hilbert space doesn’t care for multiplicative constants, this also works for
anti-unitary maps U on H that are anti-linear (and satisfy 〈Ux,Uy〉 = 〈x, y〉 for x, y ∈ H.)
In fact, every projective automorphism comes from a unitary or anti-unitary map on H:

Theorem 3.3.3 (Wigner, 31).
For every projective automorphism T ∈ Aut(P(H)) there exists a unitary or an anti-unitary
transformation U on H with T = γ̂(U).

The projective automorphisms coming from unitary transformations on H form a subgroup
of Aut(P(H)) which we will denote by U(P(H)).
Let’s phrase our reasonings in the language of central extensions:

Lemma 3.3.4 (Unitary projective automorphism).
The sequence

1 −→ U(1) −→ U(H)
γ̂−−→ U(P(H)) −→ 1 (3.3.3)

defines a central extension of U(P(H)) by U(1) which is non-trivial.
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3.3. PROJECTIVE REPRESENTATIONS

Proof. The only part in proving that the sequence is exact and central that might be non-
trivial is to identify ker(γ̂) with U(1) · Id ⊂ U(H). "⊇" is clear. For "⊆" pick U ∈ ker(γ̂).
Then for any ϕ ∈ H : γ̂(U)(γ(ϕ)) = γ(Uϕ) = γ(ϕ)⇒ ∃λ ∈ C : Uϕ = λϕ.
Since U is unitary, |λ| = 1 i.e. λ ∈ U(1). If we take any other ψ ∈ H which is not a multiple
of ϕ it is by the previous consideration also an eigenvector to some eigenvalue λ′ ∈ U(1) but
so is the sum ϕ + ψ (with eigenvalue µ). It follows that U(ϕ + ψ) = µ(ϕ + ψ) = λϕ + λ′ψ
and thus, by linear independence, λ′ = λ = µ. Hence, U = λId.

To prove that the central extension is not trivial, we embed C2 in H be fixing any 2-
dimensional subspace V ⊂ H. Now consider the subgroup of all unitary operators on H
leaving V invariant, i.e. {U ∈ U(H) | U(V ) = V } =: V. On V, we introduce an equivalence
relation and identify two operators if they agree on V . Then V/ ∼ ∼= U(V ) ∼= U(2).
Now all the homomorphisms descend to a central extension

1 −→ U(1) −→ U(2) −→ U(P(C2)) −→ 1

But P(C2) = CP1 ∼= S1, so its unitary group is just the isometry group of the sphere, i.e.
SO(3). Also, U(1) × SU(2) ∼= U(2) by (eiφ, U) → eiφ/2 U . Thus, if the central extension
(3.3.3) was trivial with splitting map σ, this σ would descend to a spitting map for

1 −→ U(1) −→ U(1)× SU(2) −→ SO(3) −→ 1

But then, the second component of the homomorphism σ : SO(3)→ U(1)×SU(2) would be
a splitting map for the universal covering

1 −→ {±1} −→ SU(2) −→ SO(3) −→ 1

which we now doesn’t exist. This is a contradiction.

3.3.1 Lifting projective representations
Now we are able to formulate the problem of lifting projective representations in a more
precise way: Given a projective representation Γ : G → U(P(H)), is there a representation
ρ : G→ U(H) such that γ̂ ◦ ρ = Γ, i.e. such that the following diagram commutes?

G

Γ

��

ρ

yys
s

s
s

s

1 // U(1) // U(H)
γ̂ // U(P(H)) // 1

In general, the answer is NO. However, as we have suggested in the introducing remarks,
there always exists a central extension G̃ of G such that the projective representation of G
lifts to a proper representation of G̃.

Lemma 3.3.5 (Lifting projective representations).
Let G be a group and Γ : G→ U(P(H)) a homomorphism. There exists a central extension
G̃ of G by U(1) and a homomorphism Γ̃ : G̃ → U(H), such that the following diagram
commutes:

1 // U(1) ı //

Id

��

G̃

eΓ
��

π // G

Γ

��

// 1

1 // U(1) // U(H)
γ̂ // U(P(H)) // 1

(3.3.4)

G̃ is sometimes called the deprojectivization of G.
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Proof. We define
G̃ := {(U, g) ∈ U(H)×G | γ̂(U) = Γ(g)}

This is a subgroup of U(H) × G. The inclusion U(1) 3 λ ı7→ (λ · Id, 1) and the projection
onto the second component π = pr2 : G̃→ G are homomorphisms that make the upper row
of the diagram (3.3.5) a central extension. The projection onto the first component defines
a representation Γ̃ := pr1 : G̃→ U(H) which by construction satisfies γ̂ ◦ Γ̃ = Γ ◦ π.

At first, this is a pure algebraic statement and we have to see how it is compatible with
a topological structure or a Lie group structure of G. Without going into too much detail,
we summarize the main results 2

• If G is a topological group, G̃ can be given the structure of a topological group as a
subgroup of U(H)×G. Then, if Γ is continuous, so is Γ̃.

• If G is a finite-dimensional Lie group, then G̃ can be given the structure of a Lie
group so that the upper sequence in (3.3.4) becomes a sequence of differentiable ho-
momorphisms. If Γ is smooth (in a strong sense) so is Γ̃.3

• If we have to deal with infinite-dimensional Lie groups - and we do- the Lie group
structure of the central extension is not for free. Fortunately, things will work out
nicely in the cases relevant to our discussion.

Now, as there exists the central extension G̃ with has a representation Γ̃ on H, any attempt
to lift the projective action of G to the Hilbert-space corresponds to a section σ : G → G̃,
because then we just set ρ := Γ̃ ◦σ : G→ U(H). But this will define a (continuous/smooth)
representation of G on H only if the section σ is a (continuous/smooth) homomorphism of
groups i.e. if and only if the central extension is trivial.

We summarize this insight in the following Proposition.

Proposition 3.3.6 (Lifting projective representations).

Let G be a topological group. A projective representation Γ : G → U(P(H)) can be lifted to
a continuous unitary representation ρ : G→ U(H) with γ̂ ◦ ρ = Γ if and only if the central
extension 1 −→ U(1) −→ G̃ −→ G −→ 1 splits by a continuous section i.e. is trivial.
If G is a finite-dimensional Lie group, smoothness of Γ implies smoothness of ρ.

Proof. By Lemma (3.2.4), the central extension is (algebraically) trivial if and only if there
is a section σ : G → G̃ which is also a homomorphism of groups. In addition, require this
section to be continuous. Then ρ := Γ̃ ◦ σ is the postulated representation with
γ̂ ◦ ρ = γ̂ ◦ Γ̃ ◦ σ = Γ ◦ π ◦ σ = Γ. Conversely, if ρ is a unitary representation of G, then
σ(g) := (g, ρ(g)) ∈ G̃ is a continuous section in G̃ and a homomorphism of groups and thus
the desired splitting map.

2 See e.g. [Scho] for more details
3This statement seems rather harmless, but it’s quite the opposite. Indeed, it requires the

solution of one of the famous “Hilbert problems”: every topological group which is also a finite
dimensional topological manifold is already a Lie group. This theorem was proven by Montgomory
and Zippin in 1955.
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3.4 Cocycles and 2nd Cohomology Group
We have seen in the last section that any prescription to lift a projective representation of
a (Lie) group G to an action on the Hilbert-space H can be thought of as a section in a
central extension of G. Therefore, we want to study this more thoroughly.

Let
1 −→ A

ı−−→ E
π−−→ G −→ 1

be a central extension of G by A. Let τ : G→ E be a map with

π ◦ τ = IdG and τ(1) = 1 (3.4.1)

The map might also just be defined in a neighborhood of the identity.
τ will in general fail to be a homomorphism. Nevertheless:

π(τ(g)τ(h)) = π(τ(gh)) = gh, ∀g, h ∈ G

Therefore, there exists χ(g, h) ∈ A with

τ(g)τ(h) = χ(g, h)τ(gh) (3.4.2)

This defines a map χ : G×G→ A.
χ satisfies

χ(1, 1) = 1 (3.4.3)

Furthermore: τ(x)τ(y)τ(z) = χ(x, y)τ(xyb)τ(z) = χ(x, y)χ(xy, z)τ(xyz)
similarly: τ(x)τ(y)τ(z) = τ(x)χ(y, z)τ(yz) = χ(x, yz)χ(y, z)τ(xyz)
We deduce:

χ(x, y)χ(xy, z) = χ(x, yz)χ(y, z), ∀ x, y, z ∈ G (3.4.4)

Now suppose we’ve just made a ”bad” choice for τ and there really exists a (local) section
τ ′ that is a homomorphism, i.e. for which the corresponding cocycle vanishes.
Let’s fix this by writing τ ′(x) = τ(x)λ(x) with a function λ : G→ A.
Then: τ ′(x)τ ′(y) = τ(x)τ(y)λ(x)λ(y) = τ(xy)χ(x, y)λ(x)λ(y).
Also: τ ′(x)τ ′(y) = τ ′(xy) = τ(xy)λ(xy).
And thus:

λ(xy) = χ(x, y)λ(x)λ(y), ∀x, y, z ∈ G (3.4.5)

This motivates the following definition:

Definition 3.4.1 (Cocycles and Second Cohomology Group).

A map χ : G×G → A satisfying (3.4.3) and (3.4.4) is called a factor set or a 2-cocycle on
G with values in A.

A 2-cocycle χ : G × G → is called trivial, if there exists a map λ : G → A such that
λ(xy) = χ(x, y)λ(x)λ(y) ,∀x, y, z ∈ G.
Furthermore, we define the second cohomology group of G with coefficients in A as the set
of all 2-cocycles on G with values in A modulo trivial cocycles, i.e.

H2(G,A) := {χ : G×G→ A | χ is a cocycle}/ ∼ (3.4.6)

where χ1 ∼ χ2 :⇐⇒ χ1χ
−1
2 is trivial.
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We have seen that given a central extension 1 −→ A
ı−−→ E

π−−→ G −→ 1, every section
τ : G → E with π ◦ τ = IdG and τ(1) = 1 , defines a cocycle χ : G × G → A. Different
choices of τ lead to equivalent cocycles. Conversely, given a cocycle χ, we can define the
group A×χ G as the direct product A×G with the multiplication

(a, x)(b, y) := (χ(x, y)ab, xy) (3.4.7)

This is a central extension of G by A with the cocycle χ coming from the obvious section
τ(x) := (1, x). (Compare with the construction in the introduction of this chapter).

If the cocycle χ comes from a (global) section τ : G→ E as above, the central extensions

1 −→ A
ı−−→ E

π−−→ G −→ 1

and
1 −→ A −→ A×χ G

pr2−−−→ G −→ 1

are equivalent by the isomorphism ϕ : A ×χ G → E, ϕ
(
(a, c)

)
:= ı(a) · τ(x), because the

group-multiplication in A ×χ G is just so that in cancels with the cocycle that will come
from τ on the right-hand-side. We leave to the reader the little joy of checking for himself
how everything is designed to work out nicely. Now, it is somewhat exhausting, yet straight-
forward to show that for cocylces χ1 and χ2, the corresponding groups A×χ1 G and A×χ2 G
are equivalent (isomorphic) as central extensions if and only if χ1 and χ2 are equivalent as
cocycles.

We have derived the following theorem:

Theorem 3.4.2 (Central Extensions correspond to Cohomology Classes).
There is a one-to-one correspondence between equivalence classes of central extension of G
by A and the second cohomology classes of G with values in A.

Note that this is a pure algebraic statement! If we are dealing with Lie groups (or topological
groups) and have to consider topological aspects, things aren’t quite as easy and the argu-
ments above will, in general, work only locally. In fact, there might not be any continuous
section τ : G → E with π ◦ τ = IdG and τ(1) = 1. Therefore it is usually more convenient
to discuss cocycles of the corresponding Lie algebras, which are somehow the infinitesimal
version of the Lie group cocylces. They are already determined by a local section τ defined
in some neighborhood of the identity of the Lie group G and therefore better behaved.
However, the following is true:

Proposition 3.4.3 (Lie group extensions and local cocycles).
Let 1 → A → E → G → 1 be a central extension of a connected (finite- oder indinite-
dimensional) Lie group G by the abelian Lie group A. Then, E carries the structure of a Lie
group such that the central extension is smooth if and only if the central extension can be
described by a cocycle χ : G×G→ A which is smooth in a neighbourhood of (e, e) ∈ G×G.
For Banach Lie-groups, the statements applies also to non-connected G.

For the proof we refer to [Ne02] Prop.4.2 and [TW87] Prop.3.11 .
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3.5 Central Extensions of Lie Algebras
Definition 3.5.1 (Central Extension of Lie Algebras).
Let a be an abelian Lie algebra and g a Lie algebra over R or C (the dimensions may be
infinite). A central extension of g by a is an exact sequence of Lie algebra homomorphisms

0 −→ a
i−→ h

π−→ g −→ 0

s.t. i(a) ⊂ h is central in h, i.e. if [i(X), Y ] = 0 for all X ∈ a and Y ∈ h.

Proposition 3.5.2 (C.E. of Lie groups induce C.E. of the Lie algebras).
Let A, E and G finite dimensional Lie groups and

1 −→ A
i−→ E

π−→ G −→ 1

a central extension with differentiable homomorphisms ı and π.
Then

0 −→ Lie(A) ı̇−→ Lie(E) π̇−→ Lie(G) −→ 0 (3.5.1)

is a central extension of the corresponding Lie algebras. 4

Now, for a central extension of a Lie algebras

0 −→ a
i−→ h

π−→ g −→ 0

there always exists a linear map β : g→ h with π ◦ β = Id.

Analogously to the central extension of groups, the central extension of Lie algebras is equiv-
alent to the trivial extension h = g ⊕ a if and only if β can be chosen to be a Lie algebra
homomorphism.

If the central extension of Lie algebras comes from a central extension of Lie groups any
local section τ : G → E for the Lie groups as in (3.4.1) defines such a Lie algebra section
by β := τ̇ . But as τ fails to be a Lie group homomorphism, β will fail to be a Lie algebra
homomorphism. In general, how β fails to be a Lie algebra homomorphism can be expressed
by the skew-symmetric map

Θ(X,Y ) := [β(X), β(Y )]− β([X,Y ]) (3.5.2)

Θ is a map Lie(G)× Lie(G)→ Lie(A) with the following properties:

i) Θ is bilinear and skew-symmetric
ii) Θ (X, [Y, Z]) + Θ (Y, [Z,X]) + Θ (Z, [X,Y ]) = 0

(3.5.3)

This motivates the following definition.

Definition 3.5.3 (Lie algebra cocycles).
Let a, g be two Lie algebras, a abelian. A map Θ : g × g → a satisfying the conditions
(3.5.3) is called a Lie algebra 2-cocycle or simply a cocycle.

4For a smooth map ϕ : G → H between two Lie groups, ϕ̇ denotes the Lie algebra map
corresponding to the derivative of ϕ at the identity under identification of the Lie algebras with the
tangent space of the corresponding Lie groups at the identity: Deϕ : TeG→ TeH

∼=↔ Ḟ : Lie(G)→
Lie(H). If ϕ is a Lie group homomorphism, then ϕ̇ is a Lie algebra homomorphism.
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Proposition 3.5.4 (Computation of Lie algebra cocycles).
If χ is a (local) Lie group cocycle coming from the (local) section τ , then the corresponding
Lie algebra cocycle coming from τ̇ can be computed from χ as

Θ(X,Y ) =
∂

∂t

∂

∂s

∣∣∣
t=s=0

χ(esX , etY ) − ∂

∂t

∂

∂s

∣∣∣
t=s=0

χ(etY , esX) (3.5.4)

Proof. :

∂

∂t

∂

∂s

∣∣∣
t=s=0

χ(esX , etY ) − ∂

∂t

∂

∂s

∣∣∣
t=s=0

χ(etY , esX)

=
∂

∂t

∂

∂s

∣∣∣
t=s=0

τ(esX)τ(etY )τ(esXetY )−1 −
∣∣∣
t=s=0

τ(etY )τ(esX)τ(etY esX)−1

= τ̇(X)τ̇(Y ) − τ̇(XY ) − τ̇(Y )τ̇(X) + τ̇(Y X)

= τ̇(X)τ̇(Y )− τ̇(Y )τ̇(X)− ( τ̇(XY )− τ̇(Y X) )

= [τ̇(X), τ̇(Y )]− τ̇([X,Y ]) = Θ(X,Y )

Just as in the case of groups there is a correspondence between central extensions of Lie
algebras and cocycles, which is also 1-to-1 modulo trivial extensions/cocycles. However,
whereas the result was of pure algebraic nature for groups and the situation becomes un-
clear as soon as topology is involved, everything works out nicely for Lie algebras:

Given a Lie algebra cocycle Θ : g × g → a consider the vector space h := g ⊕ a and define
[·, ·]Θ on h by

[X1 ⊕ Y1, X2 ⊕ Y2]Θ := [X1, X2]g + Θ(X1, X2) (3.5.5)

for X1, X2 ∈ g, Y1, Y2 ∈ a. It is straight forward to check that this is a Lie bracket on h if
and only if Θ is a cocycle. In this case, h becomes a Lie algebra and projection onto the
first component makes

0 −→ a −→ h
pr1−→ g −→ 0

a central extension of g by a. Conversely, if Θ comes from a central extension and a linear
map β : g→ h, h ∼= g⊕ a as vector spaces by the linear isomorphism

F : g× a→ h, X ⊕ Y = (X,Y ) 7→ β(X) + Y .

The Lie bracket (3.5.5) makes g⊕ a a Lie algebra and F a Lie algebra isomorphism:

[F(X1, Y1),F(X2, Y2)] = [β(X1) + Y1, β(X2) + Y2] = [β(X1), β(X2)]
= β([X1, X2]) + Θ(X1, X2) = F([X1, X2]) + Θ(X1, X2))
= F ([(X1, Y1), (X2, Y2)]Θ)

We summarize the results in the following Lemma:

Lemma 3.5.5 (Central Extensions and Lie Algebra Cocycles).
Every central extension of Lie algebras comes from a cocycle.
Conversely, every cocycle Θ : g× g→ a induces a central extension of g by a as above.

Note that in all of these construction a particular choice of β was involved. What if we
choose a different linear map β′ : g → h with π̇ ◦ β′ = Id? Then, since π ◦ (β′ − β) = 0,
the difference of β and β′ is a linear map with values in a (identified with the corresponding
subalgebra in h), i.e.

β′ − β = µ : g→ a ∼= i(a) ⊂ h

30



3.5. CENTRAL EXTENSIONS OF LIE ALGEBRAS

For the corresponding cocycles, this means

Θ′(X,Y ) : = [β′(X), β′(Y )]− β′([X,Y ])
= [β(X) + µ(Y ), β(Y ) + µ(Y )]− β([X,Y ])− µ([X,Y ])
= [β(X), β(Y )]− β([X,Y ])− µ([X,Y ])
= Θ(X,Y )− µ([X,Y ])

since the image of µ is central in h. We deduce:

Theorem 3.5.6 (Triviality of Lie algebra extensions).
Let Θ be a Lie algebra cocycle for the central extension h of g.
Then, the following are equivalent:

• There exists a section β′ : g→ h that is also a Lie algebra homomorphism

• The cocycle Θ′ coming from β′ vanishes

• There exists a linear map µ : g→ a with Θ(X,Y ) ≡ µ([X,Y ])

• The central extension is trivial, i.e. h ∼= g⊕ a as Lie algebras

In particular, if τ : G → H is a splitting map for a central extension of Lie groups, then
β′ := τ̇ is a splitting map for the corresponding central extension of Lie algebras.

These considerations lead us straight to the mathematical concept of cohomology groups.
This is basically only a reformulation of what we have just discussed.

Definition 3.5.7 (Second Cohomology Group).
Let g be a Lie algebra and a an abelian Lie algebra.

Let Z2(g, a) be the set of all 2-cocycles on g with values in a.

Let B2(g, a) = {Θ ∈ Z2(g, a) | ∃µ ∈ Hom(g, a) : Θ(X,Y ) = µ([X,Y ])}
Let H2(g, a) := Z2(g, a)/B2(g, a).

H2(g, a) is the second cohomology group of g with values in a.

Theorem 3.5.8 (Central Extensions correspond to Cohomology Classes).
The cohomology group H2(g, a) is in one-to-one correspondence with the set of equivalence
classes of central extensions of g by a.

Let’s summarize the insights we’ve got so far. We started with a Lie group G and a
projective unitary representation Γ of G on a projective Hilbert space. In general, we can
not expect to be able to lift the projective representation to a proper representation on the
Hilbert space. However, there exists a central extension G̃ of G by U(1) that does have a
unitary representation Γ̃ on the Hilbert space, with γ̂◦Γ̃ = Γ (3.3.5). Any prescription to lift
the projective representation Γ to U(H), i.e. any choice of phases for those lifts, corresponds
to a section τ of G in G̃, as for any section Γ̃ ◦ τ is precisely such a lift. This will not be a
representation, though, unless τ is a continuous homomorphism. The way in which it fails
to be a representation, or equivalently, in which the section fails to be a homomorphism, is
encoded in the corresponding cocycle. On the other hand, for the fortunate case that the
we can lift the projective representation to a representation on H we have deduced that the
following statements are equivalent

• There exists unitary representation ρ : G→ U(H) with γ̂ ◦ ρ = Γ

• There exists a continuous section σ : G→ G̃ that is also a homomorphism [Cor. 3.3.6]

• The central extension 1 −→ U(1) −→ G̃ −→ G −→ 1 is trivial i.e. splits by a
continuous section [Lem. 3.2.4 ]

• Any Lie group cocycle corresponding to the central extension above is trivial i.e.
corresponds to 0 in H2(G,U(1)) [Thm.3.5.8 ]
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The “infinitesimal version” of this, so to speak, is the corresponding central extension of
Lie algebras (3.5.2) and its Lie algebra cocycle (3.5.2). We have suggested that it is more
convenient to work with the Lie algebras, in general, but we haven’t said yet, how this
infinitesimal version is related to our original problem. In all benign cases, the relationship
is basically 1-to-1 i.e. we can indeed reconstruct the Lie group extension from the Lie algebra
extension. This is due to the following Lemma:

Lemma 3.5.9 (Lie group homomorphisms from Lie algebra homomorphisms). 5

Let G1, G2 two Lie groups with Lie algebra g1 and g2, respectively. Assume that G1 is
connected and simply connected, and G2 is locally exponential. Then, for every continuous
Lie algebra homomorphism F : g1 → g2 there exists a unique Lie algebra homomorphism
f : G1 → G2 with F = ḟ .

We conclude:

Proposition 3.5.10 (Triviality of Extensions).
Let G be a connected and simply connected Lie group and 1 −→ A

ı−−→ E
π−−→ G −→ 1 a

central extension of G by A. Assume that E carries the structure of a locally exponential Lie
group. Then, the central extension splits by a smooth section if and only if the corresponding
central extension of Lie algebras (3.5.1) splits by a continuous Lie algebra homomorphism.

Proof. If the central extension of Lie groups splits by a differentiable section σ : G→ E, then
β = σ̇ is a Lie algebra homomorphism with π̇ ◦ β = Id and thus a splitting map for the LIe
algebra extension which trivializes the central extension. Conversely, let β : Lie(G)→ Lie(E)
be a Lie algebra homomorphism with π̇◦β = Id. If the requirements of the previous Lemma
are satisfied, we can deduce that there exists a Lie group homomorphism σ : G → E
with β = σ̇. Since ˙(π ◦ σ) = π̇ β = Idg = ˙IdG, the uniqueness part of the Lemma yields
π◦σ = IdG and thus σ is a smooth splitting map for the central extension of Lie groups.

Applying all these results to our discussion of projective representations, we have found sev-
eral necessary and/or sufficient conditions for being able to lift a projective representation
of a Lie group to a proper representation. In particular, we see that the cocycles represent
the obstruction for lifting a projective representation to a proper representation.

For completeness, we cite Bargmanns theorem, which is probably the main result of the
theory of central extensions, and give a brief sketch of the proof. We will not make any
further use of this result, but it is of great interest on its own. For the complete, original
proof we refer to [Bar54].

Theorem 3.5.11 (Bargmann, 1954).
Let G be a connected and simply connected finite-dimensional Lie group with

H2(Lie(G),R) = 0

Then, every projective unitary representation of G on P(H) can be lifted to a unitary repre-
sentation on H.

Proof. By Lemma(3.3.5) there exists a central extension G̃ of G by U(1), such that the
following diagram commutes:

1 // U(1) i //

Id

��

G̃

eΓ
��

π // G

σ

}} DM_
q

z

Γ

��

// 1

1 // U(1) // U(H)
γ̂ // U(P(H)) // 1

5[Ne02] Thm. 3.16

32



3.5. CENTRAL EXTENSIONS OF LIE ALGEBRAS

Now, one has to show that G̃ can be given the structure of a (dim(G) + 1)-dimensional Lie
group. Thus, to this central extension of Lie groups corresponds a central extension of Lie
algebras. Since H2(Lie(G),R) = 0, this central extension splits. By the previous Lemma,
this implies that the central extension of Lie groups split, i.e. there is a differentiable
homomorphism σ : G→ G̃ with π ◦ σ = IdG. Then, Γ̃ ◦ σ is the postulated lift.

A final remark

Our discussion also shows, why in Quantum theory it makes sense to study representations
not of the generic symmetry groups but of their universal covering group, which is (the
unique) simply connected Lie group Ĝ π−→ G covering G. Of course, every representation ρ
of the original Lie group G can be lifted to a representation of the universal covering by
ρ̂ := ρ ◦ π, but the converse is not true. We have way better chances to find a unitary
representation of the universal covering group. In fact, we will always be able to, if the
conditions of Bargmans theorem are satisfied. For example, one might study the group
SL(2,C), which is the universal covering group of the (proper orthochronous) Lorentz-group
L+
↑ = SO(1, 3), or the spin groups Spinn

π−→ SO(n) which can be realized as a subgroup of
the Clifford algebra and lead to the spin representations.
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Chapter 4

The central extensions G̃Lres(H) & Ũres(H)

We will construct a central extension of the restricted general linear group GLres(H) by
C× = C\{0} which acts naturally on the fermionic Fock space F and restricts to a central
extension of Ures(H) by U(1). One can think of the central extensions as a “bigger” group
containing the information about the transformation itself plus all possible choices for the
phase. An even better intuition is this: Ures(H) (and GLres(H)) act only projectively on
Dirac Seas. The central extensions contains the additional information about how to rotate
the basis of the Hilbert-space appropriatley, in order to make it a proper action on infinite-
wedge-vectors representing the fermion states (cf. the discussion of the left- and right-action
on infinite wedge-spaces in 5.2).

4.1 The central extension of GLres

We have to construct the central extension of the identity component GLres(H)0 ⊂ GLres(H).
As for the group GLres(H) itself, the complete central extension is just a semi-direct product
of the identity-component with Z.

The construction is based on the standard polarization H = H+⊕H−, but application to a
different (fixed) polarization is immediate.
With respect to this splitting, we can write every linear operator as

A =
(
A++ A+−
A−+ A−−

)
=
(
a b
c d

)
(4.1.1)

We define
E = {(A, q) ∈ GL0

res(H)×GL(H+) | a− q ∈ I1(H+)}

Lemma 4.1.1 (Group structure of E).

E is a subgroup of GL0
res(H)×GL(H+).

Proof. : Clearly, (IdH, IdH+) ∈ E . Furthermore:

• If (A1, q1), (A2, q2) ∈ E with A1 =
(
a1 b1
c1 d1

)
, A2 =

(
a2 b2
c2 d2

)
,

then (A1A2)++ = a1a2 + b1c2 and

(A1A2)++−q1q2 = a1a2+b1c2−q1q2 = (a1 − q1)︸ ︷︷ ︸
∈I1(H+)

a2 + q1 (a2 − q2)︸ ︷︷ ︸
∈I1(H+)

+ b1︸︷︷︸
∈I2(H)

c2︸︷︷︸
∈I2(H)

∈ I1(H+)

Thus: (A1A2, q1q2) ∈ E .

35



4.1. THE CENTRAL EXTENSION OF GLRES

• Let (A, q) ∈ E .

A =
(
a b
c d

)
∈ GL0

res(H) ⇒ A−1 =
(
α β
γ δ

)
∈ GL0

res(H)

We deduce: aα+ bβ = IdH+ ⇒ aα ∈ Id+ I1(H+)
Thus:

a (α− q−1) = aα︸︷︷︸
∈Id+I1(H+)

− aq−1︸ ︷︷ ︸
∈Id+I1(H+)

∈ I1(H+)

Since a has a pseudoinverse it follows that (α− q−1) ∈ I1(H+) and so (A−1, q−1) ∈ E .

We give E not the subgroup topology, but the topology induced by the embedding

(A, q) 7→ (A, a− q) ∈ GLres × I1(H+)

It is then a Banach Lie group ([PreSe]).

We make a few simple but crucial observations:

i) a− q ∈ I1(H+) is equivalent to aq−1 having a determinant.

ii) For all A ∈ GLres ∃ q ∈ GL(H+) such that (A, q) ∈ E .

iii) If aq−1 has a determinant then aq′−1 has a determinant too, if and only if q′q−1 has a
determinant.

From all this it follows that we can think of E as an extension (not a central one!) of
GLres(H) by GL1(H+):

1 −→ GL1(H+) −→ E pr2−−−→ GL0
res(H) −→ 1

ii) implies that the projection pr2 is surjective onto GL0
res and iii) implies that two preimages

differ (multiplicatively) by an element in GL1(H+).

Proof of the statements.

i) a− q ∈ I1(H+) ⇐⇒ (a− q)q−1 = aq−1 − Id ∈ I1(H+) ⇐⇒ aq−1 ∈ Id+ I1(H+)

ii) U ∈ GL0
res ⇒ U++ =: a is a Fredholm operator with index 0. Thus, there exists a finite

rank operator t : H+ → H+ such that q := a− t is invertible.
But then, a− q = t ∈ I1(H+).

iii) If aq−1 and aq′−1 both have determinants then so does (aq′−1)−1(aq−1) = q′q−1.
Conversely, if aq−1, q′q−1 have determinants so does (aq−1)(q′q−1)−1 = aq′−1.

Definition 4.1.2 (Central extension of GLres).
On E we introduce the equivalence relation:

(A1, q1) ∼ (A2, q2) :⇐⇒ A1 = A2 and det(q2 q
−1
1 ) = 1

Now, we define
G̃L

0

res(H) := E/ ∼

We will show that this is indeed a central extension of GL0
res by C× := C \ {0}.
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Lemma 4.1.3 (Central extension of GLres).
The extension

1 −→ GL1(H+) −→ E pr2−−−→ GL0
res(H) −→ 1

descends to a central extension

1 −→ C× ı−→ G̃L
0

res(H) π−−→ GL0
res(H) −→ 1 (4.1.2)

with π : [(A, q)] 7→ A and ı : c 7→ [(Id, t)] for any t ∈ GL1(H+) with det(t) = c.

Proof. :

• Multiplication is well-defined on E/ ∼:
If (A1, q1) ∼ (A1, r1) and (A2, q2) ∼ (A2, r2) i.e. det(q1r

−1
1 ) = 1 = det(q1r

−1
1 ) then

det(r1r2q
−1
2 q−1

1 ) = det(r2q
−1
2 q−1

1 r1) = det(r2q
−1
2 ) det(q−1

1 r1) = 1,
i.e. (A1A2, q1q2) ∼ (A1A2, r1r2)

• Now it is easy to see that π and i are well-defined homomorphisms of groups and that
π surjective and i injective.

• We show ker(π) = im(i):
ker(π) = {(1, q)} ⊂ E . All such elements satisfy 1++ − q = 1H+ − q ∈ I1(H+) and
thus q ∈ GL(H+) ∩ (Id+ I1(H+)) = GL1(H+). Hence, ker(π) = im(i).

• The extension is central:
For all (A, q) ∈ E and t ∈ GL1(H+), we find (A, qt) ∼ (A, tq), since:
det(tq (qt)−1) = det(t q t−1q−1) = det(t) det(q t−1q−1) = det(t) det(t−1) = 1.
Thus, [(A, q)] · [(1, t)] = [(1, t)] · [(A, q)] , ∀ [(A, q)] ∈ G̃L

0

res and [(1, t)] ∈ im(i).

In fact, π : G̃L
0

res → GL1(H+)0
res is not only a central extension but also carries the struc-

ture of a principle fibre bundle. On principle-bundles, local trivializations are given by local
sections. Since we are dealing we Lie groups, the bundle structure is already defined by a
continuous section in a neighborhood of the identity. This can then be translated to arbi-
trary points on the manifold simply by the group action. Indeed, there is a very natural
local section around the identity in GL0

res(H), which will be of great importance for our
further discussion.

Consider
W := {A ∈ GLres | a = A++ ∈ GL(H+)} ⊂ GL0

res

Claim: W is a dense, open subset of GL0
res.

Proof. Recall that the topology in G̃Lres is given by the norm ‖·‖ε = ‖·‖∞ + ‖[ε, ·]‖2.
Clearly, A 7→ a = P+AP+ is continuous w.r.to this norm, therefore W is open in G̃Lres

because GL(H+) is open in the space of bounded operators on H+: For a ∈ GL(H+) and

‖k‖ small enough, a− k is also invertible with (a− k)−1 =
[ ∞∑
ν=o

(a−1k)ν
]
a−1.

Furthermore, W is dense in GLres because for any Fredholm operator a with index 0 (such
as a = A++ for A ∈ GLres), there exists a compact operator k of arbitrary small norm so
that a+ k is invertible.

37



4.1. THE CENTRAL EXTENSION OF GLRES

On W we can define a smooth section

τ : W −→ G̃Lres(H); A 7−→ [(A,A++)] (4.1.3)

which satisfies τ(1) = 1, of course.
This section induces the local trivialization

φ : G̃Lres(H) ⊇ W −→ GLres(H)× C×;

[(A, q)] 7−→
(
A ,det(a−1q)

) (4.1.4)

by φ−1(A, λ) := τ(A) · λ ∈ G̃Lres(H).

Proposition 4.1.4 (Lie group cocycle).
On W we get the continuous 2-cocycle

τ(A)τ(B) = χ(A,B) τ(AB)

with
χ(A,B) = det[A++B++(AB++)−1] (4.1.5)

Proof.

τ(AB) =[(AB, (AB) ++)]
τ(A) · τ(B) =[(A,A++)] [(B,B++)] = [(AB,A++B++)]

=[(1, A++B++((AB)++)−1)] τ(AB)

= det[A++B++((AB)++)−1] · τ(AB)

The central extension of Lie groups

1 −→ C× ı−→ G̃L
0

res(H) π−−→ GL0
res(H) −→ 1 (4.1.6)

induces a central extension

0 −→ C i∗−−→ g̃1
π∗−−→ g1 −→ 0 (4.1.7)

of the corresponding Lie algebras. We compute the cocycle of this central extension.

Proposition 4.1.5 (Lie algebra cocycle).
The Lie algebra cocycle for to the central extension (4.1.7) is

Θ(X,Y ) = c(X,Y ) = tr(X−+Y+− − Y−+X+−)

=
1
4

tr(ε [ε,X][ε, Y ])
(4.1.8)

This is known as the Schwinger cocycle or Schwinger term.

Proof. Using the formula (3.5.4) we find:

Θ(X,Y ) =
∂

∂t

∂

∂s

∣∣∣
t=s=0

det
[
esX++ e

tY
++((esXetY )++)−1

]
− ∂

∂t

∂

∂s

∣∣∣
t=s=0

det
[
etY++ e

sX
++((etY esX)++)−1

]
= tr

(
X++Y++ − (XY )++

)
− tr

(
Y++X++ − (Y X)++

)
= tr

(
X++Y++ −X++Y++ −X+−Y−+

)
− tr

(
Y++X++ − Y++X++ − Y+−X+−

)
= tr

(
−X+−Y−+

)
+ tr

(
Y+−X−+

)
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4.1. THE CENTRAL EXTENSION OF GLRES

The traces converge individually and put together we get

Θ(X,Y ) = tr
(
X−+Y+− − Y−+X+−

)
A straight forward computation shows that this can also be expressed as

Θ(X,Y ) =
1
4

tr(ε [ε,X][ε, Y ])

4.1.1 The central extension of Ures and its local trivialization

Having defined the central extension G̃Lres(H) of GLres(H), we set

Ũres(H) := G̃Lres(H) ∩
(
U(H)×U(H+)

)
(4.1.9)

This is a central extension of Ures(H) by U(1) and its complexification is G̃Lres(H).

Just as G̃Lres, Ũres is a principle bundle, but the section τ defined above does not restrict
to a section in Ũres(H) = G̃Lres(H) ∩

(
U(H) × U(H+)

)
because for unitary U , U++ need

not be unitary, even if it’s invertible. We can however use a polar decomposition to write
U++ = VU |U++| with |U++| =

√
(U∗++U++) and VU ∈ U(H+) unitary.

Lemma 4.1.6 (Local Section of Ũres).
On W ∩Ures(H), the map

σ : U 7−→ [(U, VU )] (4.1.10)

defines a local section in Ũres(H).
The local trivialization φUres induced by this section equals φ up to normalization.

Proof. For U ∈ Ures, unitarity implies U∗++U++ + U∗+−U+− = 1H+ . Since the off-diagonal
terms are Hilbert-Schmidt operators, U∗+−U+− is trace-class and thus U∗++U++ ∈ IdH+ +
I1(H+) has a determinant. This is only possible if

√
(U∗++U++) = |U++| is also in IdH+ +

I1(H+). We conclude
U++ − VU = VU

(
|U++| − 1

)
∈ I1(H+)

and so [(U, VU )] ∈ Ũres(H) for all U ∈ Ures.

Furthermore, for [(U, r)] we find φ
(
[(U, r)]

)
= (U, λ) with

λ = det(U−1
++ r) = det(|U++|)−1 det(V ∗U r)

= det
(√

(U−1
++ r)(U

−1
++ r)∗

)
det(V ∗U r)

=
√

det(U−1
++ r) det(U−1

++ r) det(V ∗U r) = |λ|det(V ∗U r)

But det(V ∗U r) is just the U(1)-component w.r.to the loc. trivialization defined by σ. Hence,
we read off:

U ∈ Ũres(H)
φ

vvmmmmmmmmmmmmm
φUres

((RRRRRRRRRRRRR

Ures × C× 3 (U, λ)
(
U, λ|λ|

)
∈ Ures ×U(1)

(4.1.11)

This finishes the proof.
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4.1. THE CENTRAL EXTENSION OF GLRES

In the local trivialization of Ũres(H), the U(1)-component corresponds to the information
about the phase of the lift of the unitary transformation. In this sense, we can think of the
sections as “gauging” the phases of the lifts by picking out a reference lift.

It can be readily computed that the cocycle for the section σ is, as expected, just the
normalized version of the GLres-cocycle χ in (4.1.5). For the corresponding central extension
of Lie algebras

0 −→ R −→ ũres −→ ures −→ 0 (4.1.12)

we compute the cocycle

∂

∂t

∂

∂s

∣∣∣
t=s=0

χ(esX , etY ) |χ(esX , etY )|−1 − ∂

∂t

∂

∂s

∣∣∣
t=s=0

χ(etY , esX) |χ(etY , esX)|−1

=
∂

∂t

∂

∂s

∣∣∣
t=s=0

[
χ(esX , etY )

(
χ(esX , etY )χ(esX , etY )

)− 1
2 − χ(etY , esX)

(
χ(etY , esX)χ(etY , esX)

)− 1
2
]

= Θ(X,Y )− 1
2

(
Θ(X,Y ) + Θ(X,Y )

)
= i Im

(
Θ(X,Y )

)
, for X,Y ∈ ures

But as all X,Y ∈ ures are (anti-)Hermitian, we find

Θ(X,Y ) = Θ(Y ∗, X∗) = Θ(Y,X) = −Θ(X,Y ),

which means i Im
(
Θ(X,Y )

)
= Θ(X,Y ) on ures.

Thus, the Lie algebra cocycle on ures corresponding to the local section σ is just the Schwinger
cocycle restricted to the subalgebra ures ⊂ g1.

4.1.2 The complete G̃Lres

So far we have constructed the identity component G̃L
0

res of the central extension, corre-
sponding to transformations preserving the net-charge. Generalization to the other con-
nected components indexed by the relative charge q = charge(W,AW ) for A ∈ GLres,W ∈
Gr(H), can be understand by concatenating charge-preserving transformations with a shift
of a suitably chosen Hilbert-basis.

Let (ek)k∈Z be a basis of H such that (ek)k≥0 is a basis of H+ and (ek)k<0 a basis of H−. We
need a σ ∈ GLres with ind(σ++) = ±1. Conveniently, we choose σ defined by ek 7−→ ek+1.
Then σ is unitary with ind(σ++) = −1. σ acts on GL0

res by A 7→ σAσ−1.

We define a semi-direct product on Z n GL0
res by

(n,A) ·n (m,A′) = (n+m,AσnA′σ−n) (4.1.13)

with this group-structure, the obvious map

Z n GL0
res → GLres, (A,n) 7−→ Aσn (4.1.14)

becomes an isomorphism of groups. 1

So we can express describe the restricted general group as a semi-direct product of the iden-
tity component GL0

res with Z, the Z-component corresponding to (−1)× the index of the
++ component, i.e. the relative charge.

1(n,A) · (m,A′) = (n+m,AσnA′σ−n) 7−→ AσnA′σ−nσn+m = AσnA′σm

40



4.1. THE CENTRAL EXTENSION OF GLRES

The action of σ on GL0
res (by conjugation) is covered by an endomorphism

σ̃ : E → E , σ̃((A, q)) = (σAσ−1, qσ) where

qσ =

 σqσ−1 ; on σ(H+) = H≥1

Id ; on σ(H+)⊥ = span(e0)

This is not an automorphism, but it descends to one on G̃L
0

res, which we also denote by σ̃.

Definition 4.1.7 (The complete G̃Lres).
We define

G̃Lres(H) := Z n G̃L
0

res(H)

where the action of Z is generated by σ̃.
Then

1 −→ C× −→ G̃Lres(H) π−−→ GLres(H) −→ 1

is a central extension of GLres by C×. Over the identity components of the Lie groups it
restricts to (4.1.2). The unitary version works analogously.
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4.2 Non-Triviality of the central extensions
Theorem 4.2.1 (Non-triviality of the central extension).

The Lie algebra extensions g̃1 → g1 as well as ũres → ures are not trivial.

In particular, this implies that there exists no differentiable 2 section Γ : Ures → Ũres which
is also a homomorphism of groups.

We will see that the central extension Ũres(H) or G̃Lres(H) are the groups with a natural
irreducible representation on the fermionic Fock space. So, the theorem tells us in particular
that there exists no (smooth) representation of the entire group Ures(H) on the Fock space.
Other results from the classification theory of principle bundles prove that there is not even
a continuous global section of Ures in Ũres

3.
One might ask how the central extension GLres(H) is relates to the abstractly defined “de-
projetivization” ĜLres defined in [Lem. 3.3.5]. In [Wurz01] is it shown that ĜLres can be
indeed given the structure of a Banach Lie group, s.t. it is diffeomorphic to G̃Lres.

Proof of the Theorem. 4 We formulate the proof for the unitary case, although it applies
almost word-for-word to G̃Lres as well. However, non-triviality of Ũres implies non-triviality
of G̃Lres anyways. From our discussion of central extensions we know that it suffices to show
that the Schwinger cocycle c is not trivial, i.e. that there is no linear map µ : ures → R with
µ([X,Y ]) = c(X,Y ), ∀X,Y ∈ ures. This is proven, for example, if we can find X,Y ∈ ures

with [X,Y ] = 0 but c(X,Y ) 6= 0. For completeness, we recall the argument why this proves
that a (differentiable) section in Ures(H) cannot exist.

In Lemma 4.1.6 we have constructed a section σ : Ures → Ũres. However, this section fails
to be a homomorphism of groups, i.e. we get σ(U)σ(V ) = κ(U, V )σ(UV ) with a Lie group
cocycle κ : Ures ×Ures → U(1). Consequently, its derivative (at the identity) σ̇ : ures → ũres

fails to be a Lie algebra homomorphism. This is expressed by the Schwinger cocycle

c(X,Y ) := [σ̇(X), σ̇(Y )]− σ̇([X,Y ]) for X,Y ∈ ures

Now suppose the section σ is just a bad choice and there was in fact a different section
Γ : Ures → Ũres which is also a homomorphism of groups. Since two elements in the same
fibre in Ũres differ only by a complex phase, the “good” section differs from σ only by a map
λ : Ures → U(1). As Γ is a Lie group homomorphism, the corresponding Lie algebra map
Γ̇ = λ̇+ σ̇ is a Lie algebra homomorphism. This means:

0 = [λ̇(X) + σ̇(X), λ̇(Y ) + σ̇(Y )] = [σ̇(X), σ̇(Y )] = λ̇([X,Y ]) + σ̇([X,Y ])

⇒ λ̇([X,Y ]) = c(X,Y ), ∀X,Y ∈ ures

For the first equality we have used that λ̇ : ures → Lie(U(1)) = R maps into the center of
ũres and so all the commutators with λ̇ vanish.
We observe: if a lift Γ : Ures → Ũres preserving the group structure exists then there must
be a linear map µ (= λ̇) : ures → R with µ([X,Y ]) = c(X,Y ), ∀X,Y ∈ ures.
Therefore, to prove that such a lift does not exist it suffices to find X,Y ∈ ures with
[X,Y ] = 0 but c(X,Y ) 6= 0.
The Hilbert space H = H+ ⊕H− with the polarization given by the sign of the free Dirac
Hamiltonian is somewhat difficult to handle. Fortunately, by unitary equivalence we can just
as well consider any other polarized (separable, infinite-dimensional, complex) Hilbert space.

2Actually, for the proof it suffices to assume differentiability at the identity so that the section
in the Lie group extension induces a Lie algebra homomorphism.

3[PreSe], see also [Scho]§3.2 for an outline of the argument.
4The proof follows [Wurz01], where it is presented in a very nice and complete way. However,

we believe that the abstract mathematical language might conceal the ultimately simple nature of
the proof, at least from a physicists point of view. We have therefore tried to rephrase it in more
elementary terms without any reference to cohomology or the like.
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4.2. NON-TRIVIALITY OF THE CENTRAL EXTENSIONS

For our purpose it is nice to work with the Hilbert space K := L2(S1,C) with the polarization
given by separation into Fourier components with positive and negative frequencies. The
natural Hilbert-basis on K is the Fourier-Basis (ek)k∈Z where ek(t) := ei2πkt ∈ L2(S1,C).

Writing K 3 f =
∑
k∈Z

fkek we have:

P+f :=
∑
k≥0

fkek , P−f :=
∑
k<0

fkek (4.2.1)

On K we consider the class of operators given by multiplication with smooth functions. For
g ∈ C∞(S1,C) and f ∈ L2(S1,C) we write Mg(f) = g · f .
In Fourier space multiplication corresponds to convolution.
So if g =

∑
k∈Z

gk ek then

Mg(el) =
∑
k∈Z

gk−l ek (4.2.2)

Be careful not to make the easy mistake to confuse the Fourier components of g with those
of the multiplication operator Mg : K → K.
For g, h ∈ C∞(S1,C) we compute:

tr(Mh−+Mg+−) =
∑
l<0

〈el,Mh

∑
k≥0

gk−lek〉

=
∑
l<0

〈el,
∑
k≥0

∑
m<0

hm−k gk−l em〉

=
∑
l<0

∑
k≥0

hl−k gk−l = −
∑
l<0

l hl g−l (4.2.3)

Similarly
tr(Mg−+Mh+−) =

∑
l>0

l hl g−l (4.2.4)

In particular we conclude that

‖[ε,Mg]‖22 =4 · tr
(

(Mg+−)(Mg+−)∗ + (Mg−+)(Mg−+)∗
)

= 4 ·
(∑
l≥0

l|gl|2 +
∑
l<0

(−l)|gl|2
)

= 4 ·
(∑
l∈Z
|l||gl|2

)
<∞ for smooth g.

So all operators of this type have off-diagonal components in the Hilbert-Schmidt class,
meaning that indeed {

Mg | |g(t)|2 ≡ 1
}
⊂ Ures(K){

Mg | g(t) ∈ R
}
⊂ ures(K)
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From (4.2.3) and (4.2.4) we also read off that the Schwinger cocycle is well-defined on
operators of this type with

c(Mh,Mg) = tr(Mh−+Mg+− −Mg−+Mh+−) = −
∑
l∈Z

lhlg−l

=
1

2πi

1∫
0

h(t)ġ(t) dt (4.2.5)

The rest is easy. Just take any two functions g, h ∈ C∞(S1,R) with
1∫
0

h(t)ġ(t) dt 6= 0.

For instance, consider g(t) = cos(2πt) and h(t) = sin(2πt). Then we got

Mg,Mh ∈ ures(h) with [Mh,Mg] = 0 but

c(Mh,Mg) =
1

2πi

1∫
0

h(t)ġ(t) dt = (−1)

1∫
0

sin2(t) dt 6= 0

This shows that the Schwinger cocycle c is non-trivial and completes our proof.

Remark 4.2.2. (Embedding of Loop Groups)
In the related mathematical literature, the multiplication operators and the cocycle (4.2.5)
considered on the proof of the previous theorem arise in the very abstract context of the
embeddings of loop groups into GLres(H). If K is a d-dimensional (compact) Lie group, then
C∞(S1,K) is an infinite-dimensional Lie group, called a loop group and usually denoted by
LK or Map(S1,K). Any (faithful) representation ρ : K → GL(Cd) then provides an action
of the loop group on the Hilbert space K = L2(S1,C) via

C∞(S1,K)× L2(S1,C) = LK ×K → K
(ϕ, f) 7−→ ρ(ϕ(t)) · f(t)

Just as we did above (for d=1), this provides an embedding of the loop group LK into
GLres(K) ∼= GLres(H). The central extension G̃Lres of GLres induces a central of LK and
the corresponding Lie algebra cocycle takes the form analogous to (4.2.5). The simple
multiplication in C is just replaced by matrix-multiplication and taking the trace inMat(d×
d,C). In our proof we have explicitly avoided any reference to loop groups or cohomology
theory as usually found in the mathematical literature, since I feel that they unnecessarily
obscure the otherwise simple nature of the proof.
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Chapter 5

Three routes to the Fock space

5.1 CAR Algebras and Representations
In this section we carry out the Quantization of the Dirac Field in the spirit of what I have
called the “electron-positron picture”. Thereby, we will mostly follow the discussion in [Tha].
I will assume that the reader is somewhat familiar with creation/annihilation operators and
the standard construction of the Fock space, so we will review them just briefly. If the reader
is well familiar with the subject as a whole, he or she should feel free to skip this section
altogether. Adjacent is a brief discussion of abstract CAR algebras. Fock spaces will then
arise as representation spaces of irreducible representations of the algebra. This is quite an
abstract mathematical machinery, but I think it’s worth going into it for different reasons:

1. It is probably the most common and most developed mathematical description of Fock
spaces and “second quantization”.

2. It constitutes, at least rudimentary, a rigorous mathematical formalization of what
physicists usually try to say.

3. It provides a language in which the mathematical problems can be formulated very
nicely and thereby opens up a perspective which can be fruitful from time to time.

What do I mean by a “fruitful perspective”? For instance, it is my impression that as a
physicist with some training in (non-relativistic) Quantum theory one is used to think of
“the” Fock space as a fundamental object (“the space of all physical states”). This makes it
hard to grasp some of the issues we’re facing in relativistic Quantum Field Theory, like the
fact that the time evolution is “leaving” the Fock space (where else would it go?). Thus, I
do find it helpful sometimes to think of the CAR-algebra as the more fundamental object
and of Fock spaces only in terms of its representations. The danger however is that this
easily becomes a vain exercise in abstract mathematics, detached from the physical problems.

5.1.1 The Field Operator
On the one-particle Hilbert-space H = H+ ⊕H− we have a charge conjugation operator C
mapping negative energy solutions of the free Dirac equation to positive energy solutions with
opposite charge. The charge-conjugation is anti-unitary, in particular anti-linear. The exact
form of the operator depends on the representation of the Dirac algebra. In the so called
“Majorana representation”, charge conjugation just corresponds to complex conjugation. In
Appendix A.2 we give an intuitive, yet general derivation of the charge-conjugation operator.
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Definition 5.1.1 (Fermionic Fock space).
Let F+ := H+ and F− := CH−. We define the fermionic Fock space as 1

F :=
∞⊕

n,m=0

F (n,m); F (n,m) :=
∧n
F+ ⊗

∧m
F− (5.1.1)

We can also split the Fock space into the different charge sectors

F :=
∞⊕
c=0

F (c); F (c) :=
⊕

n−m=c

F (n,m) (5.1.2)

The state
Ω := 1⊗ 1 ∈ F (0,0) = C⊗ C ⊂ F

is called the vacuum state

Recall the definitions of the creation and annihilation operators.
On the “particle-sector”

∧
F+:

a(f) : F (n+1,m) −→ F (n,m),

a(f)f0 ∧ · · · ∧ fn :=
n∑
k=0

(−1)k〈f, fk〉f0 ∧ · · · ∧ f̂k ∧ · · · ∧ fn (5.1.3)

a∗(f) : F (n−1,m) −→ F (n,m),

a∗(f)f1 ∧ · · · ∧ fn − 1 = f ∧ f1 ∧ · · · ∧ fn−1 (5.1.4)

On the “anti-particle sector”
∧
F−:

b(g) : F (n,m+1) −→ F (n,m),

b(g) Cg0 ∧ · · · ∧ Cgn := (−1)n
n∑
k=0

(−1)k〈Cg, Cgk〉Cg0 ∧ · · · ∧ Ĉgk ∧ · · · ∧ Cgn (5.1.5)

b∗(g) : F (n,m−1) −→ F (n,m),

b∗(g) Cg1 ∧ · · · ∧ Cgn − 1 = Cg ∧ Cg1 ∧ · · · ∧ Cgn−1 (5.1.6)

The reader is probably familiar with the fact that a and a∗, as well as b and b∗, are formal
adjoints of each other and satisfy the canonical anti-commutation relations

{a(f1), a∗(f2)} = a(f1)a∗(f2) + a∗(f2)a(f1) = 〈f1, f2〉H · 1, ∀f1, f2 ∈ H+

{b(g1), b∗(g2)} = 〈Cg1, Cg2〉H · 1 = 〈g1, g2〉 · 1 = 〈g2, g1〉H · 1, ∀g1, g2 ∈ H−
(5.1.7)

and all other possible combination anti-commute.

If (fj)j∈N and (gk)k∈N are ONB’s of H+ and H− respectively, the elements of the form

a∗(fj1)a∗(fj2) . . . a∗(fjn)b∗(gk1)b∗(gk2) . . . b∗(gkm
)Ω ∈ F (n,m) ⊂ F (5.1.8)

for j1 < · · · < jn; k1 < · · · < km and n,m = 0, 1, 2, 3, . . . form an ONB of the Fock space F .

So, the creation operators acting on the vacuum generate the dense subspace

D :=
{
finite linear combinations of vectors of the form (5.1.8)

}
which is the usual domain for the second quantization of bounded operators.

1By the direct sums we implicitly understand the completion w.r.to the induced scalar product
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Definition 5.1.2 (Field Operator).

For any f ∈ H we define the field operator Ψ(f) on F by

Ψ(f) := a(P+f) + b∗(P−f)
Ψ∗(f) = a∗(P+f) + b(P−f)

(5.1.9)

We can view the field operator as an anti-linear map Ψ : H −→ B(F).

It satisfies the canonical anti-commutation relations (CAR)

{
Ψ(f),Ψ∗(g)

}
= 〈f, g〉 · 1{

Ψ(f),Ψ(g)
}

=
{

Ψ(f)∗,Ψ∗(g)
}

= 0
(5.1.10)

Second Quantization of Unitary Operators

Let U : H → H be a unitary transformation on the one-particle Hilbert space. We want to
lift it to a unitary transformation Γ(U) on the Fock space F .
In non-relativistic Quantum mechanics, we would lift an operator U to the n-particle Hilbert-
space

∧n
H product-wise by

U ⊗ U ⊗ · · · ⊗ U (5.1.11)

But the naive generalization

f1 ∧ · · · ∧ fn ⊗ Cg1 ∧ · · · ∧ Cgm 7−→ Uf1 ∧ · · · ∧ Ufn ⊗ CUg1 ∧ · · · ∧ CUgm

does only make sense if U preserves the splitting H = H+⊕H− i.e. only if U+− = U−+ = 0.
In general, this is not the case and U will mix positive and negative energy states. Physically
this leads to the phenomenon we call pair creation. Mathematically this leads to trouble.

While it is difficult to say how the unitary transformation is supposed to act on the Fock
space, it acts very naturally on the field operator Ψ, namely by

Ψ 7−→ βu(Ψ) := Ψ ◦ U,
i.e. βu(Ψ)(f) = Ψ(Uf) = a(P+Uf) + b∗(P−Uf), ∀f ∈ H

(5.1.12)

βU is called a Bogoljubov transformation.

It is easy to see that Ψ̃ := βU (Ψ) is still an antilinear map H → B(F) satisfying the
CAR (5.1.10). Mathematically this means that Ψ̃ is also a field operator, inducing another
representation of the CAR-algebra with the new annihilation operators defined as

c(f) := Ψ̃(f), for f ∈ H+

d(f) := Ψ̃∗(g), for g ∈ H−
(5.1.13)

Definition 5.1.3 (Implementability of unitary transformations).
The unitary transformation U ∈ U(H) is implementable on the Fock space F if there exists
a unitary map Γ(U) : F → F with

Γ(U)Ψ(f)Γ(U)∗ = βU (Ψ)(f) = Ψ(Uf), ∀f ∈ H (5.1.14)

If U is implementable, the implementation is unique up to a phase.

That the implementation can be determined uniquely only up to a phase is obvious, because
if Γ(U) is an implementation of U ∈ U(H), so is eiϕ for all eiϕ ∈ U(1).
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Supposed that Γ(U) is an implementation of U we note that by (5.1.14) it acts on a basis
vector of the form

a∗(f1)a∗(f2) . . . a∗(fn)b∗(g1)b∗(g2) . . . b∗(gm) Ω
= Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1)Ψ(g2) . . .Ψ(gm) Ω

as

Γ(U)
(

Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm) Ω
)

= Γ(U)Ψ∗(f1)Γ(U)∗Γ(U)Ψ∗(f2)Γ(U)∗ . . .Γ(U)Ψ(gm−1)Γ(U)∗Γ(U)Ψ(gm)Γ(U)∗Γ(U) Ω

= Ψ∗(Uf1)Ψ∗(Uf2) . . .Ψ∗(Ufn)Ψ(Ug1) . . .Ψ(Ugm)
[
Γ(U) Ω

]
= c∗(f1)c∗(f2) . . . c∗(fn)d∗(g1)d∗(g2) . . . d∗(gm) Ω̃

with Ω̃ = Γ(U)Ω. This simple consideration gives us a pretty interesting result

Proposition 5.1.4 (New Vacuum).
A unitary transformation U ∈ U(H) is implementable, if and only if there exists a vacuum
for the new annihilation operators (5.1.13) coming from βU (Ψ).
That is, if there exists a normalized state Ω̃ with

c(f)Ω̃ = βU (Ψ)(f) Ω̃ = 0, ∀f ∈ H+ (5.1.15)

d(g)Ω̃ = βU (Ψ)∗(g) Ω̃ = 0, ∀g ∈ H− (5.1.16)

Proof. If Γ(U) is an implementer of U set Ω̃ = Γ(U)Ω.
Then,

βU (Ψ)(f)Ω̃ = Γ(U)Ψ(f)Γ(U)∗Γ(U)Ω = Γ(U)Ψ(f)Ω = 0, ∀f ∈ H+ (5.1.17)

βU (Ψ)∗(g)Ω̃ = Γ(U)Ψ(g)Γ(U)∗Γ(U)Ω = Γ(U)Ψ(g)Ω = 0, ∀g ∈ H− (5.1.18)

so Ω̃ is a vacuum for βU (Ψ). Conversely, if we have a vacuum Ω̃ for βU (Ψ), we can define a
unitary transformation on F by

a∗(f1)a∗(f2) . . . a∗(fn)b∗(g1)b∗(g2) . . . b∗(gm) Ω

7−→ eiφc∗(f1)c∗(f2) . . . c∗(fn)d∗(g1)d∗(g2) . . . d∗(gm) Ω̃

with an arbitrary phase eiφ and the computation above shows that this is an implementation
of U on F .

In the simplest case when U leaves the positive and negative energy subspace invariant, we
note that c(f) = a(Uf), ∀f ∈ H+ and d(g) = b(Ug), ∀g ∈ H−, so that Ω̃ = eiϕΩ. Of
course, the phase is then usually chosen to be 1.
Consequently, the implementation is nothing else than

f1 ∧ · · · ∧ fn ⊗ Cg1 ∧ · · · ∧ Cgm = a∗(f1) . . . a∗(fn)b∗(g1) . . . b∗(gm) Ω
Γ(U)7−→ c∗(f1) . . . c∗(fn)d∗(g1) . . . d∗(gm) Ω = Uf1 ∧ · · · ∧ Ufn ⊗ CUg1 ∧ · · · ∧ CUgm

(5.1.19)

This shows us that the whole business with the Bogoljubov transformations and its imple-
mentation (that we hope to exist) is indeed the natural generalization of the product-wise
lift of U to the Fock-space.
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Almost sneakily, we have established a dual way of thinking about the implementation prob-
lem that is quite exciting. We can either put the problem as one about lifting a unitary
transformation U on H to the Fock space F which was our initial motivation. Or, we can
ask the equivalent question whether the two representations of the CAR-algebra induced by
Ψ and βU (Ψ), respectively, are equivalent. So far, we have but hinted at this fact. A more
detailed discussion will follow in the next section.

We can finally state our first version of the Shale-Stinespring theorem.

Theorem 5.1.5 (Shale-Stinespring, explicit version). 2

A unitary operator U ∈ U(H) is unitarily implementable on F if and only if the operators
U+− and U−+ are Hilbert-Schmidt. In this case, an implementation Γ(U) acts on the vacuum
as

Γ(U) Ω := Neiφ
L∏
l=1

a∗(fl)
M∏
m=1

b∗(gm) eAa
∗b∗ Ω (5.1.20)

where

• eφ ∈ U(1) is an arbitrary phase

• N =
√

det(1− U+−U∗−+) =
√

det(1− U−+U∗+−) is a normalization constant3

• A := (U+−)(U−−)−1 is Hilbert-Schmidt

• {f1, . . . , fL} is an ONB of kerU∗++ and {g1, . . . , gM} an ONB of kerU∗−−

Recall that U++ and U−− are Fredholm-operators and so kerU∗++ and kerU∗−− are indeed
finite-dimensional subspaces. Also, (U−−)−1 is well-defined and bounded on imU−− =
(kerU∗−−)⊥ and we extend it to 0 on kerU∗−−. This is how A := (U+−)(U−−)−1 has to be
understood.

In the explicit form of the transformed vacuum also our result (2.2.8) about the net-charge
"created" by U becomes manifest. From (5.1.20) we can directly read of that Γ(U)Ω contains
M = dim ker(U∗−−) particles of negative charge and L = dim ker(U∗++) particles of positive
charge. Hence, the net charge is

L−M = dim ker(U∗++)− dim ker(U∗−−)
= dim ker(U−−)− dim ker(U∗−−)
= ind(U−−) = − ind(U++)4

(5.1.21)

The different sign in comparison to (2.2.8) stems from the unfortunate fact that the roles of
H+ and H− are opposite in the two chapters.

Second Quantization of Hermitian Operators

Now, let’s look at the second quantization of an arbitrary bounded operator A : H → H.
We will denote it by dΓ(A), in the hope that it does really exists in a meaningful way. Of
particular interest are self-adjoint operators, of course.
To

∧n
H, we would simply lift the operator additively as:

A⊗ 1⊗ · · · ⊗ 1 + 1⊗A⊗ 1 . . .1 + · · ·+ 1⊗ · · · ⊗ 1⊗A (5.1.22)

2cf. [Tha], Thms. 10.6 & 10.7
3Note that, in contrast to [Tha], we use the notation U∗−+ = (U∗)−+ and not (U−+)∗ = (U∗)+−
4For the last equality we need a Lemma, which is proved in Appendix A.3.
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But again, the immediate generalization to F =
∧
H+ ⊗

∧
C(H−) makes sense only if A

respects the polarization. So let’s again turn to the field operator and use it to formulate a
generalization of the additive lifting prescription.
We will demand the following conditions for the “second quantization":

[dΓ(A),Ψ∗(f)] = Ψ∗(Af)
[dΓ(A),Ψ(f)] = −Ψ(A∗f)

(5.1.23)

The minus-sign in the second line might look ad-hoc, but will be of great importance.
Note that if dΓ(A) satisfies (5.1.23) so does dΓ(A) + c1F for every constant c ∈ C.
Therefore, the implementation of a Hermitian operator is also well defined only up to a
constant at best.

An operator dΓ(A) satisfying (5.1.23) then acts on a basis state (5.1.8) as

dΓ(U)
(

Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm)Ω
)

=Ψ∗(Af1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm)Ω + Ψ∗(f1)dΓ(A)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm)Ω
= · · · =
= Ψ∗(Af1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm)Ω + Ψ∗(f1)Ψ∗(Af2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm)Ω + . . .

+ Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(Afn)Ψ(g1) . . .Ψ(gm)Ω−Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(A∗g1) . . .Ψ(gm)Ω− . . .
− Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(A∗gm)Ω

+ Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm)
(

dΓ(A)Ω
)

We see that dΓ(A) is well-defined on the dense domain D if and only if the last summand,
i.e. dΓ(A)Ω is well-defined. Then, this would really provide a sensible generalization of the
additive-lift (5.1.22).
Let (ek)k∈Z be a basis of H, s.t. (ek)k≤0 is a basis of H− and (ek)k>0 a basis of H+.
A first educated guess for the second quantization of a bounded operator A would be
dΓ′(A) := AΨ∗Ψ, where AΨ∗Ψ is short-hand notation for∑

i,j∈Z
〈ei, Aej〉Ψ∗(ej)Ψ(ei)

5 This is independent of the chosen basis for H. We can decompose this into the creation
and annihilation operators and write AΨ∗Ψ = Aa∗a+Aa∗b∗ +Aba+Abb∗.
The vacuum expectation value of this operator can then be computed as

〈Ω,dΓ′(A)Ω〉 = 〈Ω, AΨ∗ΨΩ〉 = 〈Ω, Abb∗Ω〉

=
∑
i,j<0

〈ei, Aej〉〈Ω, b(ei)b∗(ej)Ω〉

=
∑
i,j<0

〈ei, Aej〉 δij = tr(A−−)

So, unless A−− is trace-class, not even the vacuum state is in the domain of AΨ∗Ψ !
A more successful attempt is

dΓ(A) = : AΨ∗Ψ : = Aa∗a+Aa∗b∗ +Aba−Ab∗b (5.1.24)

which also satisfies (5.1.23). Physicists call this normal ordering and denote it by two
colons embracing expressions like AΨ∗Ψ. With this prescription, : AΨ∗Ψ : Ω = Aa∗b∗Ω and
therefore

〈Ω,dΓ(A) Ω〉 = 〈Ω, : AΨ∗Ψ : Ω〉 = 0 (5.1.25)

5Consult e.g. [Tha] §10 for more details
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We note that this implies

: AΨ∗Ψ : = AΨ∗Ψ− tr(A−−) · 1 (5.1.26)

whenever tr(A−−) <∞. So in this case, AΨ∗Ψ and : AΨ∗Ψ : are both second quantizations
of A differing by a complex constant.
Assuming that A+− : H− → H+ is compact, there exists an ONB (uj)j of H+ and (vj)j of

H− and principle values λj ≥ 0 such that A+− =
∞∑
j=0

λj〈vj , ·〉uj . 6

Hence, Aa∗b∗ =
∑
j

λja
∗(uj)b∗(vj) and we compute

‖Aa∗b∗Ω‖2 =
∑
k,j

λkλj〈Ω, b(vk)a(uk)a∗(uj)b∗(vj)Ω〉

=
∑
k,j

λkλj〈Ω, b(vk)
(
{a(uk), a∗(uj)} − a∗(uj)a(uk)

)
b∗(vj)Ω〉

=
∑
k,j

λkλj

(
δjk〈Ω,

(
{b(vk), b∗(vj)} − b∗(vj)b(vk)

)
Ω〉 − 〈Ω, b(vk)a∗(uj)b∗(vj)a(uk)Ω〉

)
=
∑
k,j

λkλjδjk =
∑
k

λ2
k = ‖A+−‖22

This shows that : AΨ∗Ψ : is well-defined on the dense domain D if and only if A+− is of
Hilbert-Schmidt type. For a Hermitian operator, the same must be true for the adjoint so
we require also A−+ to be Hilbert-Schmidt.

How does this relate to the discussion in the previous section? A link between between
unitary and Hermitian operators is given by Stone’s Theorem, saying that every strongly
continuous, one-parameter group of unitary operators is generated by a unique Hermitian
operator. We are in particular interested in the free time evolution Ut = e−itD0 .
Let Ψt := βUt(Ψ) be the time-evolving field operator. Then, for any fixed f in the domain
of D0, Ψt(f) is even norm-differentiable in t 7 with

d

dt
Ψt(f) = Ψt(−iD0 f) = iΨt(D0 f) (5.1.27)

The same is true for Ψ∗t , but note that this is linear and not anti-linear in f.
On a basis state of the form (5.1.8) we therefore compute

i
d

dt

∣∣∣
t=0

[
Γ(Ut)

(
Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm) Ω

)]
= i

d

dt

∣∣∣
t=0

[
Ψ∗t (f1)Ψ∗t (f2) . . .Ψ∗t (fn)Ψt(g1) . . .Ψt(gm) Ω

]
= Ψ∗(D0f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm)Ω + Ψ∗(f1)Ψ∗(D0f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm)Ω + · · ·
+ Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(D0fn)Ψ(g1) . . .Ψ(gm)Ω−Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(D0g1) . . .Ψ(gm)Ω− · · ·
− Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(D0gm)Ω

= dΓ(D0)
(

Ψ∗(f1)Ψ∗(f2) . . .Ψ∗(fn)Ψ(g1) . . .Ψ(gm) Ω
)

This means:
i
d

dt
Γ(e−iD0t) = dΓ(D0) = : D0Ψ∗Ψ : (5.1.28)

on the dense domain where both sides are well-defined.

6λ2
j are the eigenvalues of the positive operator (A+−)∗(A+−)

7because: lim
h→0
‖ 1
h

[Ψt+h(f) − Ψt(f)] − Ψt(−iD0 f)‖ = lim
h→0
‖Ψ
`
eiD0t[ 1

h
(eiD0h − 1) + iD0]f

´
‖ =

lim
h→0
‖[ 1
h

(eiD0h − 1) + iD0]f‖ = 0

51



5.1. CAR ALGEBRAS AND REPRESENTATIONS

dΓ(D0) is the second quantization of the free Dirac Hamiltonian.

If (fk)k∈N is a basis of H+ and (gk)k∈N a basis of H− then

dΓ(D0) = : D0Ψ∗Ψ :

=
∞∑
i=1

∞∑
j=1

(
〈fi, D0fj〉a∗(fi)a(fj)− 〈gj , D0gi〉b∗(gi)b(gj)

) (5.1.29)

which is obviously semi-bounded from below because −D0 is positive definite on H−.
Note that the anti-linearity of the charge-conjugation and thus of the Fock-space sectors∧
F− makes all the difference. It is also the origin of the minus-sign in (5.1.23). Similarly,

the global gauge-transformations e−it1 are generated by the charge-operator

Q := dΓ(1) =
∞∑
i=1

∞∑
j=1

(
a∗(fi)a(fj)− b∗(gi)b(gj)

)
(5.1.30)

which is just the difference of the number operators on
∧
F+ and

∧
F−.

Of course, the generators of the free time evolution and of the global gauge-transformations
are easy to compute because both operators are diagonal w.r.to the polarization
H = H+ ⊕H−. In particular, we can set Γ(Ut)Ω = Ω.
However, the suggested relationship between Γ and dΓ is true in the general case:

Theorem 5.1.6 (Generators of unitary groups).
Let A be a self-adjoint operator on H with [ε, A] Hilbert-Schmidt. Then dΓ(A) = : AΨ∗Ψ : as
defined in (5.1.24) is essentially self-adjoint on F and for its (unique) self-adjoint extension
on the Fock space F it is true that ei :AΨ∗Ψ: is an implementation of eiA.
In particular, we can choose phases for the implementations such that

Γ(eiA) = ei dΓ(A) = ei :AΨ∗Ψ: (5.1.31)

Proof. [CaRu87] Proposition 2.1 ff. seems to be the first complete proof of this theorem.

Note that (5.1.31) fixes the phase of the implementation Γ(eiA) only in a neighborhood of
the identity where the exponential map is 1:1 from the Lie algebra on to the Lie group.

In physics normal ordering is often introduced just formally by simply “writing all the
annihilators on the right of the creation operators” so that it gives zero when acting on the
vacuum. To me, it always seems to get something mysterious or even dishonest that way.
The last theorem tells us that the second quantization in normal order just defines an action
of the Lie algebra ures of Ures(H) on F . No big mystery there.
For A in the trace-class, AΨ∗Ψ and : AΨ∗Ψ : differ only by a constant multiple of the
identity. In fact, they just correspond to different “lifts” of A to the universal covering
ũres
∼= ures ⊕ C which is actually the algebra acting on the Fock space. From the discussion

of central extensions in chapter 3 we also know that Γ is only a projective representation
of Ures(H) and that, for this reason, we get a commutator anomaly in the representation of
the Lie algebra in form of a Lie algebra 2-cocycle. It should come as no surprise that we
just encounter the Schwinger-cocycle (4.1.8) again.

Proposition 5.1.7. (Schwinger cocycle)
For A,B ∈ ures we find

[dΓ(A),dΓ(B)] = dΓ([A,B]) + c(A,B)1 (5.1.32)

with the Schwinger cocycle c(A,B) = tr(A−+B+− −B−+A+−) computed in (4.1.8).
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Proof. Because [dΓ(A),dΓ(B)] and dΓ([A,B]) are both second quantizations of [A,B], they
differ only by a constant multiple cAB of the identity 8, i.e.

[dΓ(A),dΓ(B)] = dΓ([A,B]) + cAB · 1

Now dΓ([A,B]) is defined precisely in such a way that the vacuum expectation value
〈Ω,dΓ([A,B])Ω〉 vanishes. Therefore,

cAB = 〈Ω, [dΓ(A),dΓ(B)]Ω〉

We take bases (fj)j∈N of H+ and (gk)k∈N of H− and compute:

〈Ω,dΓ(A)dΓ(B) Ω〉 = 〈Ω, AbaBa∗b∗Ω〉

=
∑
j,k

∑
l,m

(gk, Afj)(fl, Bgm)〈Ω, b(gk)a(fj)a∗(fl)b∗(gm)Ω〉

=
∑
j,k

(gk, Afj)(fj , Bgk)〈Ω, b(gk)a(fj)a∗(fj)b∗(gk)Ω〉

=
∑
j,k

(gk, Afj)(fj , Bgk) = tr(A−+B+−)

Similarly, 〈Ω,dΓ(B)dΓ(A)Ω〉 = tr(B−+A+−). And therefore

cAB = c(A,B) = tr(A−+B+− −B−+A+−)

Note that on ures ∩ I1(H) the proof simplifies considerably. We can use
: AΨ∗Ψ : = AΨ∗Ψ − tr(A−−)1 and it is easy to check that [AΨ∗Ψ, BΨ∗Ψ] = [A,B]Ψ∗Ψ.
Hence, we find

[: AΨ∗Ψ : , : BΨ∗Ψ :] = [A,B]Ψ∗Ψ = : [A,B]Ψ∗Ψ : + tr([A,B]−−) · 1

and

tr([A.B]−−) = tr
(
A−+B+− +A−−B−− −B−+A+− −B−−A−−

)
= tr

(
A−+B+− −B−+A+−

)
= c(A,B)

In Conclusion:

We have sketched the quantization of the Dirac theory in the most established (rigorous)
way. I want to emphasize that at no point in this description does an infinite number of
particles appear. Still, we have encountered all the difficulties that I have hinted at in the
introductory chapter and that were suggested by the Dirac Sea picture:

• Unitary transformations are not implementable as unitary operators on the Fock space
unless they satisfy the Shale-Stinespring condition

• Even for implementable operators, the implementation is well-defined only up to a
complex phase

• Second quantization of Hermitian operators has similar difficulties. Where it does
exist, it gives rise to a commutator anomaly in form of the Schwinger term

These facts make a second quantization of the time-evolution, in general, impossible. The
asymptotic case will turn out to be somewhat better behaved. But even then, at least the
phase of the second quantized scattering operator S is ill-defined.

8In the language of the previous chapters: [dΓ(A),dΓ(B)] and dΓ([A,B]) are just different lifts
of [A,B] ∈ ures to ũres

∼= ures ⊕ C.
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5.1.2 C∗ - and CAR- Algebras

We take a quick look at Fock spaces and implementations of unitary transformations from
the perspective of representation theory. This approach is very abstract but will reveal its
beauty along the way.

Definition 5.1.8 (C∗-algebra).
A Banach algebra (over C) is a complex, associative algebra B with 1, equipped with a norm
‖·‖ that makes it a complex Banach space and has the properties

i) ‖1‖ = 1 ii) ‖ab‖ ≤ ‖a‖ · ‖b‖, ∀a, b ∈ B

A C∗-algebra is a complex Banach algebra A together with an anti-linear involution
∗ : A→ A satisfying:

iii) (a∗)∗ = a iv) (ab)∗ = b∗a∗ v) ‖a∗a‖ = ‖a‖2

∀a, b ∈ A. Properties ii)− v) together imply ‖a∗‖ = ‖a‖.

Definition 5.1.9 (C∗-homomorphism).
A C∗-homomorphism is an algebra homomorphism h : A→ B between two
C∗-algebras A and B satisfying h(a∗) = h(a)∗, ∀a ∈ A.
It can be shown that any such homomorphism is continuous with norm ≤ 1.

Examples 5.1.10 (C∗-algebra of bounded operators).
Consider the Banach space B(H) of bounded operators on a Hilbert space H.
On B(H) we have a ∗-involution T 7→ T ∗ by taking the Hermitian conjugate of bounded
operators. From the familiar properties of Hermitian conjugation and of the operator norm
it follows that

(
B(H), ‖·‖, ∗

)
is a C∗-algebra.

In fact, every C∗-algebra is isomorphic to a sub-algebra of B(H) for suitable H.

Definition 5.1.11 (States of a C∗-algebra).
A state of a C∗-algebra A is a complex-linear map ω : A→ C satisfying
ω(1) = 1 and ω(a∗a) ≥ 0, ∀a ∈ A.

Examples 5.1.12 (Quantum States).
For the C∗-algebra A = B(H) every Ψ ∈ H defines a state ωΨ by

ωΨ(T ) :=
〈Ψ, T Ψ〉
〈Ψ,Ψ〉

, ∀T ∈ B(H)

In the language of Quantum Theory we would say that the state represented by the Hilbert-
space vector Ψ ∈ H is characterized by all “expectation values”.

Definition 5.1.13 (CAR-algebra).
A CAR-map into a C*-algebra A is an anti-linear map a : H → A satisfying the CAR-
relations

a(x)a(y)∗ + a(y)a(x)∗ = {a(x), a∗(y)} =〈x, y〉 · 1 (5.1.33)
a(x)a(y) + a(y)a(x) = {a(x), a(y) } = 0 (5.1.34)

A CAR algebra over H is a C*-algebra A(H) together with a CAR-map a : H → A(H)
having the following universal property: for every CAR-map a′ : H → B into a C*-algebra
B there is a unique C*-homomorphism h : A(H)→ B s.t. a′ = h ◦ a.

H a //

a′

��

A(H)

h
||y

y
y

y

B

(5.1.35)
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Such a CAR-algebra does exist and by the universal property it is unique up to canonical
isomorphism.

It is probably more intuitive to think of the CAR Algebra as the free associative algebra
generated by H modulo the canonical anti-commutation relations (5.1.10). Mathematicians,
however, like to define it by the universal property as above which is rather abstract, but
very elegant to work with.
We might get a hint of how powerful the universal property is, by clarifying the relationship
between “field operators” as introduced in the last section and representations of the abstract
CAR-algebra defined above. What we called a field operator was a map Ψ : H → B(F) from
the Hilbert-space into the C∗-algebra of bounded operators on the Fock-Space, satisfying
the CAR (5.1.10). By the universal property of the CAR-algebra there exists a C*- homo-
morphism π : A(H)→ B(F) s.t. Ψ = π ◦ a. This homomorphism π is then a representation
of the CAR-algebra A(H) on F .

Proposition 5.1.14 (Fock Representation).
The field operator Ψ defined in (5.1.9) defines an irreducible9. representation of the CAR-
algebra of H on the Fock space F =

∧
H+ ⊕

∧
H−, called the Fock representation.

5.1.3 Representations of the CAR Algebra
Mathematically, a “Fock space” is often understood as a Hilbert space, arising as the repre-
sentation space of an irreducible representation of an abstract CAR-algebra (in the fermionic
case), or a CCR-algebra (in the bosonic case). There are various ways to get irreducible
representations of a CAR-algebra and they are generally not equivalent to each other.

Definition 5.1.15 (Equivalent Representations).
Consider the CAR algebra A(H) ober H. Two representations π and π′ of A(H) on Fock
spaces F and F ′ are equivalent if there exists a unitary transformation T : G → G′ with
T π(a(f)) = π′(a(f))T, ∀f ∈ H.

We generalize the notion of “implementability” introduced in Def. 5.1.3 to arbitrary repre-
sentations of the CAR-algebra.

Definition 5.1.16 (Implementation of unitary transformation).
Let U ∈ U(H) a unitary operator. It is easily checked that if a : H → A(H) is a CAR-
map, so is a ◦ U . By the universal property of the CAR-algebra there exists a unique
C∗-homomorphism βU : A(H)→ A(H) with βU ◦ a = a ◦ U .

βU is the Bogoljubov transformation corresponding to U.

Let π : A(H)→ F be a representation of the CAR-algebra on the Fock space F .
U (or βU ) is called implementable on F if there exists a unitary operator Ũ on F such that
Ũπ(a(f)) = π(a(Uf))Ũ , ∀f ∈ H.
Ũ is then called an implementation of U on F .

In other words: U is implementable on the Fock space F if and only if the two CAR-
representations π and π ◦ βU are unitarily equivalent.
So the “implementation problem” and the “equivalence problem” are closely related.

We have explicitly constructed the Fock representation on F =
∧
H+⊗

∧
CH−, by defining

creation and annihilation operators an then the field operator Ψ (5.1.9). But this was just a
very particular example. The seminal paper of Shale and Stinespring is actually formulated
for spin-representations of the infinite dimensional Clifford algebra of H which is closely
related to the CAR-algebra A(H) ([SS65], see [G-BVa94] for a more detailed construction.)

9cf. [Tha], Thm.10.2
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The most common way to get representations of a CAR algebra are the so called GNS
constructions.10
Given a state ω on A(H), the GNS-construction yields a Hilbert space Hω, a representation
πω on Hω and a unit vector Ωω ∈ Hω (the “GNS-vacuum”), such that

ω(a) = 〈Ωω, πω(a) Ωω〉 , ∀a ∈ A(H) (5.1.36)

and the action of πω(A(H)) on Ωω generates a dense subset of Hω.

In particular, given an orthogonal projection Q, i.e. a self-adjoint operator on H with
Q2 = Q, we can define a state ωQ by setting ωQ(1) = 1 and fixing the “two-point functions”

ωQ(a∗(f)a(g)) := 〈g,Qf〉H (5.1.37)

where f, g ∈ H and a was the CAR-map defining A(H).
Then, the corresponding GNS-construction (FQ, πQ,ΩQ) satisfies

〈ΩQ, πV (a∗(g)a(f))ΩQ〉 = 〈g,Qf〉H = 〈Qf,Qg〉H (5.1.38)

and, using a(g)a∗(f) = 〈g, f〉H1− a∗(f)a(g),

〈ΩQ, πQ(a(g)a∗(f))ΩQ〉 = 〈f, g〉H − 〈Qf,Qg〉H = 〈(1−Q)f, (1−Q)g〉H (5.1.39)

In particular, we read off

πQ(a(g))ΩQ = 0, for g ∈ ker(Q)
πQ(a∗(f))ΩQ = 0, for f ∈ im(Q)

(5.1.40)

so that πQ ◦ a : H → B(FQ) acts like a field-operator on the vacuum ΩQ.
Indeed, we observe that for Q = P−, the two-point functions of the GNS-construction are
the same as the two-point functions of the field operator Ψ on

∧
H+ ⊗

∧
CH−, because

〈Ω,Ψ∗(f)Ψ(g)Ω〉 = 〈CP−f, CP−g〉 = 〈g, P−f〉H

This implies that the two representations are actually equivalent. The same is true, of
course, for the Fock- and GNS representation w.r.to a different polarization of H.

Now, in the language of representation theory we can formulate another, very general version
of the Shale-Stinespring theorem, also known as the theorem of Powers and Størmer.

Theorem 5.1.17 (Powers, Størmer 1969).
The GNS-representations (FP , πP ,ΩP ) and (FQ, πQ,ΩQ) corresponding to orthogonal pro-
jections P and Q on H are unitary equivalent if and only if P −Q is a Hilbert-Schmidt.

Proof. [PoSt70]

Applying this result to the “implementation problem” we find ones more that U ∈ U(H) is
implementable in F =

∧
H+⊗

∧
CH− if and only if P−−UP−U∗ is Hilbert-Schmidt i.e. iff

U+− and U−+ are Hilbert-Schmidt i.e. iff U ∈ Ures(H).

10after I.M. Gelfand, M.A. Neumark and I.E. Siegel.
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5.2 The Infinite Wedge Space Construction
In the light of realization that the unitary time-evolution typically can not be implemented
on a fixed Fock space, my esteemed teachers and colleagues Dirk Deckert, Detlef Dürr, Franz
Merkl and Martin Schottenloher developed a formulation of the external field problem in
QED on time-varying Fock spaces. These Fock spaces are realized as “infinite wedge spaces”
constructed from “Dirac seas” over a chosen polarization class. This construction of the Fock
spaces is very nice for several reasons:

1. It is very down to earth and close to the physical intuition

2. It is designed to highlight all the ambiguities and choices involved in the construction
rather than hiding them

3. The formalism is very flexible and well-suited for the treatment of different polarization
classes and the implementation of the time evolution on varying Fock spaces

Of course, Deckert et.al. are consistently ignoring the geometric structure that - as we will
see- is somehow present in the construction. But by doing so, it just becomes more clear
that this is not essential for the understanding of the problems. Whether it is helpful in
solving them is a different question that we will discuss in later chapters.

The basic idea of the infinite-wedge-space construction is this:

• For a fixed (equal charge) polarization class, Dirac seas will be defined as certain
maps from an index-space ` into the Hilbert space H with image in the respective
polarization class.

• If we fix a basis (ek)k∈N in `, we can think of a Dirac sea Φ : ` → H as the infinite
exterior product Φ(e0) ∧ Φ(e1) ∧ Φ(e2) ∧ . . .

• We generalize the finite-dimensional scalar product (1.2.1) (sometimes refered to as
Slater-Determinant) by the infinite-dimensional Fredholm determinant i.e. by

〈Φ,Ψ〉 = det(Φ∗Ψ) = lim
N→∞

det
(
〈Φ(ei),Ψ(ej)〉

)
i,j≤N (5.2.1)

In order for this to make sense, we need to restrict to a class of Dirac seas so that the
Determinant is well-defined.

• Finally, we get a linear space by taking the algebraic dual of such a Dirac sea class
and take the completion with respect to before mentioned scalar product. This will
be the Fock space realized as an infinite wedge-space over the chosen Dirac sea class.

Now, we make this more precise:
For the remainder of this chapter, let ` be an infinite-dimensional, separable, complex
Hilbert-space. ` will serve as an index space. A convenient choice is therefore ` = `2.

Definition 5.2.1 (Dirac Seas).

Let Seas(H) be the set of all bounded, linear maps Φ : ` → H such that im(Φ) ∈ Pol(H)
and Φ∗Φ : `→ ` has a determinant, i.e. Φ∗Φ ∈ Id+ I1(`).

Let Seas⊥(H) denote the subset of all Φ ∈ Seas(H) that are also isometries.

For any equal-charge polarization class C ∈ Pol(H)/ ≈0 let Ocean(C) be the set of all
Φ ∈ Seas⊥(H) with im(Φ) ∈ C.

Definition 5.2.2 (Dirac Sea Classes).
For Φ,Ψ ∈ Seas(H) we introduce the relation

Φ ∼ Ψ ⇐⇒ Φ∗Ψ ∈ Id+ I1(`)

This defines an equivalence relation on Seas(H) ([DeDuMeScho], Cor. II.9) . The equiva-
lence classes are called Dirac sea classes and denoted by S(Φ) ∈ Seas(H)/ ∼.
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Lemma 5.2.3 (Connection between ∼ and ≈0).
Given C ∈ Pol(H)/≈0 and Φ ∈ Ocean(C) we have

C = {im(Ψ) | Ψ ∈ Seas⊥(H) such that Ψ ∼ Φ}.

In other words: Ψ ∼ Φ in Seas⊥(H)⇒ im(Ψ) ≈0 im(Φ) in Pol(H)
and W ∈ C = [im(Φ)]≈0 ⇒ ∃Ψ ∈ Seas⊥(H) : Ψ ∼ Φ ∧ im(Ψ) = W .

Proof. See Lemma II.12 in [DeDuMeScho] or note that the statement follows as a refor-
mulation of our Lemma 5.3.2 (“Existence of admissible basis”) and the remark following
Definition 5.3.1(“Admissible Basis”). A polar decomposition can be used to make the Dirac
Sea/admissible basis isometric.

Construction 5.2.4 (Formal Linear Combinations).

1. For any set S, let C(S) denote the set of all maps α : S → C for which the support
{Φ ∈ S | α(Φ) 6= 0} is finite. For Φ ∈ S, let [Φ] ∈ C(S) denote the algebraic dual, i.e.
the map fulfilling [Φ](Φ) = 1 and [Φ](Ψ) = 0 for Φ 6= Ψ ∈ S. Thus, C(S) consists of all
finite formal linear combinations α =

∑
Ψ∈S α(Ψ)[Ψ] of elements of S with complex

coefficients.

2. Now, let S ∈ Seas(H)/∼ be a Dirac Sea Class.
We define the map 〈·, ·〉 : S × S → C, (Φ,Ψ) 7→ 〈Φ,Ψ〉 := det(Φ∗Ψ).
The determinant exists and is finite by definition of ∼.

3. For S ∈ Seas(H)/∼, let 〈·, ·〉 : C(S) × C(S) → C denote the sesquilinear extension of
〈·, ·〉 : S × S → C to the linear space C(S) defined as follows:
For α, β ∈ C(S),

〈α, β〉 :=
∑
Φ∈S

∑
Ψ∈S

α(Φ)β(Ψ) det(Φ∗Ψ). (5.2.2)

The bar denotes the complex conjugate. Note that the sums consist of at most finitely
many nonzero summands. In particular we have 〈[Φ], [Ψ]〉 = 〈Φ,Ψ〉 for Φ,Ψ ∈ S.

The sesquilinear form 〈·, ·〉 on C(S) is Hermitian and positive-semidefinite11. Therefore, it
defines a semi-norm on C(S) by ‖α‖ :=

√
〈α, α〉.

Definition 5.2.5 (Infinite Wedge Space).
Let FS be the completion of C(S) with respect to the semi-norm ‖·‖.
FS is an infinite-dimensional, separable, complex Hilbert space.
We will refer to it as the Infinite Wedge Space over the Dirac Sea class S.

By
∧

: S → FS we denote the canonical map
∧

Φ := [Φ] coming from the inclusions

S ↪→ CS ↪→ FS .

Note, that the null-space NS := {α ∈ C(S) | ‖α‖ = 0} is factored out in the process of
completion.

Construction 5.2.6 (The Left Operation).

U(H) acts on Seas(H) from the left by (U,Φ)→ UΦ.
This extends to a well-defined map

S U−→ US := {UΦ | Φ ∈ S}

between Dirac Sea classes.

11see[DeDuMeScho], Lemma II.14 or our Proposition 5.3.11 “Hermitian Form”.
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For U ∈ U(H), the induced left operation LU : C(S) → C(US), given by

LU

(∑
Φ∈S

α(Φ)[Φ]

)
=
∑
Φ∈S

α(Φ)[UΦ],

is an isometry with respect to the Hermitian forms 〈·, ·〉 on C(S) and C(US).
Consequently, it extends to a unitary map LU : FS → FUS between infinite wedge spaces,
characterized by LU (

∧
Φ) =

∧
(UΦ).

This extends immediately to unitary maps between different Hilbert spaces H and H′.

Construction 5.2.7 (The Right Operation).

Let Gl−(`) := {R ∈ Gl(`) | R∗R ∈ Id+ I1(`)}.
Gl−(`) acts on Seas(H) from the right by (Φ, R)→ ΦR.
This extends to a well-defined map

S R−→ SR := {ΦR | Φ ∈ S}

between Dirac Sea classes.

For S ∈ Seas(H)/∼ and R ∈ GL−(`) we have an induced operation from the right RR :
C(S) → C(SR) given by

RR

(∑
Φ∈S

α(Φ)[Φ]

)
=
∑
Φ∈S

α(Φ)[ΦR],

W.r.to the Hermitian forms, this is an isometry up to scaling, since

det
(
(ΦR)∗(ΨR)

)
= det(R∗ΦΨR) = det(R∗R) det(Φ∗Ψ)

∀R ∈ Gl−(`) and Φ,Ψ ∈ S and therefore, for all α, β ∈ C(S):

〈RRα,RRβ〉 = det(R∗R) 〈α, β〉 .

In particular one has RR[NS ] ⊆ NSR.

It follows that for every R ∈ Gl−(`), the operation RR : C(S) → C(SR) induces a bounded
linear map RR : FS → FSR between the infinite wedge spaces, characterized by
RR(ΛΦ) = Λ(ΦR) for Φ ∈ S. This map is unitary, up to scaling.

The definition extends immediately to maps between different index spaces ` and `′.

We can think of the right action as basis transformations on the Hilbert space or, with a
somewhat greater leap of imagination, as “rotations” of the Dirac Seas. The Dirac Seas will
stay in the same Dirac Sea class if and only if the transformations are “small” in the sense
that they vary from the identity only by a trace-class operator or, in other words, have a
determinant. Pictorially speaking, we “rotate” a Dirac sea just a little if we don’t stir too
much deep down in the sea. This is expressed in the following Lemma:

Lemma 5.2.8 (Uniqueness up to a Phase).
Let R ∈ Gl−(`) and S ∈ Seas(H)/∼ a Dirac Sea class. Then, SR = S if and only if R has
a determinant, i.e. iff R ∈ GL1(`).
In this case, the right operation RR : FS → FS corresponds to multiplication with det(R) on
FS . In particular, if R ∈ U(`)∩GL1(`), the right operation RR corresponds to multiplication
by a complex phase ∈ U(1).

Since the right-action is a well-defined map between Dirac Sea classes, it follows immediately
for another operator Q ∈ GL−(`) that SR = SQ if and only if Q−1R has a determinant. In
this case, RR = det(Q−1R)RQ on FS .
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Proof. Let S ∈ Seas(H)/∼. For any Φ ∈ S, Φ∗(ΦR) has a determinant if and only if R has
a determinant, since Φ∗Φ ∈ Id+ I1(`) by definition. Thus:

Φ ∼ ΦR ⇐⇒ S = SR ⇐⇒ R ∈ Gl1(`)

Now, on C(S) with the semi-norm defined by 〈·, ·〉:

‖[ΦR]− (detR)[Φ]‖2 = det((ΦR)∗(ΦR))− (detR) det((ΦR)∗Φ)

−detR det(Φ∗ΦR) + |detR|2 det(Φ∗Φ)

= 2|detR|2 det(Φ∗Φ)− 2|detR|2 det(Φ∗Φ) = 0. (5.2.3)

Therefore, RR = det(R) · Id on FS .

Recall, that the construction of the Fock space as an infinite wedge space involves two
consecutive choices. The first one (usually determined by the physics) is the choice of a
polarization class C ∈ Pol(H). Afterwards, we have a more or less arbitrary choice of a
polarization class S ∈ Ocean(C)/∼. As this is an equivalence class, it is uniquely determined
by any “reference polarization” Φ ∈ Ocean(C). This duality is reflected in the duality of left-
and right- operations. The operations from the left are transformations between polarization
classes. The unitary transformation induced by U ∈ U(H) stays in the same polarization
class if and only if it satisfies the Shale-Stinespring condition (1.2.11).
It preserves the charge, if and only if the + + −component w.r.t the corresponding polar-
ization has index 0.

The operations from the right, on the other hand, are transformations between different
Dirac Sea classes within the same ocean i.e. between Dirac seas with image in the same
polarization class. We see how the mathematical structure at hand gives us a very natural
way to handle unitary transformations.

The left-action alone would correspond to the product-wise lift

Φ(e0) ∧ Φ(e1) ∧ Φ(e2) ∧ · · · LU−−−−→ UΦ(e0) ∧ UΦ(e1) ∧ UΦ(e2) ∧ · · ·

But this alone is not very helpful, in general. In addition, we need a suitable right-operation
RR to rotate the seas back into the desired Dirac sea class. If U preserves an equal-charge
polarization class C ∈ Pol(H)/ ≈0, i.e. U ∈ U0

res(H, C;H, C) a right-operation can be
chosen in such a way as to make RRLU a unitary transformation on the Fock space FS
for a fixed S ∈ Ocean(C)/∼. If, however, U maps one polarization class C into a different
one, i.e. U ∈ U0

res(H, C;H, C ′) with C ′ 6= C, the best we can do is to implement U as a
unitary transformation between different Fock spaces FS and FS′ for S ∈ Ocean(C)/∼ and
S ′ ∈ Ocean(C ′)/∼. The right-operation then has to be such that USR = S ′.

The previous Lemma tells us that the implementations are uniquely determined up to
a complex phase only. So, the group that acts on the Fock space contains an additional
U(1)-freedom besides the information contained in U0

res(H, C;H, C) = Ũres(H). Indeed, it
corresponds to the central extension Ũres(H) of Ures(H) by U(1) studied in chapter 4. 12

All these considerations lie at the heart of the following, crucial theorem.

12cf. [Cor.5.4.3]
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Theorem 5.2.9 (Lift of unitary transformations, [DeDuMeScho] Thm. II.26).
For given polarization classes C,C ′ ∈ Pol(H)/≈0 let S ∈ Ocean(C)/∼ and S ′ ∈ Ocean(C ′)/∼.
Then, for any unitary map U : H → H, the following are equivalent:

i) U ∈ U0
res(H, C;H, C ′).

ii) There is R ∈ U(`) such that USR = S ′, and hence RRLU maps FS to FS′ .
In this case, if R′ ∈ U(`) is another map with USR′ = S ′, then
R′RLU = det(R∗R′)RRLU with det(R∗R′) ∈ U(1).

This theorem is a generalization of the Shale-Stinespring theorem in the language of the
infinite wedge spaces. Setting C = C ′ = [H+] it reproduces the well-known result that a
unitary operator U ∈ U(H) is implementable on a fixed Fock space F over the polarization
class [H+] if and only if U ∈ Ures(H).

In any case, it follows from Lemma 5.2.8 that the implementation of a unitary operator (on
a fixed Fock space or as a map between different Fock spaces) is unique up to a complex
phase. So again, we have encountered the infamous geometric phase of QED.

Corollary 5.2.10 (U(`) acts transitively on oceans).
Setting U = 1H in the last theorem it follows immediately that

Ocean(C)/∼ = {SR | R ∈ U(`)}.

for any given C ∈ Pol(H)/≈0 and S ∈ Ocean(C)/∼.
In other words: U(`) acts transitively on Ocean(C)/∼ from the right.
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5.3 The Geometric Construction
In this section we are going to follow the construction of the fermionic Fock space as pre-
sented, for example, in [PreSe] or [Mi]. The Fock space will be constructed from holomorphic
sections in the dual of the determinant line-bundle over the complex (restricted) Grassman-
nian manifold. We will refer to this as the geometric construction of the Fock space. It is
very nice for several reasons

• It reveals and exploits a remarkably elegant geometric structure that appears naturally
in our mathematical framework

• Polarizations, Dirac Seas and their basis transformations are embraced by the geomet-
ric description, were they appear as base-manifold, fibre bundle and structure group.
This also provides a very nice picture for illustrating the relationships between them

• The central extensions G̃Lres(H) of GLres(H) and Ũres(H) of Ures(H) constructed in
Ch. 4 act most naturally on this Fock space.

Note: Unfortunately, the mathematical convention does not follow the physical motiva-
tion. Instead, mathematicians prefer to write H+ instead of H− for the polarizations which
-intuitively- plays the role of the “Dirac sea” in the geometric construction of the Fock space.
We will follow this convention in order to match the mathematical literature and hope that
it doesn’t cause too much confusion. Anyways, note that the convention used in this chapter
(and most of the work) is in conflict with the one used in §5.1 .

We will follow the pertinant literature in constructing the Fock space for the standard
polarization H = H+ ⊕H−. This will serve as the exemplar for the general case. The con-
struction can be easily applied to arbitrary polarizations (and polarization classes), matching
the generality of the infinite wedge-space construction.

We have already argued that polarizations, which are points on the Grassmanian manifold
Gr(H), can be thought of as "projective states" of infinitely many Fermions. But of course,
we are not satisfied with a projective description, but aiming for a Hilbert space structure.
In particular, we want to generalize the scalar product

〈v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wn〉 = det(〈vi, wj〉)i,j

of finite exterior products to infinite particle states. But while this expression is always
well-defined and independent of the choice of (positively oriented) orthonormal bases, the
infinite-dimensional limes will only exist if the Hilbert-bases of different polarizations are
chosen in a sensible and compatible way. In the infinite wedge space construction this is
done by identifying “Dirac sea classes" on which the Hermitian form is well-defined. In the
geometric construction the related concept is that of admissible bases.

Definition 5.3.1 (Admissible basis).
Let W ∈ Gr0(H). An admissible basis for W is a bounded isomorphism w : H+ → W with
the property that P+ ◦ w has a determinant.

It might be helpful to note:

• W = im(w) ∈ Gr(H) iff P+w is Fredholm and P−w Hilbert-Schmidt

• W = im(w) ∈ Gr0(H) iff in addition ind(P+w) = 0

• w is admissible basis of W ∈ Gr0(H) iff in addition P+w ∈ Id+ I1(H+)
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Lemma 5.3.2 (Existence of admissible bases).

Every W ∈ Gr0(H) has an admissible basis.

Proof. Let W ∈ Gr0(H). Set w̃ := PW |H+ : H+ →W .
P+w̃ has a determinant, because 1H+ − P+w̃ =

(
P+ − P+PWP+

)∣∣
H+

and
P+ − P+PWP+ = P+PW⊥P+ = (PW⊥P+)∗(PW⊥P+) ∈ I1(H) (cf. Lemma 2.1.3). We also
know that w̃ is a Fredholm operator of index 0 (bc. charge(W,H+) = ind(PW |H+) = 0 )
which means that the kernel of w̃ and its cokernel in W are of the same, finite dimension.
Therefore, we can define w : H+ → W by setting w = w̃ on ker(w̃)⊥ and extending it to
the whole H+ in such a way that it maps ker(w̃) to a complement of im(w̃) in W . Thus, by
construction, im(w) = W and P+ w has a determinant as it differs from P+w̃ by a finite-rank
operator only. Using a polar decomposition, we could even make w unitary.

Lemma 5.3.3 (Relationship between admissible bases).
w′ and w are two admissible bases for W ∈ Gr0(H) if and only if w′ = w ◦ L for an
L ∈ GL1(H+).

Proof. If w′ = w ◦ L then w’ is an isomorphism from H+ to W and P+w
′ = (P+w)L has a

determinant because P+w and L do. Therefore, w′ is an admissible basis for W .
Conversely, if w′, w are two admissible bases for W set L := w−1 ◦ w′ : H+ → H+.
Clearly L is invertible and P+wL = P+w

′ ∈ Id+ I1(H+) which, because of
P+w ∈ Id+ I1(H+), implies L ∈ Id+ I1(H+).

Arbitrary charges

As we already know, the Grassmanian Gr(H) has Z connected components corresponding
to the relative charges of the polarizations w.r.to H+. Usually, we are just interested in the
connected component Gr0(H) which is that of the initial vacuum ≈ H+. The geometric
construction over Gr0(H) will therefore lead to the zero-charge sector of the fermionic Fock
space. Note that the infinite wedge space construction also gives “Fock spaces” of constant
charge. We can easily extend the construction to a “full” Fock space by taking the direct
(orthogonal) sum of infinite wedge-spaces over polarization classes with arbitrary relative
charges. Such a construction is straight forward, yet not canonical as it involves a choice of
a Dirac sea class for ever such charge sector. So it should come as no surprise that the same
is true for the geometric construction as well. It inherits arbitrary charges very naturally,
however the construction is not canonical. It involves a choice of a (polarized) basis.

For the rest of this section we fix an orthonormal basis {(ek)k∈Z} of H such that (ek)k≤0 is
an ONB of H− and (ek)k≥0 is an ONB of H+. For any n ∈ Z we write

H{≥−n} := span({ek | k ≥ −n})

By P (n)
+ we denote the orthogonal projection PH{≥−n} .

From the construction of the complete G̃Lres(H) in section 4.1.2 we recall the shift-operator
σ defined by σ(ek) := ek+1. For any d, n ∈ Z, σd maps H{≥−n} to H{≥−n+d}.13

Definition 5.3.4 (Admissible basis for arbitrary charges).
Let W ∈ Gr(H) with charge(W,H+) = n, i.e. W lies in the connected component Grn(H)
of Gr(H). An admissible basis for W ∈ Grn(H) is a bounded linear map w : H{≥−n} → H

with im(w) = W s.t. w : H{≥−n} →W is an isomorphism and P (n)
+ ◦ w has a determinant.

13If we seek more generality we can choose for each n ∈ Z an arbitrary subspace H(n) ∈ Gr(H)
with charge(H(n),H+) = n and then a one-parameter group of unitary operators translating be-
tween them.
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5.3. THE GEOMETRIC CONSTRUCTION

We denote the set of all admissible bases by St and the subset of admissible bases for
Grn(H), n ∈ Z by St(n). On St(n) we let GL1(H+) act from the right by

w
L7−→ w ◦ σ−n ◦ L−1 ◦ σn

With a little abuse of notation we will just write w ◦L−1 for the right action and P+ instead
of P (n)

+ for the orthogonal projection whenever the specific index is clear or irrelevant. With
this sneaky notation we can forget about the different charges for the most parts. The
construction will look the same over any connected component.

Remark 5.3.5 (Stiefel manifold).
The set St of all admissible bases for the polarizations in Gr(H) carries the structure of
an infinite-dimensional manifold, called the (restricted) Stiefel manifold St. The topology
is given by the metric d(w,w′) = ‖P+(w − w′)‖1 + ‖P−(w − w′)‖2. The Stiefel manifold
has Z-connected components corresponding to those of Gr(H). Actually, it follows from the
previous discussion that St is naturally a principle GL1(H+)-bundle over Gr(H). The fibre
over a basepoint W ∈ Gr(H) is just the set of admissible bases for W and GL1(H+) acts on
these fibers by right composition as above.

Definition 5.3.6 (Determinant Line Bundle).
Consider the set St× C written as

{(W,w, λ) | λ ∈ C,W ∈ Gr(H), w admissible basis for W }

Introduce the equivalence relation

[W,w, λ] ∼ [W ′, w′, λ] :⇐⇒ W ′ = W, w′ = w ◦ L and λ′ = det(L)−1λ

i.e.
[W,w,det(L)λ] ∼ [W,w ◦ L, λ], for L ∈ GL1(H+) (5.3.1)

The set of equivalence classes [W,w, λ] together with the projection π onto the first factor
forms a holomorphic line bundle4(

St× C
)
/GL1 =: DET π−−→ Gr(H)

called the determinant bundle DET.
The connected component over St(n) will be denoted by DETn.

Further on we will often drop the first entry and write [w, λ] for [im(w), w, λ].

We can get some intuition for this construction by thinking of the fibre over W ∈ Gr(H) in
DET as consisting of the complex multiples of a formal expression

π−1(W ) 3 [W,w, 1] = [w, 1] ' w0 ∧ w1 ∧ w2 ∧ w3 ∧ . . . (5.3.2)

where {wj}j≥0 is a basis of W .

In this sense, the Determinant bundle over Gr(H) contains precisely the information
that we expect to be encoded in the fermionic Fock space. But so for we don’t even have a
linear structure, except of course for the C1-structure on every fibre. There’s no meaningful
way of “adding” points in different fibers of the bundle. Therefore, the idea is to consider
sections of the Determinant line bundle which do naturally form an (infinite dimensional)
complex vector space Γ(DET). Which section would then correspond to a state of the form
(5.3.2), though? We might possibly think of the section that picks out the point [w, 1] over
W ∈ Gr(H and is zero everywhere else. But such a section is not even continuous and
wouldn’t do justice to the beautiful geometric structure we have so far.
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5.3. THE GEOMETRIC CONSTRUCTION

We can however take sections in the dual bundle DET∗ and identify w ∈ DET with ξw ∈
Γ(DET∗) defined by ξw([z, λ]) := λ det(w∗z). It turns out that such a section is not just
continuous or smooth but even holomorphic if the right structure is introduced14This might
not be essential to the physical discussion but it’s a great treat for mathematicians.

Remark 5.3.7 (Holomorphic sections).
We denote by DET∗ the dual bundle of the Determinant bundle DET and by Γ(DET∗) the
space of holomorphic sections in DET∗. A holomorphic section Ψ of DET∗ is a holomorphic
map DET→ C which is linear in every fibre. This corresponds to a holomorphic map

ψ : St→ C with ψ(z ◦ L) = det(L) · ψ(z), ∀L ∈ GL1(H+) (5.3.3)

Because then and only then is Ψ([z, λ]) := λ · ψ(z) a well defined map DET → C, as
Ψ([z ◦ L, λ/det(L)]) = λ

det(L) ψ(z ◦ L) = λψ(z) = Ψ([z, λ]).

Similarly, a holomorphic section Φ of DET would correspond to a holomorphic map

φ : St→ C with φ(z ◦ L) = det(L)−1 φ(z) , ∀L ∈ GL1(H+) (5.3.4)

Due to the factor of det(L)−1 on the right-hand-side of (5.3.4), points arbitrarily close in St
can be mapped to points arbitrarily far in C which contradicts the existence of a bounded
derivative. Hence, there are no holomorphic sections of DET, except the zero section.

Construction 5.3.8 (Embedding of DET in Γ(DET∗)).
Consider the map Φ : St× St→ C,

Φ(z, w) =

 det(z∗w) ; for ind(P+z) = ind(P+w)

0 ; else

This is well defined since for ind(P+z) = ind(P+w) = n :

z∗w = z∗P
(n)
+ w + z∗P

(n)
− w =

(P (n)
+ z)∗︸ ︷︷ ︸

∈Id+I1(H≥−n)

(P (n)
+ w)︸ ︷︷ ︸

∈Id+I1(H≥−n)

+ (P (n)
− z)∗︸ ︷︷ ︸

∈I2(H<−n,H≥−n)

(P (n)
− w)︸ ︷︷ ︸

∈I2(H≥−n,H<−n)

∈ Id+ I1(H{≥−n})

Now for any fixed z ∈ St, the map

w 7−→ Φ(z, w) =: ξz(w)

is holomorphic with Φ(z, w ◦ L) = det(z∗wL) = det(z∗w) det(L) for L ∈ GL1(H+) and
hence descends to a holomorphic section of DET∗ which we denote by the same symbol
ξz ∈ Γ(DET∗). This defines an anti-linear map ξ : DET→ Γ(DET∗) by

ξ([z, λ]) := λ̄ξz = λ̄Φ(z, ·) (5.3.5)

Note that
ξz◦L = det(L) ξz, ∀L ∈ GL1(H+) (5.3.6)

thus ξ has to be anti-linear, as [z ◦ L, λ] = [z,det(L)λ] ∈ DET.

Deleting the zero-section from DET, we get an injection ξ : DET× → Γ(DET∗).

This construction contains almost everything we need. We will construct the Fock space
from the space of holomorphic sections of DET∗ with the Hermitian scalar product given
by the determinant. But first we need good coordinates to handle this.

14cf. [PreSe]
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Definition 5.3.9 (Pflücker coordinates).
Let {(ej)j∈Z} be the ONB of H chosen above.

i) We denote by S the set of increasing sequences S = (i0, i1, i2.i3, . . . )
s.t. ik+1 = ik + 1 for large enough k, i.e. the sequences S ∈ S contain only finitely
many negative indices and all but finitely many positive indices.

ii) For S ∈ S we define the charge c(S) to be the unique number c ∈ Z with ik = k− c for
all k large enough.

iii) For S = (i0, i1, i2.i3, . . . ) ∈ S with c(S) = n we define

HS := span
(
{eik | ik ∈ S}

)
= span(ei0 , ei1 , ei2 , . . . )

and
wS : H{≥−n} → H , wS(ek) := ei(k+n)

This is an admissible basis for HS since it differs from Id by a finite rank matrix only.
We denote by ΨS the section ξwS

∈ Γ(DET∗).

Examples 5.3.10 (Pflücker coordinates).
• S0 = N = (0, 1, 2, 3, . . . )⇒ c(S0) = 0.

We call the corresponding state

ξwS0
=: Ψ0 ≈ e0 ∧ e1 ∧ e2 ∧ e3 . . .

the vacuum state.

• S1 = (−2,−1, 0, 1, 2, . . . )⇒ c(S1) = 2.
This corresponds to the state e−2 ∧ e−1 ∧ e0 ∧ e1 ∧ . . . where 2 negative energy states
(e−2 and e−1) are occupied and all positive energy states ej≥0 are occupied.

• S2 = (−5,−1, 1, 3, 4, 5, . . . )⇒ c(S2) = 0.
This corresponds to the state e−5 ∧ e−1 ∧ e1 ∧ e3 ∧ e4 . . . with two negative energy
states occupied (e−5 and e−1) and two “holes” in the positive spectrum (e0 and e2).
Therefore, the net-charge of the state is zero.

The role of the basis {(ej)j∈Z} and the sequences defined above is pretty intuitive. We just
choose a complete set of one-particle states that will characterize the particle-content of the
Fock-space states (≈ Dirac seas). Ideally, this choice is determined or at least motivated
by the physics e.g. as the spectral decomposition of a (or several commuting) self-adjoint
operator(s) on H. Anyways, the sections (ΨS)S∈S will make a good basis for the Fock space.

Proposition 5.3.11 (Hermitian Form).
Let V ⊆ Γ(DET∗) be the complex vector space spanned by the sections
{ξz ∈ Γ(DET∗) | z = [(z, 1)] ∈ DET}. Then

〈ξz, ξw〉 := ξz(w) := Φ(z, w) (5.3.7)

defines a Hermitian form on V, antilinear in the second component.
This form is positive semi-definite.
The sections ΨS , S ∈ S form a complete orthonormal set in V w.r.to 〈·, ·〉.

Proof. First we note that 〈ξz, ξw〉 = Φ(z, w) = det(z∗w) = det(w∗z) = 〈ξw, ξz〉.
Then we recall that Φ(·, ·) is C-linear in the second entry and anti-linear in the first entry,
but the mapping w 7→ ξw is C-anti-linear. In conclusion, 〈·, ·〉 defines a sesquilinear form
anti-linear in the second entry.

It is easy to see that for S, S′ ∈ S

〈ΨS ,Ψ′S〉 = ΨS(w′S) = det(w∗Sw
′
S) = δSS′

because w∗SwS = 1H{≥−n} , whereas w
∗
Sw
′
S has non-trivial kernel if S 6= S′.
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Now, in finite-dimensions if A is a n×m matrix and B a m× n matrix with n ≤ m then

det(AB) =
∑

(i)=(1≤i1≤...≤in≤m)

det(AP(i)) det(P(i)B)

where P(i) denotes the projection onto span(ei1 , . . . ein). As the Fredholm determinant of
an operator is the limes of the determinants of its restriction to n-dimensional subspaces as
n→∞, the above formula extends to the infinite-dimensional case yielding

〈ξz, ξw〉 = Φ(z, w) = det(z∗w) =
∑

S∈S, c(S)=d

det((PHS
z)∗) det(PHS

w)

=
∑
S

det((w∗Sz)
∗) det(w∗Sw) =

∑
S

det((w∗Sz)) det(w∗Sw)

=
∑
S∈S

ΨS(z)ΨS(w) =
∑
S∈S
〈ξz,ΨS〉〈ΨS , ξw〉

for ind(P+z) = ind(P+w) = d and 0 else.
This shows that {Ψ}S∈S is indeed a complete, orthonormal set in V.

Finally, for general Ψ =
∑
finite

αnξzn
∈ V we compute

〈Ψ,Ψ〉 =
∑
n,m

αn αm 〈ξzn
, ξzm
〉 =

∑
n,m

∑
S∈S

αn αm 〈ξzn
,ΨS〉〈ΨS , ξzm

〉

=
∑
S∈S

(∑
n

αn〈ξzn ,ΨS〉
) (∑

m

αm〈ΨS , ξzm〉
)

=
∑
S∈S

∣∣∣∑
n

αn〈ξzn ,ΨS〉
∣∣∣2 ≥ 0

This finishes the proof.

Definition 5.3.12 (Fermionic Fock space).
Let V0 := {v ∈ V | 〈v, v〉 = 0} be the null-space of (V, 〈·, ·〉).

We define the fermionic Fock space F to be the completion of V/V0 w.r.to 〈·, ·〉.
F is an infinite-dimensional, complex, separable Hilbert space.

It can be written as the direct sum F =
⊕
c∈Z
F (c) of Z “charge-sectors” built from holomorphic

sections with support in the connected component of DET ∗ over Gr(c)(H).

The sections ΨS , S ∈ S are a Fock basis of F . They define the Pflücker coordinates

F −→ `2,

ξz 7−→ (ξz(wS))S∈S = (〈ξz,ΨS〉)S∈S
(5.3.8)

Definition 5.3.13 (Pflücker embedding).
We have a natural embedding of Gr(H) into the projective Fock space P(F), given by

Gr(H) −→ P(F),
W 7−→ C · ξw = C · ξ([w, 1])

(5.3.9)

where w is an admissible basis for W, called the Pflücker embedding.
This gives precise meaning to our often employed intuition that polarizations (in [H+])
correspond to projective, decomposable states of infinitely many fermions.
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Proposition 5.3.14 (Action of G̃L
0

res on DET0).
G̃L

0

res has a natural action on DET defined by

µ0 : G̃L
0

res ×DET0 −→ DET0,

([U,R], [W,w, λ]) 7−→ [UW,UwR−1, λ]
(5.3.10)

Proof. We have to show that the action µ0 is well-defined.

i) DET0 is closed under the action of G̃L
0

res:
We know that W ∈ Gr(H)⇒ UW ∈ Gr(H) for U ∈ GLres. We still have to show:
w admissible basis for W ⇒ UwR−1 admissible basis for UW .
Obviously, im(UwR−1) = UW . Furthermore:

P+UwR
−1 = P+UP+wR

−1 + P+UP−wR
−1

= P+UP+P+wR
−1 + P+UP−P−wR

−1

= P+UP+R
−1︸ ︷︷ ︸

∈Id+I1(H+)

RP+wR
−1︸ ︷︷ ︸

∈Id+I1(H+)

+P+UP−︸ ︷︷ ︸
∈I2(H+)

P−wR
−1︸ ︷︷ ︸

∈I2(H+)

∈ Id+ I1(H+)

since the product of two Hilbert-Schmidt operators is trace-class.
Thus, UwR−1 is an admissible basis for UW .

ii) The definition is independent of the representative of [W,w, λ]:
Let (W,w, λ) ∼ (W,w′, λ′) = (W,w ◦ L, λ/det(L)).
We need (UW,UwR−1, λ) ∼ (UW,UwLR−1, λ/det(L)), for U and R as above.
This is true, since UwLR−1 = UwR−1(RLR−1) = UwR−1L′, with
L′ = RLR−1 ∈ GL1(H+) and det(L′) = det(RLR−1) = det(L).

iii) The definition is independent of the representative of [(U,R)] ∈ G̃L
0

res:
Let [(U,R)] = [(U,R′)] ∈ G̃L

0

res. This means det(RR′−1) = 1. Therefore
(UW,UwR−1, λ) ∼ (UW,UwR′−1, λ), since UwR′−1 = UwR−1RR′−1 =: UwR−1L,
with det(L) = det(RR′−1) = 1.

Construction 5.3.15 (Arbitrary charges and the complete G̃Lres).
So far we have defined the action of G̃L

0

res on DET0, which is in fact all we need. Extending
the action to arbitrary “charges" is somehow tedious but pretty much straightforward, nev-
ertheless. Again, we use the "shift"-operator σ and the structure of G̃Lres as a semi-direct
product Z n G̃L

0

res with Z generated by the action of σ̃ (see §4.1.2).

We define a Z−action on DET by

ϑ(n)([W,w, λ]) := [σn(W ), σnwσ−n, λ] (5.3.11)

ϑ(n) maps DETd to DETd−n.

Now we extend the action µ0 defined above to an action
µ : Z n G̃L

0

res ×DET→ DET by

µ{(n, [A,R])}
∣∣
DETd→DETd−n

:= ϑ(n− d) ◦ µ0(σ̃d−n([A,R])) ◦ ϑ(d) (5.3.12)

for any d ∈ Z.
In particular, G̃L

0

res acts on DETd by

µ{[A,R]} := ϑ(−d) ◦ µ0(σ̃d[A,R]) ◦ ϑ(d) (5.3.13)
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This is almost the same as the action of G̃L
0

res on St(d) descending to DET only with A
acting from the left and (Rσd)−1 (instead of R−1) acting from the right.

Admittedly, this is not very pretty. Therefore, we will be so bold to drop the Z−indices
for the remainder of this chapter and use the simple notation for G̃L

0

res acting on the “zero-
charge sector”, while still stating the results for the whole transformation group and the
whole line bundle. If needed, the full expressions for arbitrary charges can be worked out in
detail using the scheme we’ve just outlined.

Finally, we can say how the central extension GLres(H) (and Ũres(H)) defined in chapter 4
act on the fermionic Fock space and everything fits together nicely.

Proposition 5.3.16 (Action of G̃Lres on F).
The action of G̃Lres(H) on F is given by the adjoint action of G̃Lres on DET as defined in
Prop. 5.3.14. This action restricts to a unitary representation of Ũres(H) on the Fock space.
Explicitely, the action of G̃Lres on F is defined by

µ∗ : G̃Lres ×F −→ F ,
([U,R], ξz) 7−→ µ∗[U,R]ξz = ξz ◦ µ−1

[U,R]

(5.3.14)

i.e. for w ∈ DET:

µ∗[U,R]ξz(w) = ξz(µ−1
[U,R](w)) = ξz(U−1wR)

= det(z∗U−1wR) = det(Rz∗U−1wRR−1)

= det((U−1∗zR∗)∗w) =: ξz′(w)

with z′ = (U∗)−1zR∗.
Thus, for [(U,R)] ∈ Ũres ⊂ G̃Lres, i.e. U ∈ U(H), R ∈ U(H+),

ξz 7→ µ∗[U,R](ξz) = ξz′ , with z′ = UzR∗ (5.3.15)

Clearly, this defines a representation of Ũres(H) which is indeed unitary, because〈
µ∗[U,R]ξz, µ

∗
[U,R]ξw

〉
= det

(
(UzR∗)∗(UwR∗)

)
= det(Rz∗wR−1) = det(z∗w) =

〈
ξz, ξw

〉
.
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5.4 Equivalence of Fock space constructions
We have already pointed to the fact that the infinite wedge space construction of Deckert,
Dürr, Merkl and Schottenloher is closely related to the geometric construction of the Fock
space as the space of holomorphic section in the dual of the determinant bundle. Deckert
et.al. are just ignoring the underlying geometry and focus on the mathematical structure
that seems more essential to the physical problems. In this section we prove that the two
constructions lead to equivalent descriptions of the fermionic Fock space. We will focus on
the polarization class of [H+], i.e. on Gr(H) but the results can be easily generalized to any
other polarization class.

It has probably become apparent that the “admissible bases” are for the geometric con-
struction what the Dirac Seas are for the infinite wedge spaces. It might be interesting to
note an important difference, though. In the construction of the infinite wedge space we
start with a given polarization class and then have the freedom of choice of a Dirac Sea
class. In the geometric construction we have to fix a polarization in the polarization class
(e.g. H+). With this selection then comes a preferred choice for what corresponds to the
Dirac sea class induced by the identity map on that subspace.
If we focus on the standard Fock space, where with H+ we have a natural choice for the
polarization, too, this freedom that is so manifest in the infinite wedge space construction
is rather hidden in the geometric construction. Nevertheless, it’s still there.

We formulate the precise relationship between Dirac Sea classes and admissible bases in the
following Lemma:

Lemma 5.4.1 (Dirac Seas vs. Admissible Bases).
Let (ek)k∈Z be a polarized basis of H as above.

Any isometric Dirac sea Φ0 ∈ Seas⊥(H) with im(Φ0) = H{≥−n} gives rise to an isomor-
phism (

Seas⊥(H)/ ∼
)
3 S(Φ0)

∼=−−→ St(n)

between its Dirac Sea class and the n-th connected component of the Stiefel manifold.

Proof. Given a Φ0 : `→ H{≥−n} ⊂ H as above, consider the map

St(n) → S(Φ0); w 7→ w ◦ Φ0 (5.4.1)

This is a well-defined map into S(Φ0): For an admissible basis w, w ◦Φ0 is a map from ` to
H and indeed w ◦ Φ0 ∼ Φ0, because

P+w = Φ0Φ∗0w has a determinant
⇒ Φ∗0 wΦ0 : `→ ` has a determinant

⇒ w ◦ Φ0 ∼ Φ0 in Seas⊥(H)

It remains to show, that (5.4.1) is bijective.
Let Φ ∼ Φ0 ∈ Seas(H). Define w := Φ ◦ Φ∗0

∣∣
H{≥−n}

.
w is an isomorphism H{≥−n} → H with im(w) = im(Φ) ∈ Gr(H) and clearly w ◦ Φ0 = Φ.
Finally, w is indeed an admissible basis i.e. an element of St(n), since
P+w = Φ0Φ∗0 ΦΦ∗0 has a determinant⇐⇒ Φ∗0Φ has a determinant⇐⇒ Φ ∼ Φ0.

Theorem 5.4.2 (Anti-Isomorphism of Fock spaces).
Let Φ0 ∈ Seas⊥(H) with im(Φ0) = H{≥−n}.
Then the infinite wedge space FS(Φ0) is naturally anti-unitary equivalent to F (n), the charge-
n-sector of the fermionic Fock space constructed from Γ(DET∗n).
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Proof. Consider the map f : F (n) −→ FS(Φ0), defined by

ξw 7−→
∧(
w ◦ Φ0

)
(5.4.2)

for w ∈ St(n) and anti-linear extension.
This is well defined, since for L ∈ GL1(H+), ξz◦L = det(L) ξz by (5.3.6) and∧(

w ◦ L ◦ Φ0

)
=
∧(
w ◦ Φ0Φ∗0L ◦ Φ0

)
= det(Φ∗0L ◦ Φ0)

∧(
w ◦ Φ0

)
= det(L)

∧(
w ◦ Φ0

)
It is also an (anti-) isometry, since〈∧(

z ◦ Φ0

)
,
∧(
w ◦ Φ0

)〉
FS(Φ0)

= det(Φ∗0z
∗wΦ0) = det(z∗w) =

〈
ξz, ξw

〉
F

By construction of the infinite wedge space and by the previous Lemma, Dirac Seas of the
form w ◦ Φ0, w ∈ St(n) span the entire Fock space FS(Φ0).
We conclude that the two Fock spaces are anti-unitary equivalent.

Corollary 5.4.3 (Action of Ũ0
res on infinite wedge spaces).

Let Φ0 and FS(Φ0) as above.

Then we have a natural representation of Ũ0
res(H) on FS(Φ0) given by

Ũ0
res(H) 3 [U,R] 7−→ LURR∗Φ0

(5.4.3)

with RΦ0 := Φ∗0 RΦ0 ∈ U(`), i.e.
∧

Φ
[U,R]−−−→

∧(
U Φ Φ∗0R

∗Φ0

)
.

Of course, this is the representation induced by the that on F via the anti-automorphism f:

F (n)

f

��

µ∗[U,R] // F (n)

f

��
FS(Φ0)

LURR∗Φ0// FS(Φ0)

(5.4.4)

Proof. It suffices to note that

f ◦ µ∗[U,R] (ξw) = f (ξ(UwR∗)) =
∧(
UwR∗ ◦ Φ0

)
=
∧(
UwΦ0 Φ∗0 R

∗Φ0

)
= LURR∗Φ0

◦ f (ξw).

5.5 Relationship to CAR representations
In this section we clarify the relationship between the fermionic Fock space constructed
from Dirac Seas or from holomorphic section in the DET∗-bundle and the fermionic Fock
space studied in §5.1., which can be thought of as a representation-space of the abstract
CAR-algebra generated by creation and annihilation operators. This is of particular inter-
est because this description of the Fock space is arguably the one most familiar to physicists.
Basically, we will give rigorous proof of our initial argument that descriptions invoking “par-
ticles” and “antiparticles” are equivalent to descriptions that take Diracs idea of infinitely
many particles seriously.

Unfortunately, at this point we will pay the price for bowing to different, contradictory con-
ventions and using H+ for the unperturbed Dirac Sea in §5.2 but H− for the anti-particle
states in §5.1 that are supposed to correspond to “holes” in that sea.
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5.5. RELATIONSHIP TO CAR REPRESENTATIONS

We will circumvent this difficulty simply by setting F+ := H− and F− := CH+ in the
definition of the Fock space which was

F :=
∞⊕
c

F (c); F (c) :=
⊕

n−m=c

∧n
F+ ⊗

∧m
F−

So compared to section 5.1, the roles of H+ and H− are interchanged. I hope the reader
will excuse this little blemish.

As F in this section is reserved for the Fock space just defined, we will denote the Fock
space obtained from the geometric construction by Fgeom.

Construction 5.5.1 (Fock space isomorphism and field operator on Dirac seas).

Fix a basis {(ek)k∈Z} of H such that (ek)k≤0 is ONB of H− and (ek)k≥0 ONB of H+.
Let S be the set sequences defined in [Def. 5.3.9 i)]. It consists of increasing sequences
S = (i0, i1, i2, . . .) containing only finitely many negative integers and all but finitely many
positive integers. Recall that by proposition 5.3.11, the holomorphic sections (ΨS)s∈S de-
fined [Def. 5.3.9 iii) ] form an orthonormal basis of the Fock space Fgeom.

We define an isomorphism between Fgeom and F by

ΨS 7−→
(
ei0 ∧ . . . ∧ ein−1

)
⊗
(
Cej0 ∧ . . . ∧ Cejm−1

)
∈
∧n
F+ ⊗

∧m
F− (5.5.1)

for {i0 < i1 < . . . < in−1} = S ∩ Z− and {j0 < j1 < . . . < jm−1} = N \ S.
In particular, for S = (0, 1, 2, . . .),ΨS = Ψ0 is mapped to the vacuum in F .

Intuitively, the states indexed by the negative integers in S are mapped to “electron states”
in F+ and the states indexed by the positive integers missing in S (the “holes”) are charge-
conjugated and mapped to “positron states” in F−.
Obviously, the assignment is 1-to-1 and isometric. It also preserves the charge in the sense
that the states ΨS with c(S) = c, spanning the charge-c-sector of Fgeom are mapped into
F (c), the charge-c-sector of F .

Now we introduce the equivalent of creation- and annihilation operators on Fgeom.
It is convenient to use the intuitive notation

ΨS = ei0 ∧ ei1 ∧ ei2 ∧ ei3 ∧ . . . , for S = (i0, i1, i2, i3 . . .)

Then, we define the field operator (or rather its hermitian conjugate) Ψ∗ on Fgeom by

Ψ∗(ek) : ei0 ∧ ei1 ∧ ei2 ∧ ei3 ∧ . . . 7−→ ek ∧ ei0 ∧ ei1 ∧ ei2 ∧ ei3 ∧ . . . (5.5.2)

That is, Ψ∗(ek) maps ΨS with S = (i0, i1, i2, i3 . . .) to zero, if k is a member of S and
otherwise to (−1)j ΨS′ with S′ = (i0, i1, . . . ij−1, k, ij , . . .) ∈ S.
By linear extension in the argument if Ψ∗(·) we get a linear map Ψ∗ : H → B(Fgeom).

Obviously, under the isomorphism defined above, this field operator acts just as the usual
field operator defined in (5.1.9) from creation- and annihilation operators.
The same is true for the formal adjoint Ψ : H → B(Fgeom), acting as

Ψ(ek) ei0 ∧ei1 ∧ei2 ∧ei3 ∧ . . . =


(−1)j ei0 ∧ ei1 . . . ∧ eij−1 ∧��eij ∧ eij+1 ∧ . . . ; if k = ij

0 ; if k /∈ S

In particular, they define a representation of the CAR-algebra on the Fock space Fgeom

which is equivalent to the Fock representation on F .
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Chapter 6

Time-Varying Fock spaces

We have seen that a unitary operator on H can be implemented on the fermionic Fock space
if and only if it satisfies the Shale-Stinespring condition U+−, U−+ ∈ I2 i.e. if and only if it
is in Ũres(H). In the previous chapter this result appeared in different disguises depending
on the construction of the Fock space, but there was no way around the fact itself. The
drastic conclusion seems to be that there is no time-evolution in the external field problem
of QED. By the theorem of Ruijsenaars (1.2.1), the Dirac-time evolution for an external field
A will not be in Ũres(H), unless the spatial component A of the vector potential vanishes.
Physically, the reason is infinite particle creation. Mathematically, this is reflected in the
fact that a unitary transformation that doesn’t satisfy the Shale-Stinespring condition will
leave the polarization class [H+] = Gr(H), over which the Fock space is constructed. Fol-
lowing an idea of Scharf and Fierz ([FS79]) Deckert et.al. concluded that, given these facts,
the best that can be done is to realize the unitary time-evolution as unitary transformations
between different Fock spaces over varying polarization classes.

Remark: In this work we do not focus on finding the weakest regularity condition on
the external vector potentials. For simplicity, we always assume smooth fields with compact
support in space and time. The respective publications that we are referring to might inform
about bigger classes of interactions for which the results hold.

6.1 Identification of polarization classes
Given an external field in a form of 4-vector potential

A = (Aµ)µ=0,1,2,3 = (A0,−A) ∈ C∞c (R4,R4)

let UA = UA(t, t′), t, t′ ∈ R be the unitary Dirac time evolution determined by the Dirac

Hamiltonian H = D0 + e
3∑

µ=0
αµAµ.

Now, the question is this: How can we determine polarization classes C(t) such that

UA(t1, t0) ∈ Ures

(
H, C(t0);H, C(t1)

)
(6.1.1)

for all t1, t0 ∈ R ?
The answer is a generalization of Ruijsenaars theorem and was provided in a very nice and
systematic way by Deckert et. al. in [DeDuMeScho]. We summarize their main results:
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6.1. IDENTIFICATION OF POLARIZATION CLASSES

Recall that the Dirac equation has the form

i∂tΨ(t) = HAψ(t) =
(
D0 + V A(t)

)
Ψ(t) (6.1.2)

with

V A = e

3∑
µ=0

αµAµ, (6.1.3)

In momentum representation, i.e. taking the Fourier transform of the equation, D0 acts as
a multiplication operator with the energy E(p) =

√
|p|2 +m2 and we write the interaction

term as

iZA = e

3∑
µ=0

αµÂµ, (6.1.4)

where Âµ now act as convolution operators

(Âµψ)(p) =
∫

R3
Âµ(p− q)ψ(q) dq, p ∈ R3, (6.1.5)

for ψ ∈ H and Âµ the Fourier transform of Aµ.
Deckert et. al. define the integral operator QA : H 7→ H with kernel

QA(p, q) :=
ZA+−(p, q)− ZA−+(p, q)

i(E(p) + E(q))
(6.1.6)

Here, A is understood as the vector potential at a fixed time.
The operators QA are bounded and skew-adjoint and thus the operators eQ

A

are unitary.
Now, we have the following theorem:

Theorem 6.1.1 (Identification of Polarization classes).
Let A ∈ C∞c (R4,R4). The operators eQ

A(t)
have the following properties:

i) Setting C(A(t)) := [eQ
A(t)H+] it is true that

UA(t1, t0) ∈ U0
res

(
H, C(A(t0));H, C(A(t1))

)
(6.1.7)

for all t0, t1 ∈ R.

ii) For two potentials A = (A0,−A) and A′ = (A′0,−A′) ∈ C∞c (R3,R4) we find

[eQ
A

H+]≈0 = [eQ
A′

H+]≈0 ⇐⇒ A = A′ (6.1.8)

It follows that the polarization class is completely determined by the spatial component of
the vector potential A at any fixed time.

In more physical terms, the theorem says that the polarization classes C(t) = C(A(t))

• depend only on the magnetic part of the interaction

• depend on A instantaneous in time and not on the history of the system

Note that Ruijsenaars Theorem (Thm.1.2.1) follows immediately as a special case of (6.1.8).

We can also easily derive the following important result:
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6.2. SECOND QUANTIZATION ON TIME-VARYING FOCK SPACES

Theorem 6.1.2 (Implementability of the S-matrix).
Let A ∈ C∞c (R4,R4) and UA

I the corresponding unitary time evolution in the interaction
picture (cf. §8.1.2). Then, the scattering matrix

S := lim
t→∞

eitD0UA(t,−t)eitD0 = lim
t→∞

UA
I (t,−t) (6.1.9)

is in Ures(H) and can be implemented as a unitary operator on the (standard) Fock space.

Proof. Since the interaction potential has compact support, especially also compact sup-
port in time, we have A(t) = 0 and hence eQ

A(t)
= 1 for all |t| large enough. In particular,

[eQ
A(t)H+]≈0 = [H+]≈0 for all |t| large enough.

By the previous theorem it follows that UA
I (T,−T ) = U0(0, T )UA(T,−T )U0(−T, 0) ∈

U0
res(H, [H+];H, [H+]) = Ures(H) for all T large enough, and hence S ∈ Ures(H).

6.2 Second Quantization on time-varying Fock spaces
Here is the recipe for the second quantization of the time-evolution on time-varying Fock
spaces, following [DeDuMeScho]. The main ingredient is Theorem 5.2.9, the abstract version
of “Shale-Stinespring”. We will present the method mainly in the language of infinite-wedge-
spaces, which is best suited for this task. However, with some modifications it can be applied
to the geometric constructions.

Let A = (Aµ)µ=0,1,2,3 = (A0,−A) ∈ C∞c (R4,R4) be an external field and UA(t, t′) the
corresponding Dirac time evolution.

• Let C(t) = C(A(t)) ∈ Pol(H)/ ≈0 be the polarization classes identified above. We
know that this polarization class is uniquely determined by the spatial component of
the vector potential at that time. Then

UA(t, t′) ∈ U0
res

(
H, C(t′);H, C(t)

)
, ∀t, t′ ∈ R

• For every t ∈ R choose a Dirac Sea class S(t) ∈ Ocean(C(t))/ ∼.
We should demand that S(t) depends only on A(t) or even just A(t). In particular,
we want at least to stay in the initial Fock space when the interaction is turned off.

For the geometric construction we would have to choose a polarization W (t) ∈ C(t)
for every t ∈ R.

• We construct a family of Fock spaces (FS(t))t as infinite wedge spaces over the Dirac
Sea classes S(t). Equivalently, we can use the geometric construction where admissible
bases are those compatible with the identity map on W (t).

• By Theorem 5.2.9 we can implement UA(t1, t0) as a unitary map between the Fock
spaces FS(t0) and FS(t1). I.e. there exists R ∈ U(`) with UA(t1, t0)S(t0)R = S(t1)
and therefore

LUA(t1,t0)RR : FS(t0) → FS(t1) (6.2.1)

is a unitary map between the Fock spaces FS(t0) and FS(t1)

• By Lemma 5.2.8, two such right operations implementing UA(t1, t0) differ by an oper-
ator in U(`) ∩ Id+ I1(`). The induced transformation between FS(t0) and FS(t1) can
differ by the determinant of such an operator, i.e. by a complex phase ∈ U(1).
However, transition probabilities are well-defined: if we have an “in-state” Ψin ∈ FS(t0)

and an “out-state” Ψout ∈ FS(t1), the transition probability

|〈Ψout,LUA(t1,t0)RR Ψin〉|2 (6.2.2)

is independent of the specific choice of R ∈ U(`).
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6.2. SECOND QUANTIZATION ON TIME-VARYING FOCK SPACES

So far, the choices of the right-operations for different time-intervals must not be “compat-
ible” with each other and the transitions amplitudes are also well-defined independent of
that. However, it is possible to choose the implementations so that they concatenate and
preserve the semi-group structure of the time-evolution:

Proposition 6.2.1 (Semi-Group Structure).
Let UA be a unitary time evolution for the interaction potential A with time-support in
[T,−T ]. For every t we choose a Dirac Sea class St ∈ Ocean(UA(t,−T )H+) and want to
implement the time evolution on the family of Fock spaces FSt

, t ∈ R. By [Thm.5.2.9] there
exists for every t an operator Rt ∈ U(`) s.t. LU(t,−T )RRt : FS−T

→ FSt .
Setting

Ũ(t1, t0) := LU(t1,t0)R(R−1
t0
Rt1 )

we get a two-parameter family of unitary transformations satisfying

Ũ(t1, t0) : FSt0
→ FSt1

and Ũ(t2, t1) Ũ(t1, t0) = Ũ(t2, t0)

for t2 ≥ t1 ≥ t0 ∈ R ∪ {±∞}.

Proof. First, we need to show that U(t1, t0)Φ0R
−1
t0 Rt1 ∼ Φ1 for all Φ0 ∈ S0, Φ1 ∈ S1 i.e.

that Φ∗1U(t1, t0)Φ0R
∗
t0Rt1 has a determinant. This is true because

U∗(ti,−T ) ΦiR∗ti ∈ S−T , for i = 0, 1

⇒
(
U∗(t1,−T )Φ1R

∗
t1

)∗(
U∗(t0,−T )Φ0R

∗
t0

)
=
(
Rt1(Φ1)∗U(t1,−T )U∗(t0,−T )Φ0R

∗
t0

)
= Rt1Φ∗1 U(t1, t0)Φ0R

∗
t0 has a determinant⇒ Φ∗1 U(t1, t0)Φ0R

∗
t0Rt1 has a determinant.

The composition property follows immediately from

LU(t2,t1)R(R−1
t1
Rt2 )LU(t1,t0)R(R−1

t0
Rt1 ) = LU(t2,t1)U(t1,t0)R(R−1

t0
Rt1R

−1
t1
Rt2 ) = LU(t2,t0)R(R−1

t0
Rt2 )

using that left- and right- operation commute.

Note, however, that this result is not fully satisfying, because the phase of the implemen-
tation of the time-evolution U(t1, t0) between times t0 < t1 depends on the one-particle
time-evolution not only between t0 and t1, but between t = −T and t = t1 (cf. our discus-
sion of causality in §8.2.1).

In the way we have chosen to present the construction, we exploited the whole freedom
of choosing a family of Fock spaces for a fixed time-evolution UA(t, t′). We have merely sug-
gested to choose the same Fock space over [H+] outside the time-support of the interaction
in order to implement at least the S-matrix on a fixed Fock space. In practice, one would
rather make a global choice of the Fock spaces, depending only on the external potential,
locally in time. For example, starting with any Dirac sea Φ ∈ Ocean(H+) we can set

S(A(t)) := [eQ
A(t)Φ] ∈ Ocean

(
C(A(t))

)
/ ∼ (6.2.3)

which depends only on A(t) at the fixed time t. By [Thm. 6.1.1], FS(A(t)) is a suitable family
of Fock spaces for the time-evolution UA, for any field A. Note, however, that this choice is
merely convenient and not motivated by any physical insight.

The Dirac Sea classes S(t) alone are not enough structure to define how the Dirac Sea is
filled i.e. how many electrons and positrons a given state contains. For this, we would have
to distinguish instantaneous “vacua” to compare our states to. In the geometric construc-
tion, the Dirac Sea classes are paralleled by the equivalence classes of admissible bases. But
if we fix the admissible bases by choice of polarizations H = W (t) ⊕W (t)⊥ for every time
t, the “vacuum state” is already distinguished by the identity map on W (t).
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6.2. SECOND QUANTIZATION ON TIME-VARYING FOCK SPACES

We try to formalize this in the following Definition.

Definition 6.2.2 (Family of Vacua).

We fix a basis (ek)k≥0 of H+ ⊂ H−. We choose Φ0 ∈ Ocean(H+) to be the Dirac sea
mapping the standard basis in ` = `2 to the basis of H+. Formally:

Φ0 =̂ Φ(l0) ∧ Φ(l1) ∧ Φ(l2) ∧ . . . =̂ e0 ∧ e1 ∧ e2 ∧ . . . (6.2.4)

we call
∧

Φ0 the free vacuum state in FS(Φ0). With a little abuse of the expression we will
also refer to Φ0 itself as the free vacuum.

Let UA be the unitary time evolution for an interaction potential A ∈ C∞c (R4,R4).
We call a family (Φ(t))t of isometric Dirac Seas a family of vacua for the time evolution if
Φ(t) ∈ Ocean⊥(C(t)) for all t ∈ R and if for |t| large enough they become the free vacuum
Φ0. Obviously, such a family of vacua determines a family of Dirac Sea classes
S(t) ∈ Ocean(C(t))/ ∼ for the time-evolution by S(t) := S(Φ(t)) = [Φ(t)] ∈ Seas⊥(H)/ ∼.

We are knowingly overselling the Dirac seas Φ(t) by calling them “vacua”. But if we use
such reference states to specify the Dirac sea classes, the states themselves may or may not
be physically distinguished from others.

The second quantization of the time evolution on varying Fock spaces seems to be in a
way the best that can be done within the current framework. However, the physical content
of this procedure remains doubtful. To make sense of it we would have to say what physical
quantities characterize the physical states represented by vectors in different Fock spaces.
Right now it seems rather unlikely that this is possible.

6.2.1 Gauge Transformations

The polarization classes C(t) are determined by the spatial components of the A-field defin-
ing the interaction potential. But this quantity is not gauge-invariant in the most obvious
way. Therefore, neither the condition UA(t, t′) ∈ Ures(H) for implementability on the stan-
dard Fock space, nor the procedure of second quantization on time-varying Fock spaces is
gauge-invariant. This might seem highly suspicious, at first. But the right conclusion to
draw here is that the (second quantized) theory is just not gauge-invariant in the naive sense.
Actually, the problem with gauge-transformations is the same as with the time evolution.
It turns out that smooth gauge transformations

G 3 g : Ψ(x)→ eiΛg(x)Ψ(x), Λg ∈ C∞c (R3,R) (6.2.5)

do not satisfy the Shale-Stinespring condition [ε, g] ∈ I2(H), unless they are constant, and
are therefore not implementable on a fixed Fock space [MiRa88].

More precisely, the following is true:

Theorem 6.2.3 (Gauge-Transformation, [DeDuMeScho]Thm. III.11).

Let G denote the space of smooth gauge-transformations as in (6.2.5)

By [Thm. 6.1.1, ii)] it is justified to write [eQ
AH+] =: C(A) etc. for the polarization classes,

as they are completely determined by the spatial part of the A-field.
Then, for all g ∈ G it is true that

g = eiΛg ∈ U0
res

(
H, C(A) ; H, C(A +∇Λg)

)
(6.2.6)

for any A ∈ C∞c (R3,R3).
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6.2. SECOND QUANTIZATION ON TIME-VARYING FOCK SPACES

Of course, this is what must be true in order to be consistent with our previous results.

Following the concept of varying Fock spaces, we can therefore realize gauge-transformation
not as unitary operations on a Fock space, but as a transformation of the Fock spaces
themselves. In this sense, the theory might become “gauge-covariant” rather than “gauge-
invariant” in the usual sense.

We will come back to the problem of gauge-invariance in §8.4.

Remark: The Fock bundle

It is possible to fit the concept of time-varying Fock spaces into quite an elaborated geometric
structure as well, by introducing a manifold structure on A, the space of (time-independent)
vector potentials, and constructing the Fock bundle over A. This is a principle fibre bundle,
where the fibre over any A ∈ A is an entire Fock space. Ũres(H) is the structure group
acting transitively on every fibre (i.e. on the Fock spaces themselves) whereas the time
evolution and gauge-transformations act as unitary bundle-maps between different fibres.
For an outline of the construction consult e.g. [Mi] or [CaMiMu00].

Results from the theory of bundle gerbes suggest that the Fock bundle can be pushed
down to a bundle over A/Ge where Ge is the space of based, smooth, compactly supported
gauge-transformations ([CaMiMu97]). In this sense, the description could be made gauge-
invariant. This does seem promising indeed, but the mathematical treatment is quite ab-
stract and not very physicists-friendly. We therefore suggest that one should try to reformu-
late the construction in terms closer to the physical intuition and compare it to the infinite
wedge space constructions presented before. Also, the choices involved in the construction
of the Fock bundle should be worked out in a systematic way.
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Chapter 7

The Parallel Transport of Langmann &
Mickelsson

We have seen that the central extensions G̃Lres(H) π−→ GLres(H) and Ũres(H) → Ures(H)
also carry the structure of principle fibre bundles. This allows us to equip them with a
bundle-connection as an additional geometric structure. Our aim is to use parallel transport
with respect to this connection to lift the unitary time evolution to the Fock space, or at
least to fix the phase of the second-quantized S-matrix in a well-defined manner.
We will follow [LaMi96] and define a suitable connection not on Ũres(H) but on its complex-
ification G̃Lres(H). However, the construction restricts easily to the unitary case.

Recall that a connection Γ on a principle bundle is a distribution in its tangent bundle,
distinguishing the tangent vectors that will be called horizontal (to the base-manifold). This
distribution is complementary to the space of vertical vector fields, which is always defined
as the kernel of Dπ, where π is the projection onto the base-manifold. That is, vertical
vectors are vectors along the fibres of the bundle. A connection is a geometric structure
which allows us to lift paths from the base-manifold (here: Ures or GLres) to the bundle in a
unique way by demanding that the tangent vectors of the lifted path are always horizontal.
These horizontal lifts define parallel transport in the principle bundle.1 Also recall that
connections are in one-to-one correspondence with connection one-forms which are certain
one forms on the principle bundle with values in the Lie-algebra of its structure group. For
every connection Γ there exists one and only one connection one-form Φ with Γ = ker(Φ).

A nice treatment of connections and parallel transport on principle bundles can be found in
[KoNo], for example .

Throughout this chapter a little care is required with the fact that we’re working on
infinite dimensional manifolds. But Banach manifolds, as the ones we’re dealing with, are
generally pretty well-behaved. One essential point is that on Banach manifolds (as opposed
to manifolds modeled on infinite dimensional Fréchet spaces) the Implicit Mapping Theorem
holds and thus the local calculus works almost exactly as in the finite dimensional case.
Note however, that we avoid all expansions in local coordinate frames, as are often used for
the analogous proofs in the finite dimensional case. Fundamentals of Differential Geometry
on Banach manifolds are presented for example in [Lang].

1If π : P → M is a principle bundle over M equipped with a connection, the parallel transport
of p ∈ P along a curve γ in M starting in π(p) is the end-point of the horizontal lift of γ with
starting point p ∈ P .
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7.1. THE MAURER-CARTAN FORMS

7.1 The Maurer-Cartan forms
Let G be a Lie group. The group operation on G define smooth actions of G on itself by
multiplication from the left or from the right.
For g ∈ G we denote by Lg the action from the left, i.e.

Lg : G→ G, Lg(h) := g · h (7.1.1)

and by Rg the action from the right:

Rg : G→ G, Rg(h) := h · g (7.1.2)

The differentials of these maps (push forwards) as maps between tangent-spaces are then
isomorphisms:

(Lg)∗ : ThG→ TghG

(Rg)∗ : ThG→ ThgG
(7.1.3)

We will also need the corresponding pull-backs (Lg)∗ , (Rg)∗ on one-forms.
Recall that a vector field X ∈ X(G) is called left-invariant if (Lg)∗Xh = Xgh, ∀g, h ∈ G and
right-invariant if (Rg)∗Xh = Xhg, ∀g, h ∈ G.
G can also act on itself by conjugation:

cg : G→ G, cg(h) := LgRg−1h = ghg−1 (7.1.4)

The map
Ad : G→ GL(Lie(G)), g 7→ ċg (7.1.5)

yields a natural representation of G on it’s own Lie-algebra called the adjoint representation.
The kernel of Ad equals the center of G. 2

In the following, we identify the Lie algebra g := Lie(G) of G with the tangent space above
the identity, i.e. g :=∼= TeG, for e, the neutral element in G.

Definition 7.1.1 (The Maurer-Cartan Forms).
The left Maurer-Cartan form, also called the canonical left-invariant one-form, is a one-form
on G with values in the Lie algebra. It is defined by:

ωL(g) : TgG −→ TeG ∼= g ;
V 7−→ (Lg−1)∗ V

(7.1.6)

Analogously, we define the right Maurer-Cartan form by:

ωR(g) : TgG −→ TeG ∼= g ;
V 7−→ (Rg−1)∗ V

(7.1.7)

We will often drop the subscript “L” or “R” if it is clear which form we’re referring to.

In a matrix representation, the Maurer-Cartan forms can be simply written as

ωL = g−1dg and ωR = dg g−1 (7.1.8)

respectively. Obviously, ωL/ωR is constant on left- / right- invariant vector fields.
Furthermore, ωL(e) = ωR(e) = IdTeG.
We state a few less obvious properties of the Maurer-Cartan forms.

2In a Matrix representation, G ↪→ GL(V ),Lie(G) ↪→ End(V ) and Adg(X) = gXg−1. Thus, one
can think of the adjoint representation in the following way: If the elements of a vector space V (or
a vector bundle with fibre V) transform under a symmetry g ∈ G via an action of G on V then the
endomorphisms of V transform by the corresponding adjoint action.
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Lemma 7.1.2 (Properties of the left Maurer-Cartan form).
The left Maurer-Cartan form ωL has the following properties

i) ωL is left-invariant, i.e. (Lg)∗ωL = ωL

ii) (Rg)∗ωL = Adg−1 ωL, ∀g ∈ G

iii) dωL + 1
2 [ωL ∧ ωL] = 0

The right Maurer-Cartan form ωR has the following properties

I) ωR is right-invariant, i.e. (Rg)∗ωR = ωR

II) (Lg)∗ωR = Adg ωR, ∀g ∈ G

III) dωR − 1
2 [ωR ∧ ωR] = 0

Proof. i) For V ∈ ThG and g ∈ G we have

(L∗g ωgh)(V ) = ωgh((Lg)∗V ) = L(gh)−1∗Lg∗V = Lh−1∗Lg−1∗Lg∗V = Lh−1∗(V ) = ωh(V )

ii) (R∗g ωhg)(V ) = ωh(Rg∗V ) = L(hg)−1∗Rg∗V = Lg−1∗Lh∗Rg∗V = Adg−1 ωh(V )

iii) dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω[X,Y ], for X,Y ∈ X(G).
So, on left-invariant vector-fields the identity is true, because
dω(X,Y ) = −ω[X,Y ] = −[ω(X), ω(Y )] = − 1

2 [ω(X) ∧ ω(Y )]. But the expression is bi-
linear in smooth functions (tensorial) and thus depends on the vectors only pointwise.
Therefore, the identity holds for all vector fields.

The proofs for the right-invariant form work analogously. The different sign in III) as
compared to iii) comes from the fact that the commutator on right invariant vector fields
equals minus the commutator on the corresponding left-invariant vector fields which by
convention defines the Lie bracket.

Usually, the Lie algebra of a Lie group G is defined as the vector space of left-invariant
vector fields on G with the Lie bracket given by the commutator of vector fields. Therefore,
the left Maurer-Cartan form is the more canonical object. However, it will turn out that
the right-invariant form is better suited to our purposes.

7.2 The Langmann-Mickelsson Connection
We have gathered everything we need to define a connection on the principle C×-bundle
G̃Lres

π−−→ GLres. Recall that the central extension of Lie groups (4.1.2)

1 −→ C× ı−→ G̃Lres(H) π−−→ GLres(H) −→ 1

induces a central extension of the corresponding Lie algebras

0 −→ C ı̇−→ g̃1
π̇−→ g1 −→ 0 (7.2.1)

Furthermore, every (local) trivialization of G̃Lres about the identity defines an isomorphism
of vector spaces g̃1

∼= g1⊕C. In particular, we have the local trivialization φ defined in (4.1.4)
as, arguably, the most natural choice and we use this trivialization to identify g̃1 with g1⊕C.

With all this in our hands, a quite natural connection on G̃Lres
π−−→ GLres can be readily

defined. The (left) Maurer-Cartan form ωL on G̃Lres is a one-form on G̃Lres with values
in the Lie-algebra g̃1 = Lie(G̃Lres). A connection, however, is defined by a one-form with
values in the Lie algebra of the structure group. In our case this is just Lie(C×) = C. Thus,
we simply set ΦLM := prC ◦ ωL, where prC is the projection onto the C-component with
respect to the splitting g̃ ∼= g⊕ C. This is indeed a connection one-form:
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Definition 7.2.1 (Langman-Mickelsson-connection).
Let ωL be the left Maurer-Cartan form on the Lie group G̃Lres.
The one-form

ΦLM := prC ◦ ωL ∈ Ω1( G̃Lres; C) (7.2.2)

is a connection one-form on π : G̃Lres(H) → GLres(H). We will call it the Langmann-
Mickelsson-connection, because it was appearently first studied in [LaMi96].

Langmann and Mickelsson introduce this connection in [LaMi96] and use it to fix the phase of
the S-matrix by parallel transport. We want to propose a slightly modified connection using
the right-invariant Maurer-Cartan form instead of the left-invariant form. The advantage
of this choice will become clear when we carry out the lift of the time-evolution. We prove
that the so constructed one-form indeed defines a connection. The proof for the Langmann-
Mickelsson connection is almost identical.

Proposition 7.2.2 (Connection on G̃Lres).
Let ωR be the right Maurer-Cartan form on the Lie group G̃Lres.
Then,

Φ := prC ◦ ωR ∈ Ω1( G̃Lres; C) (7.2.3)

defines a connection one-form for the principle C× bundle π : G̃Lres(H)→ GLres(H).

Proof. We need to show3

i) Φ(x∗) = x for all x in the Lie algebra C of C×.

ii) R∗λΦ = Adλ−1Φ = Φ for all λ in the structure group C×
(which in our case happens to be abelian, thus Adλ−1 ≡ Id).

Here, x∗ denotes the fundamental vector field on the principle bundle, generated by the Lie
algebra element x via its exponential action on the Lie group.
ii) is trivial because ωR is invariant even under the right-action of the entire G̃Lres on itself,
in particular under the right-action of ı(C×) ⊂ G̃Lres. Thus:

R∗λ Φ = prC ◦R∗λ ωR = prC ◦ ωR = Φ = Adλ−1Φ, ∀λ ∈ C×.

For the first property take x ∈ C. Then:

x∗(p) =
d

dt

∣∣∣
t=0

p · ı(exp(tx)) = (Lp)∗ı∗(x)

⇒ ωR(x∗)|p = (Rp−1)∗(Lp)∗ ı∗ x = ı∗ x

⇒ Φ(x∗)|p = prC ◦ ı∗ x = x, ∀ p ∈ G̃Lres

where we have used that ı maps into the center of G̃Lres)H) and also that
φ ◦ ı(c) = (1, c) ∈ GLres × C×, which implies prC ◦ (ı∗)|e = Idg1 .

Thus, Φ is a connection one-form and defines the connection

ΓΦ := ker Φ ⊂ TG̃Lres (7.2.4)

on the principle bundle G̃Lres(H).

Obviously, we could have defined the analogous connection on Ũres(H)→ Ures(H), however
we follow [LaMi96] in discussing the connection on the complexification G̃Lres → GLres.
Apart from being more general, this has the advantage that the the local section in G̃Lres(H)
is nicer which makes computations in local coordinates easier. Anyway, the construction
restricts immediately to Ũres ⊂ G̃Lres.

3cf. [KoNo], Prop. 1.1
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Proposition 7.2.3 (Curvature of the Connection).
The curvature Ω of the connection Φ corresponds to the Schwinger cocycle (4.1.8) in the
following sense: If X̃, Ỹ are right-invariant vector fields on G̃Lres identified with elements
of the Lie algebra g̃1 of G̃Lres then

Ω(X̃, Ỹ ) = c(X,Y ) (7.2.5)

for X := prg(X̃), Y := prg(Ỹ ) ∈ g1. 4

Since the curvature is a two-form, it is completely determined by this equality.

Proof. Let X̃, Ỹ be left-invariant vectorfields corresponding to (X,λ1), (Y, λ2) ∈ g1⊕C ∼= g̃1,
respectively. The curvature 2-form can be computed as Ω = dΦ + 1

2 [Φ ∧ Φ]. Since Φ takes
values in the abelian Lie algebra C, the second summand is zero and Ω equals dΦ. Also
recall that under the isomorphism g̃1

∼= g1 ⊕C induced by the local trivialization φ, the Lie
bracket on g̃1 is the Lie bracket on g1 plus the Schwinger-cocycle (4.1.8). Thus we get:

Ω(X̃, Ỹ ) =dΦ(X̃, Ỹ ) = prC(dω(X̃, Ỹ )) = prC([ω(X̃), ω(Ỹ )])

=prC([X̃, Ỹ ]) = prC
(
([X,Y ], c(X,Y )

)
= c(X,Y )

7.2.1 Classification of Connections
Obviously, the connection is an additional structure on the bundle and as such constitutes
a particular choice. We demand that the connection is invariant under the right-action of
G̃Lres on itself, because, as we will see, this assures that the horizontal lift of the time evo-
lution preserves the semi-group structure. Note that a connection is always demanded to be
invariant under the (fibre-preserving) right-action of the structure group, but we demand
much more: that it is invariant under the right action of the entire Lie group G̃Lres on itself.
But even then, the connection is not at all unique. For example, a different isomorphism
g̃1 → g1 ⊕ C, coming from a different local section in G̃Lres, would also yield a different
right-invariant connection.

Generally, every local section υ : GLres → G̃Lres around the identity with υ(e) = e
(e being the neutral element in the group, i.e. the identity) induces the isomorphism
Deυ : g̃1 → g1 ⊕ C so that prυC ◦ ωR is a right-invariant connection one-form.

Conversely, every right-invariant connection on G̃Lres comes from a one-form of this kind.
To see this, we recall the geometric meaning of a connection. A connection is a distribution
Γ in the tangent-bundle TG̃Lres which is complementary to the kernel of the projection Dφ
and invariant under the right-action of the structure group on every fibre. Additionally,
we demand that the connection be invariant under the right-action of the entire Lie group
G̃Lres on iteslf. Altogether, this means

TpG̃Lres = ker(Dpπ)⊕ Γp,

and (Rg)∗Γp = Γpg, ∀g ∈ G̃Lres(H)
(7.2.6)

at every point p ∈ G̃Lres(H). From this we see that to define such a connection we have
the freedom to choose a subspace Γe complementary to kerDeπ in TeG̃Lres. Then, the
connection is completely determined by Γp = (Rp)∗ Γe for all p ∈ G̃Lres(H). But such a
subspace Γe can always be realized as the image of TeGLres under Deυ : TeGLres → TeG̃Lres

for a suitable local section υ as above. We conclude:

4The analogous computation for ΦLM would yield minus the Schwinger cocycle. In [LaMi96]
there might be a sign error or a different convention for the cocycle might be used.
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Lemma 7.2.4 (Right-invariant Connections and local sections).
Let Γ be a connection on G̃Lres, invariant under the right-action of the Lie group on it-
self. Let υ : GLres → G̃Lres be a local section around the identity with υ(e) = e and
Deυ(TeGLres) = Γe. Then Γ corresponds to the connection one-form Φυ := prυC ◦ ωR.

Proof. Note that im(Deυ) = ker(prυC). By assumption, X ∈ TeG̃Lres is horizontal, i.e.
X ∈ Γe, if and only if X ∈ im(Deυ), which then is true if and only if X ∈ ker

(
prυC
)
=

ker
(
prυC ◦ ωR(e)

)
. Since both, the distribution Γ and the kernel of prυC ◦ ωR are invariant

under the right-action of G̃Lres on itself, the identity holds everywhere.

Theorem 7.2.5 (Uniqueness of the connection).
The connection ΓΦ defined in (7.2.3) is the unique connection on G̃Lres(H) which is invariant
under the right-action of the Lie group on itself and whose curvature equals the Schwinger
cocycle c in the sense of Prop. 7.2.3.

Proof. Recall that the connection ΓΦ comes from the local trivialization defined by the
section τ (4.1.3). If we take a connection Γ′, different from ΓΦ but also invariant under the
right-action of G̃Lres, the previous Lemma tells us that it comes from a local section υ with
Deυ 6= Deτ . From the discussion of central extensions of Lie algebras in §3.4. we know that
this means that the Lie algebra cocycle Θ corresponding to υ differs from the Schwinger
cocycle (corresponding to τ) by a homomorphism5 µ = υ̇ − τ̇ = Deυ − Deτ : g1 → C i.e.
Θ(X,Y ) = c(X,Y ) − µ([X,Y ]) for X,Y ∈ g1. Therefore, in the sense of Prop. 7.2.3, the
curvature of the connection Γ′ differs from the Schwinger cocycle by µ([·, ·]).

In this sense, the connection we have defined is “unique”. Of course, it’s in no way necessary
to demand that the curvature of the connection equals the Schwinger cocycle. We can just
agree that it’s nice if it does. Also, and this might be the more relevant point, comparison
with (5.1.32) tells us that horizontal lift from g1

∼= TeGLres to g̃1
∼= TeG̃Lres with respect

to the connection ΓΦ corresponds in the Fock representation to the second quantization
prescription dΓ defined by normal ordering.

Note that the arguments used in the proof of [Thm. 7.2.5] together with the non-triviality
of the Schwinger-cocycle prove that there is not flat right-invariant connection on GLres.

7.2.2 Local Formula

Let’s compute an explicit formula for the connection w.r.to the coordinates defined by the
local section (4.1.3): Let γ : t 7→ [(g(t), q(t))], t ∈ [−ε, ε] be a C1-curve in G̃Lres(H).
We write [(g, q)] for γ(0) = [(g(0), q(0)] and φ for the local trivialization (4.1.4) on π−1(U).
Note that Φ can be expressed as:

Φg = prC(dg g−1) = prC ◦DR−1
g ◦ IdTg

fGLres

Thus, we compute:

Φ(γ̇(0)) =
d

dt

∣∣∣
t=0

prC ◦ φ
(
[g(t)g−1, q(t)q−1]

)
=
d

dt

∣∣∣
t=0

det
[
(g(t)g−1)−1

++(q(t)q−1)
]

=− tr
[
(ġ(0)g−1)++ − q̇(0)q−1

]
5a “coboundary” in the sense of cohomology
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Writing

g(t) =
(
a(t) b(t)
c(t) d(t)

)
and g−1(t) =

(
α(t) β(t)
γ(t) δ(t)

)
w.r.t. the splitting H = H+ ⊕H−, the formula becomes

Φ = − tr
[
daα+ db γ − dq q−1

]
(7.2.7)

The corresponding expression for the Mickelsson-Langmann connection can be computed
analogously to be

ΦLM = − tr
[
α da+ β dc − q−1 dq

]
(7.2.8)

7.3 Parallel Transport in the G̃Lres−bundle
We are actually interested in parallel transport in the G̃Lres−bundle. The bundle-econnection
defines a “horizontal” distribution in the tangent bundle of G̃Lres which gives us the notion
of a horizontal lift of paths in GLres(H). A horizontal lift is a path in G̃Lres that projects to
the original path in the base-manifold GLres and whose tangent vector is always “horizontal”
to the base-manifold. So, if we think of the unitary time evolution as a differentiable path
in Ures ⊂ GLres, the horizontal lift of that path will be a continuous (even differentiable)
choice of implementations on the fermionic Fock space.

We can use the local expression (7.2.7) for the connection form to compute an explicit
formula for parallel transport inside the domain U of the local section (4.1.3).
Let g(t) be a path in U ⊂ GLres(H), −T ≤ t ≤ T , with g(−T ) = 1.
The lift g̃(t) = [(g(t), q(t))] in G̃Lres(H) is horizontal if and only if

tr
[
ȧ(t)α(t) + ḃ(t) γ(t)− q̇(t) q−1(t)

]
≡ 0

Formally, this implies

tr
(
q̇(t) q−1(t)

)
= tr

(
ȧ(t)α(t) + ḃ(t) γ(t)

)
Identifying the LHS as the logarithmic derivative of det(q(t)) we can write

det(q(T )) = exp
[ T∫
−T

tr(ȧ(t)α(t) + ḃ(t) γ(t)) dt
]

Also, formally: det(a(T )) = exp
[ T∫
−T

tr(a−1(t)ȧ(t)) dt
]

Individually, the traces do not converge but put together the trace converges and gives:

det
[
a−1(T )q(T )

]
= exp

[
−

T∫
−T

tr
[
ȧ(t) (a−1(t)− α(t)) + ḃ(t) γ(t)

]
dt
]

(7.3.1)

In the local trivialization φ on U , this is precisely the C-component of the horizontal lift
g̃(T ) (4.1.4). In other words, parallel transport in the G̃Lres−bundle corresponds to multi-
plication by the right-hand-side of (7.3.1) in local coordinates.
Note, that the expression (7.2.7) is valid everywhere, while (7.3.1) makes sense only in the
neighborhood U of the identity, where a is invertible.
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The corresponding expression for the Mickelsson-Langmann connection is

det
[
a−1(T ) q(T )

]
= exp

[
−

T∫
−T

tr
[
(α(t)− a−1(t))ȧ(t) + β(t)ċ(t)

]
dt
]

(7.3.2)

For a unitary path, these factor corresponds to the phase of the lift of g(T ), up to normal-
ization (cf. §4.1.1). We have said that connection and parallel transport defined on G̃Lres

restricts simply to the unitary case. Still, in case someone suspects hand-waving here, we
show by explicit computation that the lift of a unitary path doesn’t leave
Ũres = G̃Lres ∩

(
U(H)×U(H+)

)
.

Lemma 7.3.1 (Parallel transport stays in Ũres).
Let u(t) , t ∈ I be a (piecewise C1) path in Ures ⊂ GLres and ũ(t) a horizontal lift of u(t)
with initial conditions ũ(0) = [U, r] ∈ Ũres(H) ⊂ G̃Lres(H).
Then ũ(t) ∈ Ũres ∀t ∈ I, i.e. the horizontal lift stays in Ũres.

Proof. If ũ(t) = [u(t), q(t)] is the horizontal lift, consider the path

û(t) := [u(t), p(t)], with p(t) := (q∗(t))−1

Clearly, π ◦ û(t) = u(t) and û(0) = ũ(0) = [U, r] ∈ Ũres. Furthermore, by (7.2.7), using the
fact that u(t) is unitary:

0 = tr
[
(u̇(t)u−1(t))++ − q̇(t)q−1(t)

]
= tr

[
(u(t)u̇∗(t))++ − q∗−1(t)q̇∗(t)

]c.c.
= tr

[
(u(t)u̇∗(t))++ − p(t) ˙p−1(t)

]c.c.
And using

0 =
d

dt

(
u(t)u∗(t)

)
= u̇(t)u∗(t) + u(t)u̇∗(t)

0 =
d

dt
(p(t)p−1(t)) = ṗ(t)p−1(t) + p(t) ˙p−1(t)

we derive
tr
[
(u̇(t)u−1(t))++ − ṗ(t)p−1(t)

]
= 0

Thus, û is also a horizontal lift of u(t) satisfying the same initial condition.
By uniqueness of the horizontal lift it follows that û(t) ≡ ũ(t) and thus
ũ(t) ∈ G̃Lres(H) ∩

(
U(H)×U(H+)

)
= Ũres(H), ∀t ∈ I.
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Chapter 8

Geometric Second Quantization

Parallel Transport was first suggested by E.Langmann and J.Mickelsson as a method to fix
the phase of the second quantized scattering matrix. We will call this method Geometric
Second Quantization. The bundle connection allows us to lift - in a unique way - paths
from the base manifold Ures(H) to the central extension Ũres(H) ⊂ G̃Lres(H) which carries
the information about the geometric phase. It is important that these horizontal lifts are
determined by the connection, i.e. the geometric structure of the bundle only. We will prove
that this fact ensures that the geometric second quantization is causal, i.e. preserves the
causal structure of the one-particle Dirac theory.

We present the method of geometric second quantization in a slightly more general setting as
a method of second quantization of the unitary time evolution. However, the time-evolution
will always require renormalization and the physical significance of the renormalized time
evolution is unclear. We will briefly address this question in the final chapter of this work.

The phase of the second quantized S-matrix, however, is certainly of great practical relevance
for the further formulation of the theory, mainly for the following reason: It is well known
that the vacuum polarization in QED is ill-defined and requires various renormalizations to
be made finite. 1 One reason for this is that the current density, usually defined as

jµ(x) = eΨ(x)γµΨ(x) (8.0.1)

is not a well-defined object in the second-quantized theory.
The best definition for the current-density can be given in terms of the second quantized
scattering operator S by (c.f.[Scha], §2.10)

jµ(x) := iS∗
δ

δAµ(x)
S[A] (8.0.2)

which equals e : Ψ(x)γµΨ(x) : in first order perturbation theory. Here, S[A] is meant as
the map sending the external field A ∈ C∞c (R4,R4) to the corresponding S-operator in
Ũres(H). The current-density itself has to be understood as an operator-valued distribution.
The vacuum-polarization is then well-defined as the vacuum expectation value

〈
Ω, jµ(x)Ω

〉
= i
〈
S Ω,

δS
δAµ(x)

Ω
〉

1See [Dys51] for a very honest computation.
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or, more precisely, as a distribution evaluated at the test-function A1,〈
Ω, j[A](A1)Ω

〉
=i

∂

∂ε

∣∣
ε=0

〈
Ω, S−1(A)S(A+ εA1)Ω

〉
=i

∂

∂ε

∣∣
ε=0

log
〈
Ω, S−1(A)S(A+ εA1)Ω

〉
Here, the phase of the S-operator becomes practically relevant. If we separate the phase-
freedom, we find

S[A] = S̃[A]eiϕ[A] ⇒ δS
δAµ(x)

= i
δϕ

δAµ(x)
S + eiϕ

δS̃
δAµ(x)

(8.0.3)

and for the vacuum-polarization:

〈
Ω, jµ(x)Ω

〉
= i
[
i
δ ϕ[A]
δAµ(x)

+
〈
S̃ Ω,

δS̃
δAµ(x)

Ω
〉]

(8.0.4)

The second term on the right-hand side is okay, but the first term does obviously require a
well-defined prescription for the phase of the S-matrix. We will try to provide this now.

8.1 Renormalization of the Time Evolution
Our motivation for studying the parallel transport was the second quantization of the Dirac
time-evolution. That is, given an external field

A = (A0,−A) ∈ C∞c (R4,R4)

and the corresponding Dirac time-evolution UA(t1, t0) between t0 and t1 ∈ R we want to lift
the path

s 7→ UA(t1 + s, t1), s ∈ [0, t2 − t1] (8.1.1)

to the group Ũres(H) that acts on the Fock space. This would provide a well-defined pre-
scription for the implementation of the time evolution on the Fock space, including phase.
In particular, since the interaction has time-support contained in some interval [−T, T ] for
T large enough,

t 7→ UA
I (t,−T ), t ∈ [−T, T ] (8.1.2)

is a path from the identity IdH to the S-Matrix S = UA
I (T,−T ) = UA

I (∞,−∞).

However, as the theorem of Ruijsenaars (see 1.2.1 and especially 6.1.1) tells us, these paths
are typically NOT in Ures(H), in fact they will leave Ures(H) as soon as the spatial compo-
nent A of the interaction potential becomes non-zero. To handle this problem and be able
to apply the method of parallel-transport, Langmann and Mickelsson introduced a renor-
malization of the time evolution, such that the renormalized time evolution UA

ren(t, t′) stays
in Ures(H) ∀t, t′ ∈ R and UA

ren(T,−T ) = UA
I (T, T ) = S.

Concretely, they prove the following:

Theorem 8.1.1 (Langmann,Mickelsson 1996).
Let A ∈ C∞c (R4,R4) a 4-vector potential and U(t, s) the corresponding Dirac time evolution.
There is a family of unitary time evolutions Tt(A), t ∈ R such that the modified time
evolution

T−1
t (A)U(t, t′) Tt′

stays in Ures(H). 2

Moreover, T(A) can be chosen such that Tt(A) = 1 if A(t) = 0 and ∂tA(t) = 0.

2Note that the roles of T and T−1 are interchanged in out convention compared to [LaMi96].
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8.1. RENORMALIZATION OF THE TIME EVOLUTION

An explicit expression for the operators Tt(A) is given in [Mi98]. With the abbreviations
/A =

∑
µ α

µAµ and /E := ∂t/A− /pA0 + [A0, /A] it reads

T(A) = exp
( 1

4
[
D−1

0 , /A
]
− 1

8
[
D−1

0
/AD−1

0 , /A
]
− i

4
D−1

0
/ED−1

0

)
(8.1.3)

In the original paper of Langmann and Mickelsson the renormalization appears as a mere
technical tool - the meaning of the unitary transformations Tt(A) is not discussed. Apart
from the question of differentiability which will be the focus of the next section this meaning
becomes more clear by the following considerations:

Let U(t, t′) by the unitary evolution for a fixed external field A and let T(t), t ∈ R a family
of unitary operators such that T(t)−1U(t, t′) T(t′) ∈ U0

res(H), ∀t, t′ ∈ R and T(t) = 1 for |t|
large enough. In particular, for any r � 0 outside the time-support of A this means

T∗(t)U(t, r)[H+] = [H+] ∈ Pol(H)/ ≈0

⇐⇒ U(t, r)[H+] = T(t)[H+] ∈ Pol(H)/ ≈0

⇐⇒ U(t, r) ∈ U0
res(H, [H+];H,T(t)[H+])

Hence, by the composition property (2.1.3):

U(t, t′) = U(t, r)U(r, t′) ∈ U0
res(H,T(t′)[H+];H,T(t)[H+])

We see that we can either use the Tt-operators to “renormalize” the unitary time evolution,
i.e. transform it back to Ures(H) and implement it on a fixed Fock space. Or we can use
them to identify the right polarization class at any time t and implement the time evolution
as unitary transformations between time-varying Fock spaces as in Ch. 6 .
Recall, that the construction of a Fock space does not only involve the choice of a particular
polarization class, but also the choice of a Dirac sea class (or a class of admissible bases in
the geometric construction). We can use the unitary operators T(t) to pick out one reference
state (≈ vacuum) in the right polarization class at every time. In the language of the infinite
wedge space construction:

Let Φ0 : ` → H+ ∈ Ocean(H+) be the Dirac sea corresponding to the vacuum state in the
initial Fock space FS0 with S0 = S(Φ0). Then T(t)Φ0 is a Dirac sea with image in the
polarization class [U(t, r)H+]≈0 and we can implement U(t, r) as a unitary map between
the Fock spaces FS0 and FSt

, where St = S(T(t)Φ0).

The dual point of view corresponding to a “renormalization of the time evolution” would
be that the Tt-operators “rotate” the Dirac seas back into the original Fock space in a
well-defined manner. We express this duality in the following proposition:

Proposition 8.1.2 (Interpretation of the renormalization).
Let UA(t, t′) be the unitary time evolution for an interaction potential A ∈ C∞c (R4,R4).
Then, every family of unitary operators T(t), t ∈ R satisfying

i) T(t)∗ UA(t, t′) T(t′) ∈ Ures(H),∀t, t′

ii) T(t) has compact support in time, i.e. T(t) = 1 for all |t| large enough.

determines a family of vacua for the time-evolution as in [Def. 6.2.2].
Conversely, every family of vacua determines a family of unitary operators satisfying i) and
ii), modulo the equivalence relation T ∼ T′ :⇐⇒ T |H+ = T′ |H+

Proof. Let Φ0 be the free vacuum state as in [Def. 6.2.2] (or any other fixed Dirac Sea in
the initial class). Given a family of unitary operators as above, we set Φ(t) := T(t)Φ0. This
defines a family of vacua for the time-evolution because Φ(t) ∈ Ocean(C(A(t))), ∀t ∈ R and
Φ(t) = Φ0 for |t| large enough.
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8.1. RENORMALIZATION OF THE TIME EVOLUTION

Conversely, given a family of vacua for the time evolution we note that by definition
Φ(t) ◦Φ∗0(H+) ∈ C(A(t)), ∀t and Φ(t) ◦Φ∗0 = Φ0 ◦Φ∗0 = IdH+ for |t| large enough. Therefore,
the operators Φ(t) ◦Φ∗0 can be extended to the whole Hilbert space by any choice of unitary
maps H− → im

(
Φ(t) ◦ Φ∗0(H+)

)⊥ and will satisfy the requirements i) and ii).
Obviously, the assignments are inverse to each other.

With this understanding it becomes clear that such a renormalization is not at all unique,
but represents a very particular choice. It seems to me that this point was not evident to
Langmann and Mickelsson by the time of their 96’ publication, although they pick up the
issue in a later publication [Mi98]. In [LaMi96], however, they do not discuss if and how
their results depend on the particular choice of the renormalization. The bad news is that
it turns out that the full freedom of the geometric phase is now contained in this freedom of
choosing a renormalization. It merely gets a different name: geometrically, it is described
by the holonomy group of the principle bundle. We will make this more precise in §8.3.

To study the renormalizations more properly, we propose a general definition:

Definition 8.1.3 (Space of Vector Potentials).

Let A be the space of 4-vector potentials equipped with a suitable topology and differentiable
structure.

In our context, A = C∞c (R4,R4) and we write A 3 A = (Aµ)µ=0,1,2,3 = (A0,−A).

On a general space-time R×M withM a compact manifold without boundary A corresponds
to the space A = Ω1(R×M,R) of smooth connection one-forms3

By A(t) we always mean the function A(t, ·) ∈ C∞c (R3,R4) for fixed t ∈ R.

Definition 8.1.4 (Renormalization).

We call a mapping T : R×A → U(H) a quasi-renormalization if it satisfies

i) Tt(0) ≡ 1

ii) T(t,A) = Tt(A) ∈ U0
res

(
H, [H+],H, C(A(t))

)
, ∀t ∈ R

iii) Tt(A) depends only on A(t) and ∂kA(t) for k = 0, 1, ..., n and some n ∈ N
We call T a renormalization if it has the additional property that

iv) For any A ∈ A, the renormalized (interaction picture) time evolution

UA
ren(t, s) = eitD0 T∗(t)UA(t, s) T(s)e−isD0 (8.1.4)

is continuously differentiable in t w.r.to the differentiable structure of GLres(H).

iii) formulates a requirement of causality. i) and iii) together imply that Tt(A) = 1 whenever
A vanishes in some open time-interval around t. In particular, this assures that a
(quasi-)renormalization doesn’t alter the S-operator for compactly supported interactions.

Note that by our definition, the renormalized time-evolution is an interaction-picture time-
evolution.

Examples 8.1.5 (Quasi-/Renormalizations).

• The renormalization T(A) constructed in [LaMi96] is a renormalization in the sense
of Def. 8.1.4 (with n=2).

• The operators eQ
A(t)

introduced in §6.1. provide a quasi-renormalization (with n=0),
but not a renormalization (c.f. Cor. 8.1.11).

3more generally, the one-forms take values in the Lie algebra of the gauge group which for QED
is just Lie(U(1)) = R.
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8.1. RENORMALIZATION OF THE TIME EVOLUTION

Unfortunately, to our knowledge these are the only two examples that have been explicitly
constructed so far.

In the sense of 8.1.2, we can also interpret a quasi-renormalization as a choice of vacua or
a choice of Fock spaces depending only on the A-field locally in time. In particular, if the
quasi-renormalization depends only on A(t) and not on time-derivatives it makes sense to
regard it as determining one Fock space over every polarization class C(A).
Note that this is a slightly different perspective than choosing a family of Fock spaces for a
fixed time-evolution.

Remark 8.1.6 (Furry picture).
The most obvious way to transform the time evolution back to Ures(H) would be simply to
set Tt(A) = UA(t,−∞). Then, the renormalized time-evolution is 4

U∗I (t,−∞)UI(t, t′)UI(t′,−∞) = 1, ∀t, t′ ∈ R

This approach is also known as “Furry picture”. The only problem with the Furry picture:
nothing’s happening. The polarization, i.e what we call “particles” and “antiparticles” evolves
in just the same way as the states themselves:

H = U(t,−∞)H+ ⊕ U(t,−∞)H− (8.1.5)

for each instantaneous time t ∈ R. What we end up caling the “vacuum” at time t is exactly
the state into which the original (t → −∞) vacuum has evolved. There is no particle
creation or annihilation, an empty universe remains empty. For the obvious reasons, we
are not satisfied with that. By theorem 6.1.2 we can assure that the S-matrix is in Ures an
hence make sense of the particle/antiparticle - picture at least asymptotically. Before the
interaction is switched on and after it is switched off, we can determine the particle content
with respect to the same vacuum and the question of how many particles and anti-particles
were created has a well-defined answer. Therefore, we will demand from the renormalization
to allow us to do this, at least.

8.1.1 Renormalization - Differential Form
Now we shift our focus to the question of differentiability, which makes all the difference be-
tween a quasi-renormalization and a proper renormalization. In order to apply the method
of parallel transport, we need the time-evolution to be differentiable - notably with respect
to the differentiable structure of GLres (or Ures(H), respectively) which is induced by the
norm ‖·‖ε = ‖·‖+ ‖[ε, ·]‖2 on the Banach-algebra Bε(H). This requirement is not harmless.
The interaction picture time-evolution is in general differentiable in the operator norm, but
in addition we will need to control the Hilbert-Schmidt norms.

Renormalization of the Interaction Hamiltonians

Recall that if UA = UA(t, t′) is a solution of

i∂t U
A(t, t′) = HA(t)UA(t, t′), UA(t′, t′) = 1 (8.1.6)

with the Hamiltonian HA = D0 + e
3∑

µ=0
αµAµ = D0 + V A(t),

then UA
I (t, t′) = eitD0UA(t, t′)e−it

′D0 solves the equivalent equation

i∂t U
A
I (t, t′) = VI(t)UA

I (t, t′), UA
I (t′, t′) = 1 (8.1.7)

with VI(t) = eitD0V A(t)e−itD0 . This is called the interaction picture.

4here, t = −∞ is understood as a large negative t outside the time-support of the interaction.

91



8.1. RENORMALIZATION OF THE TIME EVOLUTION

The basic idea is that in the interaction picture, the free time evolution is absorbed in
the states so that the remaining time evolution is generated by the interaction-part of the
Hamiltonian only. One advantage of this procedure is that VI(t), in contrast to HA(t), is a
bounded operator and thus the solution of (8.1.7) is given for all finite times by the Dyson
series

UA
I (t, t′) =

∞∑
n=0

Un(t, t′),

U0(t, t′) ≡ 1, Un+1(t, t′) = −i
t∫

t′

hA(s)Un(s, t′)ds

(8.1.8)

Now let Tt = Tt(A) be a renormalization for this time evolution and consider the renormal-
ized Schrödinger-picture time-evolution

U ′(t, t′) = T∗t U
A(t, t′) Tt′ = e−itD0UA

ren(t, t′)eit
′D0

Differentiation with respect to t yields:

i ∂t U
′(t, t′) = i (∂t T∗t )U

′(t, t′) Tt′ + T∗t H
A(t)U ′(t, t′) Tt′

=
[
i (∂t T∗t ) Tt + T∗t H

A(t) Tt
]

T∗t U
′(t, t′) Tt′

=
[
−i T∗t (∂t Tt) + T∗t H

A(t) Tt
]
U ′(t, t′)

And we can rewrite [
−i T∗t (∂t Tt) + T∗t H

A(t) Tt
]

=:
(
D0 + iV A

ren

)
with

V A
ren =

[
T∗t V

A Tt + T∗t [D0,Tt]− iT∗t (∂t Tt)
]

(8.1.9)

So the renormalized time evolution is generated by the Hamiltonian HA
ren = D0 + V A

ren

with the “renormalized” interaction (8.1.9).

Theorem 8.1.7 (Generators of renormalized time evolution).
Let V(ren)(t) be a (renormalized) interaction potential . We set h(t) = eitD0V (t)e−itD0 .
Let U(t, t′)(= Uren(t, t′)) be a solution of i ∂t U(t, t′) = h(t)U(t, t′)

U(t′, t′) = 1

in U(H) given by the norm-convergent Dyson-series (8.1.8).

If U(t, t′) is a solution in Ures(H) w.r.to the differentiable structure induced by the norm
‖·‖ε then [ε, V (t)] ∈ I2(H),∀t ∈ R i.e. V (t) and h(t) lie in the Lie algebra ures of Ures.

Conversely, if [ε, V (t)] ∈ I2(H),∀t ∈ R, then U(t, t′) is a solution in Ures(H) ⊂ GLres(H)
w.r.to the norm ‖·‖ε if additionally we assume that∫

R
‖[ε, V (t)]‖2 dt <∞ (8.1.10)
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What is actually proven in [LaMi96] for the renormalization constructed by Langmann and
Mickelsson is that the renormalized interaction stays in ures. It follows that the unitary
transformations they construct are indeed a renormalization in the sense of Def. 8.1.4.

Note that for U(t, t′) ∈ Ures(H) it would suffice that

t∫
t′

[
ε , h(t)

]
dt =

t∫
t′

[
ε , eiD0tV (t)e−iD0t

]
dt <∞, ∀t, t′ (8.1.11)

which is much less restrictive than (8.1.10).

The proof of the theorem requires some estimates.

Lemma 8.1.8 (Estimates).
For the terms in the Dyson series (8.1.8) we get the norm-estimates

‖Un(t, t′)‖ ≤ 1
n!

( t∫
t′

‖V (s)‖ds

)n
, ∀n ≥ 0 (8.1.12)

and

‖[ε, U1(t, t′)]‖2 ≤
t∫

t′

‖[ε, V (s)]‖2 ds

‖[ε, Un(t, t′)]‖2 ≤
1

(n− 2)!

t∫
t′

‖[ε, V (s)]‖2 ds

( t∫
t′

‖V (r)‖dr

)n−1

, ∀n ≥ 1

(8.1.13)

Proof. See appendix A3.

Proof of the Theorem. First we note that V (t) is Hermitian with [ε, V (t)] ∈ I2(H) if and only
if VI(t) = eitD0V (t)e−itD0 is, because eitD0 is unitary and diagonal w.r.to the polarization
H = H+ ⊕ H−. Now, suppose U(t, t′) is in Ures(H) for all t, t′ and is differentiable in the
norm ‖·‖ε, solving i ∂t U(t, t′) = VI(t)U(t, t′).
Then, for any fixed t,

−i VI(t) =
d

ds

∣∣∣
s=0

U(t+ s, t′)U∗(t, t′) ∈ TeUres
∼= (−i) · ures

Conversely, if
∫

R‖[ε, V (t)]‖2 dt < ∞ the Hilbert-Schmidt norm estimates in the previous
Lemma show that U(t, t′) ∈ Ures(H), ∀t, t′ and

U(t, t′) = 1− i
∫ t

t′
VI(s)ds+O(|t− t′|2) in Ures(H)

so that indeed i ∂t U(t, t′) = VI(t)U(t, t′) as long as s 7→ VI(s) is continuous in ures.

Corollary 8.1.9 (Time Evolution always requires renormalization).
Let A = (Aµ)µ=0,1,2,3 = (φ,−A) ∈ A. The interaction potential

V (t) = e αµAµ = −e α ·A+ e φ (8.1.14)

is not in ures unless A ≡ 0 and ∇φ ≡ 0.
Consequently, UA

I (t, t′) is not differentiable in the ‖·‖ε-norm, except for those cases.
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Proof. We apply Theorem 8.1.7: We know that UA
I (t, t′) is not even in Ures(H), unless

A ≡ 0, and hence V (t) cannot be in ures unless A ≡ 0.
Now consider a purely electric potential V (t) = e φ where φ(x) = φ(x) · 1C4 has to be
understood as the multiplication operator in H = L2(R3,C4). Suppose φ is in ures, i.e.
‖[ε, φ]‖2 ∈ I2(H). This would imply that its exponential, eiφ is in Ures(H). But this is a
gauge-transformation which by Thm. 6.2.3 is in Ures(H) if and only if ∇φ(t, x) ≡ 0.

Remark: In general, it is merely true that
t∫
t′

[ε, eiD0tφ(t, x)e−iD0t] < ∞ ([Ruij77]) which

implies Uφ(t, t′) ∈ Ures(H) but not the required differentiability.

This is very bad news. We see:
Even if the time-evolution stays in Ures(H), it will nevertheless - except for the most triv-
ial cases - require renormalization to be made differentiable as required for parallel transport.

8.1.2 Outlook: On Renormalizations
Obviously, the renormalizations will play a crucial role in our further discussion and we
should try to understand them a little better.

For the quasi-renormalizations, we have already understood that their main role is to identify
for any external field A ∈ A the right polarization classes C(t) into which the time-evolution
UA(t,−T ) is mapping. We also know that these polarization classes depend only on the
spatial part of the electromagnetic potential at fixed time t, i.e C(t) = C(A(t)). Therefore,
the operators eQ

A(t)
actually require too much information. It should be possible to construct

a quasi-renormalization that depends only the spatial part A(t) of the vector potentials and
only at fixed times t. One could call such a quasi-renormalizationminimal because it requires
only the minimal amount of information from the A-field.

Such a quasi-renormalization would be ideal to use for a “global” choice of Dirac Sea
classes (i.e. Fock spaces) for the second quantization on time-varying Fock spaces, for the
“minimality” of the quasi-renormalization assures that we would change Fock spaces only if
necessary, i.e. only if the polarization class really changes.

We formalize this in the following Conjecture:

Conjecture (Minimal Quasi-Renormalization).
Let A3 = C∞c (R3,R3) (or A3 = Ω1(M,R)) be the space of time-independent space-like
vector potentials. There exists a map T : A → U(H) satisfying

i) T(0) = 1

ii) T(A) ∈ U0
res

(
H, [H+],H, C(A)

)
, ∀A ∈ A3

This would then be a quasi-renormalization which depends only on the spatial part of the
external field A, locally in time. If Φ0 ∈ Ocean(H+) is the free vacuum state,
C(A) 7−→ S

(
T(A)Φ0

)
would define a section in the formal bundle of Oceans/ ∼ over Pol(H).

Could it be possible to define an actual renormalization which is “minimal” in this sense?
The answer is no. And the reason is Cor. 8.1.9 saying that even for a purely electric poten-
tial the time evolution requires renormalization to become differentiable in GLres(H).

However, we could hope that there exists a renormalization which depends only on the A-field
itself, locally in time, and not on its time-derivatives. Then, the renormalized time-evolution
would depend only on A(t) and the renormalized Hamiltonian on A(t) and Ȧ(t).
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For such a renormalization we derrive:

Lemma 8.1.10 (Strictly Causal Renormalizations).
Suppose T = Tt(A) was a renormalization in the sense of [Def.8.1.4] that depends only on
A(t) and not an any time-derivatives. Then:[

ε ,T∗(A(t)) ∂t T(A(t))
]
∈ I2(H) (8.1.15)

for all A ∈ A and all t ∈ R.

Proof. Given A ∈ A we can write Tt := Tt(A) = T(A(t)), since Tt(A) depends only on A(t).
As T is supposed to be a renormalization, we know from Thm. 8.1.7(Generators of the
renormalized time evolution) and the differential form of the renormalization (8.1.9), that
it must satisfy [

T∗t V
A(t) Tt + T∗t [D0,Tt]− iT∗t (∂t Tt)

]
∈ ures (8.1.16)

forall A ∈ A and all t ∈ R.
Now, for any fixed t we can take a vector potential A′ ∈ A which is constantly equal to A(t)
in a time-intervall around t, i.e. A′(s) = A(t), ∀ s ∈ (t − ε, t + ε). But then for A′, the last
term in (8.1.16) vanishes at t and the first two terms must agree with those for A, because
T depends only on A(t).
We conclude that already T∗(A(t))V A T(A(t)) + T∗(A(t))[D0,T(A(t))] ∈ ures.
Thus, it must also be true that −i T∗(A(t)) ∂t T(A(t)) ∈ ures.

Corollary 8.1.11 (eQ
A(t)

is not a renormalization).
The quasi-renormalization eQ

A(t)
constructed in [DeDuMeScho] is not a renormalization.

Proof. T(A(t)) := eQ
A(t)

is a quasi-renormalization which, by construction, depends only on
A(t) and not on time-derivatives. Suppose it was not only a quasi-renormalization, but a
renormalization. Then, the previous Lemma implies [ε , Q̇(A(t))] ∈ I2(H).
But this cannot be true. In [DeDuMeScho] Lemma III.7 it is proven that Q̇Q is always
Hilbert-Schmidt, but [ε,QA] ∈ I2(H) if and only if A = 0.Therefore, [ε, Q̇] is not Hilbert-
Schmidt unless A ≡ 0.5

5Actually, the operators Q and Q̇ are odd w.r.to H = H+ ⊕H−, so its superfluous to take the
commutator with ε.
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8.2 Geometric Second Quantization

Finally, we define the method of second quantization by parallel transport in the
G̃Lres(H) π−−→ GLres(H) bundle w.r.to the connection ΓΦ defined by the one-form (7.2.3).

In the following let A ∈ C∞c (R4,R4) and UA
I (t, t′), t, t′,∈ R∪{±∞} the unitary (interaction

picture) time evolution for the external field A. After applying a suitable renormalization T
as discussed in the last section, the renormalized time-evolution UA

ren(t, t′) stays in Ures(H)
and is continuously differentiable in t with respect to the differentiable structure of G̃Lres(H).

We define the lift of the renormalized time evolution to the group Ũres(H) acting on the
Fock space by the following prescription:

For t1 ≥ t0 ∈ R we define the time evolution

U(t, t0), t ∈ [t0, t1] (8.2.1)

between t1 and t0 on the Fock space as the ΓΦ-horizontal lift
of the renormalized one-particle time evolution UA

ren(t, t0), t ∈ [t0, t1]
to Ũres(H) with initial condition U(t0, t0) = 1eUres

In other words: for t1 ≥ t0 ∈ R ∪ {±∞} we define the lift U(t1, t0) ∈ Ũres(H) of UA
ren(t1, t0)

as the parallel transport of 1 ∈ Ũres(H) along the path

s→ UA
ren(t0 + s, t0), s ∈ [0, t1 − t0]

in Ures(H) w.r.to the connection determined by Φ.

This procedure gives a well-defined lift of the renormalized time evolution to the fermionic
Fock space. In particular, it fixes the geometric phase of the implementations in a smooth
way.

Figure 8.1: Lifting the time evolution by parallel transport.

96



8.2. GEOMETRIC SECOND QUANTIZATION

Second Quantization of the S-matrix

Since A has compact support in time, so do UA
I (·, ·) and the renormalization Tt(A). There-

fore, there exists T > 0 such that UA
ren(t1, t0) = UA

I (T,−T ) whenever t1 ≥ T, t0 ≤ −T .
In particular, for any such T

S = UA
I (∞,−∞) = UA

ren(T,−T )

and the S-matrix is unaltered by the renormalization. Therefore,

γ : s −→ UA
ren(−T + s,−T ), s ∈ [0, 2T ] (8.2.2)

is a differentiable path from 1 to S in Ures(H) ⊂ GLres(H). The second quantization S of
the scattering operator S as then defined as the parallel transport of 1 ∈ Ũres(H) along γ.

This procedure determines the second quantization in a well-defined manner. However, as
we will see, the phase of the second quantized S-matrix will depend on the choice of the
renormalization. Therefore, we can write S = S[A,T].

Second Quantization of the Generators

A connection on the principle bundle allows us to lift vector fields from the base-manifold
to the principle bundle in a unique way. In our setting, this means that we can lift the
renormalized interaction Hamiltonians in a unique way to the universal covering of the Lie
algebra. One might call this a second quantization of the Hamiltonians.

Theorem 8.2.1 (Second Quantization of the Hamiltonian).

The connection ΓΦ on Ũres(H) defines a unique (horizontal) lift of the renormalized inter-
action Hamiltonians

h(t) = h[A, T ](t) = eiD0tV A
ren(t)e−iD0t (8.2.3)

from ures to ũres. V A
ren is the renormalized interaction (8.1.9).

These lifts generate the time evolution U(t, t′) on the Fock space.

Diagrammatically, if Γ denotes second quantization of unitary operators and dΓ second
quantization of Hermitian operators we have

U(t, t′) d //

π

��

h(t)

π̇

��
UA(t, t′)

Γ

OO

d // hA(t)

dΓ

OO

What is essential here (and not expressed by the diagram) is that the lift of the Hamiltonians
are completely determined by the geometric structure alone.

Proof of the Theorem. We identify the Lie algebras ures of Ures(H) and ũres of Ũres(H) with
(−i times) their tangent spaces at the identity and define h(t) ∈ ũres as the horizontal lift
of h(t) ∈ ures with respect to the connection ΓΦ.
Now, for fixed t′, UA

ren(t, t′) satisfies i ∂t UA
ren(t, t′) = h(t)UA

ren(t, t′).
By construction, t 7→ U(t, t′), t ∈ [t′,∞) is the integral curve to the horizontal lift of the
vector field −i hA(t)UA(t, t′) along UA(t, t′), t ∈ [t′,∞). But, since the connection is right-
invariant, −i h(t) U(t, t′) is horizontal for all t and it is obviously a lift of −i h(t)UA

ren(t, t′)
to the tangent space of Ũres. It follows that U(t, t′) satisfies

i ∂t U(t, t′) = h(t) U(t, t′)

for all t, t′ ∈ R as was claimed.
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8.2.1 Causality

For the second quantized time-evolution U(t, t′) we can derive the following important result:

Theorem 8.2.2 (Semigroup-structure of the time evolution).
The lifted time evolution U(t, t′) in Ũres(H) defined by horizontal lifts as above preserves the
semigroup-structure of the time evolution i.e. satisfies

U(t, t) = 1eUres
∀ t ∈ R

U(t2, t1) U(t1, t0) = U(t2, t0) ∀ t0 < t1 < t2 ∈ R ∪ {±∞}
(8.2.4)

These properties justify its denomination as a “time evolution” on the Fock space.

Proof. U(t, t) = 1,∀ t ∈ R holds by construction. For the composition property, note that
U(t2, t0) is the end-point of the horizontal lift of

s→ UA
ren(t1 + s, t0), s ∈ [0, t2 − t1]

with starting point U(t1, t0). On the other hand, consider the curve

s→ U(s, t1) U(t1, t0), s ∈ [0, t2 − t1]

It has the same starting point U(t1, t0) ∈ Ũres and projects down to π
(
U(s, t1) U(t1, t0)) =

UA
ren(s, t1)UA

ren(t1, t0) = UA
ren(s, t0) in Ures. Furthermore, d

ds U(s, t1) U(t1, t0) = (RU(t1,t0))∗ U̇(s, t1)
is horizontal, because X(s) := U̇(s, t1) is horizontal by construction of the lift and the con-
nection one form Φ is invariant under right-action of Ũres i.e.

Φ
(
(RU(t1,t0))∗X(s)

)
= (RU(t1,t0))∗Φ (X(s)) = Φ(X(s)) = 0

By uniqueness of the parallel transport it follows that both curves are actually the same.
In particular U(t2, t1) U(t1, t0) = U(t2, t0).

Note that with the left-invariant Langmann-Mickelsson connection, the same argument
wouldn’t work. We could obtain the analogous result by lifting the unitary evolution “back-
wards” in time, i.e. lifting the path

s→ UA
ren(t1, t1 − s), s ∈ [0, t1 − t0]

This seems more artificial from a physicists point of view. Therefore, we proposed the right-
invariant connection. This convention fits better with the form of the time evolution where
subsequent time-steps correspond to unitary operators multiplied from the left.

Theorem 8.2.2 might suggest that the additional structure of a connection on the Ũres-bundle
and the technique of parallel transport are required to lift the semi-group structure. This is
not quite the case, as the following proposition shows:

Proposition 8.2.3 (Lifting the semi-group structure).
Let U(t, t′), t, t′ ∈ R a two-parameter semi-group in Ures(H) with compact support in time.

For all t ∈ R choose any lift Ũ(t,−∞) of U(t,−∞) to Ũres and set

Ũ(t1, t0) := Ũ(t1,−∞) Ũ(t0,−∞)−1

for t1 ≥ t0 ∈ R ∪ {±∞}. The so defined lift has the semigroup properties (8.2.4).
If t→ Ũ(t,−∞) is continuous/differentiable then Ũ(t, t′) is continuous/differentiable in t.
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Proof. For t2 ≥ t1 ≥ t0 ∈ R we find

Ũ(t2, t1) Ũ(t1, t0) = Ũ(t2,−∞) Ũ(t1,−∞)−1 Ũ(t1 −∞) Ũ(t0,−∞)−1

= Ũ(t2,−∞) Ũ(t0,−∞)−1 = Ũ(t2, t0)

And of course Ũ(t, t) = Ũ(t,−∞) Ũ(t,−∞)−1 = 1,∀t ∈ R.

This construction is just the analogue of [Prop. 6.2.1] on a fixed Fock-space.

To fully appreciate the virtue of the geometric construction of the time evolution we need to
understand the difference between the lift constructed in the previous proposition and the
lift obtained by parallel-transport. Obviously, the semi-group structure, as it is so surpris-
ingly cheap, cannot be the whole point.

The composition property

Ũ(t2, t1) Ũ(t1, t0) = Ũ(t2, t0),∀t0 < t1 < t2 ∈ R (8.2.5)

is often related to the physical principle of causality. But so far, this is actually too big
a word. The algebraic relationships by themselves are merely a question of consistency.
They are what justifies at all the title “time evolution” for a two-parameter group of unitary
operators. To relate the semi-group structure to something like a causal structure of the
physical theory, we have to take a closer look at the construction of the (second quantized)
time evolution and what it involves.

For the construction in Prop. 8.2.3 we first need suitable lifts of the one-particle time
evolution operators U(t,−∞), t ∈ R. This has the effect that the (second quantized) time
evolution between two times t0 < t1 depends on the entire history of the system, i.e. on
the A-field at times t ∈ (−∞, t1]. If we altered the electromagnetic fields in the distant past
t � t0 we might end up with a different phase for the time evolution between t0 and t1.
This seems little desirable from a physical point of view. What we loose is not “causality”
per se but rather what one might call the Cauchy - property 6 of the physical system: that
the future evolution of the system is completely determined by the laws of physics, given
the current state of the system at any time t0. 7

If in the construction of Prop. 8.2.3 we used a different “reference time” than t = −∞
(which we could do), the situation would be even worse. The time evolution of the system
before that particular reference time would then depend on the electromagnetic potential in
the future. This, we would rightfully call a violation of causality.

In the geometric construction, the lift of the renormalized time evolution and its gen-
erators is determined solely by the connection i.e. by the geometric structure of the prin-
ciple bundle. Thus, it depends only on the corresponding (“first quantized”) objects in the
one-particle theory and the renormalization used to maintain them inside Ures or ures, re-
spectively. The second quantized time evolution will therefore preserve the causal structure
of the one-particle Dirac theory as well as the renormalization does. Therefore, we have
required that the renormalization is causal in the sense that Tt(A) depends only on A(t)
and its time-derivatives up to a finite order n. Using such a renormalization, the geomet-
ric construction assures that U(t1, t0) depends on the external field A(t) (and its first n
time-derivatives) only at times t ∈ [t0, t1]. Similarly, for fixed t ∈ R, the lifted interaction
Hamiltonian h(t) depends only on A(t) and its first n+1 time-derivatives at t.

Translating these insights back into the language of time-varying Fock spaces, we derive:

6Or “Markov property”, if we borrow the language of probability theory
7Or on a space-like Cauchy-surface in the general relativistic case.
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Corollary 8.2.4 (Composition Property on time-varying Fock spaces).
Given a unitary time-evolution UA(t, t′), there exists a family of infinite-wedge-spaces (Ft)t
and right-operations R(t, t′) such that

Ũ(t, t′) := LU(t,t′)RR(t,t′) : Ft −→ Ft′ , ∀t, t′ ∈ R

and
Ũ(t2, t1) Ũ(t1, t0) = Ũ(t2, t0), ∀ t0 < t1 < t2 (8.2.6)

Moreover, for all t > t′ ∈ R, the right-operation R(t.t′) depends on the A-field (and possibly
its time-derivates) only in the time-interval [t′, t].

This is a little improvement over Prop. 6.2.1. However, the result is still not fully satisfy-
ing because the Fock spaces themselves are chosen by the renormalization. In particular,
this choice is restricted by the condition that the renormalized time-evolution must be dif-
ferentiable in Ures(H) which is obviously not a sensible requirement from the perspective
of time-varying Fock spaces. In particular, we will leave the Fock space even if the time-
evolution stays (but is not norm-differentiable) in Ures(H).

The Causal Phase of the S-Matrix

If one cares about the S-matrix only, these causal properties of the second-quantized (renor-
malized) time-evolution might be of secondary interest. A better formulation of causality in
terms of the second quantized S-matrix is the following:

Given an external field
A = A1 + A2 ∈ A (8.2.7)

which splits in two parts with disjoint supports in time, i.e. ∃ r ∈ R such that

suppt A1 ⊂ (−∞, r) , suppt A2 ⊂ (r,+∞) (8.2.8)

That is, the field A1 vanishes for times t ≥ r and the field A2 for t ≤ r.
Then, the phase of the S-matrix is causal if

S[A] = S[A1 + A2] = S[A2] S[A1] (8.2.9)

The importance of this causality-condition was stressed particularly by G.Scharf ([Scha]).
But indeed, the discussed causality of the geometric second quantization does imply causality
in the sense of Scharf: As the A-field vanishes around time r, so does the renormalization.
Therefore:

UA
ren(r,−∞) = UA(r,−∞) = S[A1]

UA
ren(+∞, r) = UA(+∞, r) = S[A2]

Hence, by construction of the lift and Theorem 8.2.2:

S[A] = U(+∞,−∞) = U(+∞, r)U(r,−∞) = S[A2] S[A1] (8.2.10)

We note that this finding seems to contradict the results in [Scha], where it is suggested
that the phase of the second quantized scattering operator is completely determined by
the causality condition (8.2.9). The geometric second quantization is causal, still there are
plenty of freedoms left: we are free to choose a different G̃Lres-invariant connection and/or
different renormalizations of the time evolution.
How the latter can affect the phase of S is discussed in the following section.
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8.3 Holonomy of the Bundles
We have seen that the choice of the renormalization is not unique. Therefore, the renor-
malized time evolution is - without additional requirements - more or less arbitrary and the
urging question arises how seriously it can be taken and what it can actually tell us about
the physical system. However, we may hope that the parallel transport fixes the phase of the
second quantized S-matrix by the method of parallel transport. This was the result stated
in [LaMi96]. But here, the ambiguity in the renormalization is also problematic.

If we use two different renormalizations to implement the S-matrix to the Fock-space via
parallel transport, we have two different curves in Ures(H) ⊂ GLres(H), both starting at the
identity and ending in S, and therefore two different horizontal lifts in Ũres. Naturally, the
question arises, how the result i.e. the phase of the scattering matrix depends on the choice
of the renormalization. Geometrically, this new freedom is expressed by the holonomy group
of the bundle Ũres(H) π−→ Ures(H).

Figure 8.2: PT along different paths can end in different points in the fibre over S

Consider a principle-G-bundle E π−→ M for a (finite dimensional) Lie group G, over a con-
nected, paracompact manifold M . Let E be equipped with a connection Γ. Let u0, u1 two
points in the base-manifold M and c, c′ : [0, 1] → M two piecewise differentiable curves in
M from u0 to u1 . We take a point p ∈ π−1(u0) ⊂ E in the fibre over the starting point u0.
We want to know if the parallel transport of p along c is the same as the parallel transport
of p along c′. In other words: if the horizontal lifts of c and c’, both with starting point
p ∈ π−1(u0), end up in the same point in the fibre π−1(u1) above u1. Equivalently, we can
look at the closed loop γ := c◦ (c′)−1 in M , resulting from moving along the c first and then
following c′ backwards and ask, if the parallel transport of p along γ is p again or not. As
the loop starts and ends in u0, the parallel transport Pγ(p) is certainly a point in the same
fibre π−1(u0) over u0. Therefore, there exists a unique element g := hol(γ) in the structure
group G with Pγ(p) = p · g.

This motivates the following definition:
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Definition 8.3.1 (Holonomy Group).
Let G a finite dimensional Lie group and E π−→M a principle G bundle with connection Γ.
For every point p ∈ P we define

Hol(Γ, p) := {g ∈ G | ∃ closed loop γ around π(p) inMs.t. Pγ(p) = p · g}

Hol(Γ, p) is a subgroup of G called the holonomy group of Γ at p.

Furthermore, we define the restricted holonomy group

Hol0(Γ, p) := {g ∈ Hol(Γ, p) | the corresponding γ can be chosen to be null-homotopic}

by restricting to null-homotopic curves.

In our case, the base-manifold Ures(H) or GLres(H), respectively, is simply-connected and
therefore Hol and Hol0 are the same.

It is easy to check that the holonomy group is indeed a group. Concatenation of two
loops results in multiplication of the corresponding group elements. Parallel transport along
the constant path yields the identity, and if Pγ(p) = p · g, then Pγ−1(p) = p · g−1, where γ−1

is the loop obtained by reversing the parameterization of γ, i.e. following γ backwards.
The holonomy groups at two points which can be connected by parallel transport are con-
jugated to each other, because, if p, q can be connected by a horizontal curve in E, we can
parallel transport from q to p, then along a loop around p and back from p to q, which
corresponds to parallel transport along a loop around q.

Now, we are going to show that the holonomy group of the bundle Ũres(H) π−→ Ures(H) at the
identity equals the entire structure group U(1). We could perform the same calculation for
the G̃Lres(H) bundle, but as we are mainly interested in lifting paths in Ures(H) ⊂ GLres(H)
we find the unitary case more educative.

It will actually suffice to consider loops in a two-dimensional subspace. Thus, we will do
the computations in U(2,C) for simplicity and embed U(2,C) into Ũres(H) in the following
way: Let (ek)k∈Z be a basis of H such that (ek)k≥0 is a basis of H+ and (ek)k<0 a basis of
H−. Now can identify U(2) with U(span(e0, e−1)) i.e.

U(2,C) ↪→ Ures(H);
(
a b
c d

)
7−→


a b

1 0
c d

0 1


where the identity matrices are on (e0)⊥ ⊂ H+ and (e−1)⊥ ⊂ H−, respectively.

A general (piecewise differentiable) path in U(2) has the form

U(t) =
(
a(t) b(t)
c(t) d(t)

)
with

U−1(t) = U∗(t) =
(
α(t) β(t)
γ(t) δ(t)

)
=
(
a∗(t) c∗(t)
b∗(t) d∗(t)

)
Unitarity requires (among others) |a|2 + |b|2 = 1.

102



8.3. HOLONOMY OF THE BUNDLES

The formula (7.3.1) for the parallel transport in local coordinates becomes

exp
[
−

T∫
−T

tr
[
ȧ(t)(a−1(t)−α(t)) + ḃ(t)γ(t)

]
dt
]

= exp
[
−

T∫
−T

[
ȧ(t)(a−1(t)−a∗(t))+ḃ(t)b∗(t)

]
dt
]

(8.3.1)
We can write

a(t) = r(t) eiϕ(t)

b(t) =
√

1− r2(t) eiψ(t)

with r(t), ϕ(t) and ψ(t) piecewise differentiable, real functions. Our path has to stay in the
neighborhood where a(t) is invertible, i.e. r(t) 6= 0 is required. Note that |r(t)| has to be
≤ 1, so

√
1− r2(t) is a real, differentiable function.

Actually, we won’t even have to exploit the freedom of choosing ψ(t) and can set it to zero.
Then:

ȧ(t) = ṙ(t)eiϕ(t) + iϕ̇(t)r(t)eiϕ(t)

ȧ(t)a∗(t) = ṙ(t)r(t) + iϕ̇(t)r2(t)

ȧ(t)a−1(t) = ṙ(t)r−1(t) + iϕ̇(t)

ḃ(t)b∗(t) = −r(t)ṙ(t)

The argument of the exponential in (8.3.1) is thus∫ [
ȧ(t)a∗(t)− ȧ(t)a−1(t)− ḃ(t)b∗(t)

]
dt

=
∫ [

i ϕ̇(t)(r2(t)− 1)− r−1(t)ṙ(t)
]
dt (8.3.2)

Now, note that the second summand is just the derivative of log[r(t)] and gives no contri-
bution when integrated over a closed loop. We’re left with

exp
[∮ [

i ϕ̇(t)(r2(t)− 1)− r−1(t)ṙ(t)
]
dt
]

= exp
[
i

∮ [
ϕ̇(t)(r2(t)− 1)

]
dt
]

for a closed path (around the identity) which can take any value in U(1). 8 In other words,
parallel transport along a closed path (about the identity) can result in multiplication by
any complex phase. The holonomy group is the whole U(1). With the same method we can
show that the holonomy group of the G̃Lres(H)-bundle is also the entire structure group C×.

We summarize:

Proposition 8.3.2 (Holonomy Groups).
The holonomy groups of the connection ΓΦ on the principle-bundle G̃Lres(H) and of its
restriction to Ũres(H) are

Hol(G̃Lres,ΓΦ) = Hol0(G̃Lres,ΓΦ) = C×

and
Hol(Ũres,ΓΦ) = Hol0(Ũres,ΓΦ) = U(1).

8E.g. parameterize over t ∈ [−π, π]. We can take ϕ̇(t) ≡ k, for any k ∈ Z and for r2(t) there are

smooth, positive functions with r2(−π) = r2(π) = 1, such that
πR
−π

(r2(t) − 1)dt takes any desired

value between −2π and 0.
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This means that the whole freedom of the geometric phase that we have eliminated by paral-
lel transport is being reintroduced through the ambiguity of the renormalization, just under
a new name: holonomy.

We remark that on a finite-dimensional bundle we could have immediately derived this re-
sult using the Ambrose-Singer Theorem, which says that the Lie algebra of the holonomy
group is generated by the curvature two-form. Unfortunately, generalization of this result
to infinite-dimensions is usually problematic.

We can use an explicit formula to compute how the parallel transport along two curves
differ. In coordinates defined by a local section σ, the holonomy-group element hol(γ)
corresponding to parallel transport along a closed loop γ w.r.to the connection one-form Φ
can be computed as

hol(γ) = exp
[∮
γ

(σ∗Φ)
]

= exp
[ ∫
S(γ)

(σ∗Ω)
]

(8.3.3)

where S(γ) is the surface enclosed by γ and Ω = dΦ is the curvature 2-form. The first
equality follows immediately from the local expression for parallel transport, whereas the
second equality is an application of Stokes theorem using dΦ = Ω.
Note that application of this formula is unproblematic even on infinite-dimensional mani-
folds, because integration is just along 1-dimensional curves or 2-dimensional surfaces.

If we use two different renormalizations T and T′ to lift the S-matrix by parallel transport
along a path γ = γ[T] as in (8.2.2) we will find that

S[A,T′] = hol(γ[T′] ◦ γ[T]−1) S[A,T] (8.3.4)

and the phase-difference can be computed from (8.3.3).
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8.4 Outlook: Gauge Invariance
We have already seen that gauge-transformations are not implementable on the Fock space.
We know that this must be true, because a gauge-transformation

G 3 g : Ψ(x)→ eiΛg(x)Ψ(x), Λg ∈ C∞c (R3,R)

changes the spatial component of the A-field and therefore the polarization class.
This fact is troubling, but it’s not necessarily a disaster. It just tells us that we might have to
sacrifice the naive idea about gauge invariance that the symmetry translates directly from the
one-particle theory to the multi-particle theory. At this level of description, the significance
of a gauge transformation in the second quantized theory would be unclear anyways. Thus,
one should try to figure out what objects in the theory can be taken seriously and are
required to be gauge-invariant. If we want to take the S-matrix seriously, for example, we
should require that its gauge-invariance carries over from the one-particle theory to the
second quantized theory. This is in fact of particular importance, because then:

S[Aµ] = S[Aµ − ε∂µΛ], ∀Λ ∈ C∞c (R4,R) (8.4.1)

implies by differentiation w.r.to ε at ε = 0

0 = −
∫

dx
δ

δAµ(x)
S[A] ∂µΛ =

∫
dxΛ(x)∂µ

δ

δAµ(x)
S[A] (8.4.2)

and thus, with the definition (8.0.2) of the current density:

∂µ
δS

δAµ(x)
= ∂µ j

µ(x) ≡ 0 (8.4.3)

So, the gauge-invariance of the second-quantized S-matrix is physically significant because
it implies the continuity equation (8.4.3) for the current density.
(Actually, equation (8.0.4) shows that a much weaker condition would suffice.
The current density will be gauge-invariant if the first distributional derivative δϕ

δA(x) of
the phase of S is gauge-invariant. Then, the continuity equation follows analogously from
jµ[Aµ] = jµ[Aµ − ε∂µΛ].)

The geometric second quantization by parallel transport is -a priori- not gauge-invariant.
Although the one-particle S-operator is invariant under compactly supported gauge transfor-
mations, the unitary time evolution and the renormalization are not. Therefore, if we use par-
allel transport to lift the S-matrix to Ũres(H) once for the external field A = (Aµ)µ=0,1,2,3 ∈
C∞c (R4,R4) and once for A′ = Aµ − ∂µΛ, Λ ∈ C∞c (R4,R) we will perform the parallel
transport along different paths in Ures(H) and again, the lifted S-matrix can differ by any
complex phase.9 However, we suggest that it might be possible to define the renormalization
precisely in such a way that the gauge-transformation of the renormalization and of the time
evolution cancel out. We will call such a renormalization gauge-covariant.

Suppose that a (Schrödinger picture) renormalization T : R×A → U(H) satisfies

T
(
A(t)− ∂µΛ(t, x)

)
= eiΛ(t,x) T

(
A(t)

)
, ∀Λ ∈ C∞c (R4,R) (8.4.4)

By Theorem 6.2.3 this is compatible, with the requirements on T 10.

9An explicit computation of this gauge-anomaly is carried out [LaMi96].
10By [Thm. 6.2.3] : eiΛ(t,x) ∈ U0

res

`
H, C(A),H, C(A + ∇Λ)

´
and so eiΛ(t,x) T(A) is in

U0
res

`
H, C(A),H, C(A +∇Λ)

´
·U0

res

`
H, [H+],H, C(A)

´
= U0

res

`
H, [H+],H, C(A +∇Λ)

´
.
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Then, the renormalized (Schrödinger picture) time evolution was invariant under gauge-
transformation because

UA
ren(t, t′) = T∗(A(t))UA(t, t′) T(A(t′))

g−−→ UA−∂Λ
ren (t, t′) = T∗

(
A(t)− ∂µΛ(t)

)
UA−∂Λ(t, t′)T

(
A(t′)− ∂µΛ(t)

)
= T∗(A(t)) e−iΛ(t,x) UA−∂Λ(t, t′) eiΛ(t,x) T(A(t′))

= T∗(A(t))UA(t, t′) T(A(t′)) = UA
ren(t, t′)

So with a gauge-covariant renormalization -if one exists- the lift of the S-matrix would
not change under gauge-transformation, but neither would the lift of the time evolution for
intermediate times. I would find this to be a nice turn on gauge-symmetry. The renormal-
ization would de facto pick out one representative of the gauge-class (deRham cohomology
class) of the vector potential and we wouldn’t see gauge-transformations in the second quan-
tized theory at all.

Note that such a gauge-covariant renormalization would in particular act by “gauging the
field away” whenever this is possible, which seems like a sensible approach. However, such
a renormalization hasn’t been explicitely constructed yet.

Conjecture (Gauge Invariant Renormalization).
There exist gauge-invariant renormalizations satisfying (8.4.4).

A quasi-renormalization can in principle depend on the spatial component only and might
be required to act in a similar way by gauging away the vector-part of the A-field.

Remark 8.4.1 (Hodge Decomposition).
For future discussions it might be interesting to know how restrictive the condition of “gauge-
covariance” is on the renormalization. This is easiest to answer in a setting where A is
realized as the space of smooth one-forms Ω1(M,R) on a closed manifold M .
Then, we have the Hodge decomposition:

Ω1(M) = im(d)⊕ im(δ)⊕Harm1(M)

with

· im(d) the space of exact one-forms {df | f ∈ C∞(M)}

· im(δ) the space of co-exact one-forms {δβ | β ∈ Ω2(M)}

· Harm1(M) the space of harmonic one-forms {α ∈ Ω1(M) | ∆α = 0}

The condition of gauge-covariance would then determine the renormalization only on exact
one-forms, i.e. on im(d) ⊂ Ω1(M) by T(dΛ) = eiΛ.
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Chapter 9

Résumé

We have presented two methods for second quantization of the unitary time evolution in
the external field setting of QED. Given the inevitable problems that we have encountered,
the two alternatives seem to be the best that can be done in the existing framework. In
chapter 6 we followed [DeDuMeScho] and realized the time evolution as unitary transfor-
mations between time-varying Fock spaces. In chapter 8 we introduced the concept of a
quasi-renormalization used to map the time-evolution back to Ures(H) which makes it im-
plementable on the standard Fock space. In both cases, the lifts of the time evolution
operators to the Fock space are unique up to a “geometric phase”. We have proved that the
two descriptions are dual to each other and that we can use the (quasi-)renormalization to
translate between them. We have also shown how the theorems about the implementabil-
ity of unitary transformations on those Fock spaces can be related to well-known results
from representation theory (chapter 5). In chapter 7 we have introduced the “Langmann-
Mickelsson” connection on the principle bundle G̃Lres(H) → GLres(H). Parallel transport
w.r.to this connection defines a unique second quantization of a family of unitary operators
including a differentiable prescription for the phase. However, if we want to apply the method
of parallel transport to the unitary time-evolution we will always (except for the most trivial
cases) need a renormalization in the sense of Def. 8.1.4 which makes the renormalized time-
evolution differentiable w.r.to to the differentiable structure in G̃Lres(H). Still, in a certain
sense, compared to the construction [DeDuMeScho] we have eliminated the U(1)-freedom of
the geometric phase through the additional structure of a bundle-connection. But the fact
that we have to renormalize the time evolution to make it differentiable even for pure electric
potentials, when it is already implementable, is a serious drawback. For once, because it
means that we cannot use the method of “geometric second quantization” to lift those time-
evolutions (without spoiling them by a renormalization). Secondly, because translating back
into the formalism of time-varying Fock spaces, the requirement of differentiability has no
meaningful analogue and the renormalization will correspond to a rather peculiar choice of
Fock spaces (infinite-wedge-spaces). In particular, the Fock spaces will change, even if the
polarization class doesn’t.

One advantage of the renormalized theory might be that it allows second quantization
of (renormalized) Hamiltonians, which are uniquely determined by the bundle-connection.
However, the renormalization introduces a bunch of artificial terms in the renormalized
Hamiltonian (8.1.9) and so the physical relevance of those objects is unclear.
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It is important to realize that at this point (which is more or less the status after [LaMi96]
and [DeDuMeScho]) the ambiguities in the construction of the time evolution are too vast to
provide meaningful physical content. In the second-quantization procedure on time-varying
Fock spaces this fact could be somewhat concealed because the intuition that comes with it
might suggest that the physical state is what it is (modulo phase) and only the mathemat-
ical space that inhibits it requires additional specification. But in the (quasi-)renormalized
theory, this ambiguity translates into the freedom to lift any unitary operator to the (fixed)
Fock space as long as it stays in Ures(H) and therefore -without additional structure- the
time evolution doesn’t really tell us anything. In other words: we do not even know what
physical quantities should characterize the states represented on different Fock spaces. With-
out additional ingredients in the theory specifying the (instantaneous) vacuum states, we
cannot even say how many particles and anti-particles exist at a given time.1

The situation is better in the asymptotic case, if we study the S-matrix only. Before the
interaction is turned on and after it is turned off we are in the standard polarization class
of H+ with a more or less canonical construction of the Fock space and so we can compare
“in states” (at t = −∞) and “out states” (at t = +∞) with respect to the same vacuum.
Second quantization of the S-matrix and not of the entire time evolution is the problem
that was actually treated in [LaMi96]. Yet, as we have argued in §8.3. the result stated
in [LaMi96] that “the phase is uniquely determined ... by the geometric structure of the
central extension of the group of one-particle (renormalized) time evolution operators” is too
optimistic. Different renormalizations will lead to different phases of the second quantized
S-matrix. The ambiguity is expressed by the holonomy group of the Ures(H) bundle which
we have computed to equal the entire structure group U(1). Therefore, if we don’t take the
time evolution for intermediate times (i.e. the path from 1 to S) seriously at all, the entire
freedom of the geometric phase supposedly eliminated by the parallel transport reappears
in different disguise. We emphasize that the authors themselves have revised their initial
statement and addressed this fact in a later publication [Mi98].

We also want to point out that the connection itself constitutes a choice and an additional
structure that we impose on the theory. We have presented the Langmann-Mickelsson con-
nection (or its right-invariant analogue) as arguably the nicest and most natural alternative
but we should keep in mind that the connection is not god-given. We have specified this
freedom in §7.2.1.

In conclusion, we must note that the connection alone does not fix the geometric phase
in a unique way. However, the construction has other important benefits. The most posi-
tive result of this work is probably that second quantization by parallel transport preserves
the semi-group structure of the time-evolution and the causal structure of the one-particle
theory. In particular, the phase of the second quantized S-matrix is causal in the sense of
Scharf ([Scha]). This fact was also mentioned before in [Mi98], however without proof.

1This is one of the big problems of Quantum field theory in general. QFT on curved space-time is
a good conscious raiser for this issue. Also spectacular phenomena like the Unruh effect or Hawking
radiation can be traced back to it.
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So, is there a time evolution in QED?

At the moment the answer is clearly no. The construction on time-varying Fock spaces as
well as the “renormalized theory” (with or without parallel transport) are too arbitrary to
provide a physically meaningful time evolution.

In order to make physical sense of the existing framework we either need additional
ingredients to reduce the ambiguities in the presented constructions or we need to identify
physical quantities that are meaningful and well-defined despite all those ambiguities.
For the first alternative, we suggest that further study of the renormalizations might be a
good way to proceed along the paths developed in this work. Concretely, we suggest that it
might be possible to reduce the ambiguities by posing adequate requirements on the choice
of the (quasi-)renormalization. Those requirements should be motivated by physical princi-
ples. Gauge invariance and Lorentz invariance are the most evident features that should be
incorporated in the construction (c.f. §8.4). However in all honesty I must say that even if
future results along those lines would turn out as positive as one can hope for, I would find
the solutions very constructed and ultimately unsatisfying from a physical and an aesthetical
point of view.

The results of this work might very well be undestood as sustaining the widespread be-
lieve that not the time evolution but only the S-matrix should be taken seriously in relativistic
Quantum field theory. Within the boundaries of the existing theory, there is certainly truth
to that. However, as a matter of principle I would insist that a fundamental theory has to
be able to describe the universe as it is right now and not just the change between t = −∞
and t = +∞. Therefore, I find this position unacceptable as a fundamental standpoint.
A good argument for that philosophy that could make me change my mind would be for
example if we found that the reason for the failure of the time evolution was relativity. I.e.
if we found that the relationship between different states of a Quantum mechanical system
must be purely operational because Lorentz invariance doesn’t allow an evolution w.r.to a
fixed time-scale. But our situation is nothing of this kind.

It is very important to note the following: the one and only reason why things work better
in the asymptotic case is because we have assumed that then the interaction is turned off.2

In my opinion, this points only to the fact that the theory itself is deeply and fundamentally
flawed. 3

2Or at least falling off quickly, if the regularity conditions on the fields are weakened.
3To my knowledge, there is no rigorous formulation of the fully quantized theory, but I am not

aware of any reason why things should get better better if the electromagnetic field is quantized
and treated as a further dynamic quantity. Rather the opposite seems to be the case.
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Appendix A

A.1 Commensurable Polarizations and Polarization Classes
Definition (Commensurability).
Two polarizations V,W ∈ Pol(H) are called commensurable if V ∩W has finite codimension
in both V and W.

Proposition (Commensurable Polarizations and Polarization Classes).
Let V ∈ Pol(H). We denote by Gr(H, V ) the restricted Grassmannian of V i.e. its polariza-
tion class endowed with the structure of a complex Hilbert-manifold modeled on I2(V, V ⊥).
Then the set of all polarizations W ∈ Pol(H) commensurable with V is dense in Gr(H, V )
and for any such W , charge(V,W ) coincides with (1.2.7), i.e.

charge(V,W ) = ind(PV |W→V ) = dim(V/(V ∩W ))− dim(W/(V ∩W ))

Proof. Let W ∈ Pol(H) commensurable with V .
i) Claim: PW − PV is of Hilbert-Schmidt type:
Obviously, PW − PV is zero on V ∩ W as well as on (V + W )⊥, thus, if V and W are
commensurable, PW − PV is non-zero on a finite dimensional subspace only and therefore
of Hilbert-Schmidt type.
ii) Claim: charge(V,W ) = dim(V/(V ∩W ))− dim(W/(V ∩W )):
Write W = (W ∩ V )⊕ ker(PV |W )⊕R. Then, dim(ker(PV |W )⊕R) <∞ and ind(PV |W ) =
dim ker(PV |W )−dim coker(PV |W ) = dim(W/((V ∩W )⊕R))−dim(V/((V ∩W )⊕PV (R))) =
dim(W/(V ∩W ))− dim(V/(V ∩W ))
since PV |R is a finite dimensional isomorphism.
iii)Claim: {W ∈ Pol(H)|W commensurable with V } ⊂ Gr(V ) is dense.
We have to make use of the manifold structure of Gr(H) introduced in §2.3.
Define W ′ := im(PV |W ) ⊕ ker(PV |W ). W’ is commensurable with V, since PV |W is a
Fredholm operator and this implies dim(W/(V ∩W ′)) = dim ker(PV |W ) < ∞ as well as
dim(V/(V ∩W ′)) = dim coker(PV |W ) < ∞. Now, there is an operator T : W ′ → (W ′)⊥

with W = Graph(T ) ⊂ H. This operator is given by:

T |ker(PV |W )= 0 and T |⊥ker(PV |W )= (PW − PV )|⊥ker(PV |W )

Thus, T is a Hilbert-Schmidt operator (i.e. W lies in the domain of the chart around
W’ as defined in (2.3.1) ). Now, if we note that the graph of any finite-rank operator
G : W ′ → (W ′)⊥ is also commensurable with V, the claim follows directly from the fact,
that any Hilbert-Schmidt operator can be approximated by finite-rank operators (in the
Hilbert-Schmidt norm, which is the relevant norm here).
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A.2. DERIVATION OF THE CHARGE CONJUGATION

A.2 Derivation of the Charge Conjugation
We present a general derivation of the charge conjugation operator C mapping negative
energy solutions of the Dirac equation to positiv energy solutions with opposite charge.

More precisely, we want a transformation C satisfying

i) CH(e)C−1 = −H(−e)

ii) i~ ∂
∂tΨ = H(e)Ψ ⇐⇒ i~ ∂

∂tCΨ = H(−e)CΨ

for H(e) the Dirac-Hamiltonian with charge e and any eigenstate Ψ.
i) and ii) imply

i~
∂

∂t
CΨ = −CH(e)Ψ

For an eigenstate Ψ 6= 0 this is only possible, if C is anti-linear. We can thus write

CΨ = CΨcc.

(cc. denotes complex conjugation).

Now we take a look at the Hamiltonian:

H(e) = −iα · ∇ − eα ·A+mβ + eΦ

and observe that in order to satisfy i), we need

βC = −Cβcc. ; αk C = C αcc.k (A.2.1)

This, together with the (anti-) commutation relations for the α matrices (or γ matrices,
respectively) are enough to determine the form of the charge conjugation operator in any
given representation. In particular, note that

{γi, αj} = 0, for i = 0 or i = j[
γi, αj

]
= 0, else

We look at the two most common examples:

Standard Representation: Only α2 (and thus γ2) is imaginary, all the other matrices are
real. Thus C = const. γ2. Conventionally: C = iγ2 = iβα2

Standard Representation: All the γ’s are imaginary. In particular, β is purely imaginary
and all the α−matrices are real. Hence, looking at (A.2.1), we see that we can take C = 1,
i.e. charge-conjugation is just complex conjugation.
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A.3. MISCELLANEOUS

A.3 Miscellaneous

Lemma A.3.1 (For use in (5.1.21)).
For all U ∈ Ures(H) it is true that

dim ker(U++) = dim ker(U∗−−)
dim ker(U−−) = dim ker(U∗++)

Proof. With respect to the splitting H = H+ ⊕H−, we write U = Ueven +Uodd, with Ueven

the diagonal parts and Uodd the off-diagonal parts. UU∗ = U∗U = 1 then implies

i) (U∗U)even = U∗evenUeven + U∗oddUodd = 1

ii) (U∗U)odd = U∗evenUodd + U∗oddUeven = 0

iii) (UU∗)even = UevenU
∗
even + UoddU

∗
odd = 1

iv) (UU∗)odd = UevenU
∗
odd + UoddU

∗
even = 0

ii) implies Uodd ker(Ueven) ⊂ ker(U∗even)

since U∗evenUodd x = −U∗oddUeven x = 0, ∀x ∈ ker(Ueven).

Similarly, iv) implies U∗odd ker(U∗even) ⊂ ker(Ueven).

We conclude:

Uodd ker(Ueven) ⊂ ker(U∗even)
iii)
= UoddU

∗
odd ker(U∗even) ⊂ Uodd ker(Ueven)

And thus
U ker(Ueven) = Uodd ker(Ueven) = ker(U∗even)

Separating w.r.to the ±−splitting yields

U ker(U++) = ker(U∗−−) and U ker(U−−) = ker(U∗++) (A.3.1)

which implies the claimed identities.

Norm Estimates for the Dyson Series, Lemma 8.1.8

For the terms in the Dyson series (8.1.8) we proove the norm-estimates [Lem. 8.1.8]:

‖Un(t, t′)‖ ≤ 1
n!

( t∫
t′

‖V (s)‖ds

)n
, ∀n ≥ 0

and

‖[ε, U1(t, t′)]‖2 ≤
t∫

t′

‖[ε, V (s)]‖2 ds

‖[ε, Un(t, t′)]‖2 ≤
1

(n− 2)!

t∫
t′

‖[ε, V (s)]‖2 ds

( t∫
t′

‖V (r)‖dr

)n−1

, ∀n ≥ 1
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A.3. MISCELLANEOUS

Proof. Obviously, ‖U0(t, t′)‖ = ‖1‖ = 1, ∀t, t′. And for n ≥ 1:

Un(t, t′) = (−i)n
t∫

t′

VI(s1)

s1∫
t′

VI(s2) . . .

sn−1∫
t′

VI(sn) ds1 . . . dsn

⇒ ‖Un(t, t′)‖ ≤
t∫

t′

‖VI(s1)‖
s1∫
t′

‖VI(s2)‖ . . .
sn−1∫
t′

‖VI(sn)‖ ds1 . . . dsn

=

t∫
t′

‖V (s1)‖
s1∫
t′

‖V (s2)‖ . . .
sn−1∫
t′

‖V (sn)‖ ds1 . . . dsn

=
1
n!

( t∫
t′

‖V (s)‖ds
)n

For the I2-estimates we first note that conjugation with eiD0t doesn’t change the Hilbert-
Schmidt norm of the odd parts. Thus:

‖[ε, U1(t, t′)]‖2 = ‖
t∫

t′

[ε, VI(s)]ds ‖2 ≤
t∫

t′

‖[ε, VI(s)]‖2 ds =

t∫
t′

‖[ε, V (s)]‖2 ds

Furthermore,

‖[ε, Un+1(t, t′)]‖2 ≤
t∫

t′

‖[ε, VI(s)Un(s, t′)]‖2 ds

≤
t∫

t′

‖[ε, VI(s)]Un(s, t′)‖2 ds+

t∫
t′

‖VI(s)[ε, Un(s, t′)]‖2 ds

≤
t∫

t′

‖[ε, VI(s)]‖2 ‖Un(s, t′)‖ ds+

t∫
t′

‖VI(s)‖ ‖[ε, Un(s, t′)]‖2 ds

=

t∫
t′

‖[ε, V (s)]‖2 ‖Un(s, t′)‖ ds+

t∫
t′

‖V (s)‖ ‖[ε, Un(s, t′)]‖2 ds

For n=1 this yields

‖[ε, U2(t, t′)]‖2 ≤
t∫

t′

s∫
t′

(
‖[ε, V (s)]‖2 ‖V (r)‖+ ‖V (s)‖ ‖[ε, V (r)]‖2

)
dr ds

=
1
2

t∫
t′

t∫
t′

(
‖[ε, V (s)]‖2 ‖V (r)‖+ ‖V (s)‖ ‖[ε, V (r)]‖2

)
dr ds

=

t∫
t′

‖[ε, V (s)]‖2 ds

t∫
t′

‖V (s)‖ ds
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And thus, inductively, for n ≥ 2

‖[ε, Un+1(t, t′)]‖2 ≤
t∫

t′

‖[ε, V (s)]‖2 ‖Un(s, t′)‖ ds+

t∫
t′

‖V (s)‖ ‖[ε, Un(s, t′)]‖2 ds

≤ 1
n!

t∫
t′

‖[ε, V (s)]‖2
( s∫
t′

‖V (r)‖dr
)n

ds+
1

(n− 2)!

t∫
t′

‖V (s)‖
s∫

t′

‖[ε, V (s′)]‖2 ds′
( s∫
t′

‖V (r)‖dr
)n−1

ds

≤ 1
n!

t∫
t′

‖[ε, V (s)]‖2 ds
( t∫
t′

‖V (r)‖dr
)n

+

t∫
t′

‖[ε, V (s)]‖2 ds
(n− 1)
(n− 1)!

t∫
t′

‖V (s)‖
( s∫
t′

‖V (r)‖dr
)n−1

ds

=
1
n!

t∫
t′

‖[ε, V (s)]‖2 ds
( t∫
t′

‖V (r)‖dr
)n

+
(n− 1)
n!

t∫
t′

‖[ε, V (s)]‖2 ds
( t∫
t′

‖V (r)‖dr
)n

=
1

(n− 1)!

t∫
t′

‖[ε, V (s)]‖2 ds
( t∫
t′

‖V (r)‖dr
)n
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