Identity-Based Bohmian Mechanics

Mario Hubert

Université de Lausanne LMU, MCMP

Mario.Hubert@unil.ch

17 December, 2014

Outline

1 The Metaphysics of Identical Particles

2 The Physics of Identical Particles

Classical Mechanics Standard QM Bohmian Mechanics Identity-based Bohmian Mechanics

Conceptual Issues with QM

axioms of QM:

- observable.
- measurement.
- measurement postulate.
- measurement apparatus.
- collapse of the wave-function.

Conceptual Issues with QM

axioms of QM:

- observable.
- measurement.
- measurement postulate.
- measurement apparatus.
- collapse of the wave-function.
- \rightarrow symptoms of a deep problem.
- \rightarrow lack of ontology.

Primitive Ontology

the primitive entities matter is made of.

the building blocks of matter.

candidates for primitive ontology:

- 1 particles,
- 2 matter density,
- 3 flashes,
- 4 strings.

```
particles = point-size objects.
```

```
particles = point-size objects.
```

motion on continuous lines in 3-d space.

```
particles = point-size objects.
```

motion on continuous lines in 3-d space.

```
primitive stuff = property-less fundamental stuff.
```

```
particles = point-size objects.
```

motion on continuous lines in 3-d space.

```
primitive stuff = property-less fundamental stuff.
```

particles individuated by metrical relations.

```
particles = point-size objects.
```

motion on continuous lines in 3-d space.

```
primitive stuff = property-less fundamental stuff.
```

particles individuated by metrical relations.

permutation of particles retrieves the same world.

```
particles = point-size objects.
```

```
motion on continuous lines in 3-d space.
```

```
primitive stuff = property-less fundamental stuff.
```

```
particles individuated by metrical relations.
```

```
permutation of particles retrieves the same world.
```

```
particles are not individuated by intrinsic properties.
```

```
particles = point-size objects.
```

```
motion on continuous lines in 3-d space.
```

```
primitive stuff = property-less fundamental stuff.
```

```
particles individuated by metrical relations.
```

```
permutation of particles retrieves the same world.
```

```
particles are not individuated by intrinsic properties.
```

```
properties as dynamic-nomological.
```

```
particles = point-size objects.
```

```
motion on continuous lines in 3-d space.
```

```
primitive stuff = property-less fundamental stuff.
```

```
particles individuated by metrical relations.
```

```
permutation of particles retrieves the same world.
```

```
particles are not individuated by intrinsic properties.
```

```
properties as dynamic-nomological.
```

```
how does a physical theory reflect all this?
```

Classical Mechanics

Physics of Identical Particles

Particles Are Individuals!

identical particles: same mass.

distinguished by different positions alone.

permutations leave laws of motion invariant.

Classical Mechanics

Physics of Identical Particles

Particles Are Individuals!

identical particles: same mass.

distinguished by different positions alone.

permutations leave laws of motion invariant.

 \rightarrow individuated identical particles.

Classical Mechanics

The Gibbs Paradox

Physics of Identical Particles

Classical Mechanics

Physics of Identical Particles

the mixing of different gases increase entropy.

 \rightarrow distinguishable particles.

Classical Mechanics

The Gibbs Paradox

the mixing of different gases increase entropy.

 \rightarrow distinguishable particles.

the mixing of identical gases don't change entropy.

 \rightarrow indistinguishable particles.

Classical Mechanics

Physics of Identical Particles

The Gibbs Paradox

the mixing of different gases increase entropy.

 \rightarrow distinguishable particles.

the mixing of identical gases don't change entropy.

 \rightarrow indistinguishable particles.

there is no paradox!

NB: in both cases particles always have precise position.

Classical Mechanics

Confusion

Gibbs' Vorschlag, alle durch Vertauschen von Teilchen entstehenden Zustände bei der Berechnung [der Entropie] wegzulassen, war den Physikern zunächst nicht geheuer. Er fand aber Jahre später in der Quantentheorie eine einleuchtende Begründung. Demnach können identische Teilchen, die in allen ihren Eigenschaften übereinstimmen (Masse, Ladung, Drehimpuls, magnetisches Moment usw.), prinzipiell nicht voneinander unterschieden werden. Denn hätten sie ein Unterscheidungsmerkmal (eine Nummer, eine Farbe, einen festen Ort usw.), so wären sie nicht mehr identisch. Atome kann man aber nicht nummerieren, färben oder an bestimmte Plätze in einem Körper binden ohne ihre Eigenschaften oder ihre Struktur zu verändern. [7, p. 70]

Classical Mechanics

Physics of Identical Particles

position does not rule out indistinguishability. identical particles are no novelty of QM.

Standard QM

Physics of Identical Particles

Particles Are Not Individuals?

$$|\psi(x_1, x_2)|^2 = |\psi(x_2, x_1)|^2$$

Standard QM

Particles Are Not Individuals?

$$|\psi(x_1, x_2)|^2 = |\psi(x_2, x_1)|^2$$

Now in classical statistical mechanics [the two] arrangement[s] [...] would be counted as distinct and given equal weight in assigning probabilities. But in quantum statistics, whether bosonic or fermionic, the arrangements [...] are counted as one and the same arrangement for the purpose of assigning weights. This is taken to show that the two *arrangements* are not only indistinguishable but are actually identical. But ontologically speaking these two arrangements are *not* identical if the two quantum particles are individuals. Hence the quantum particles cannot be individuals. [4, p. 236]

Standard QM

- the statement on classical mechanics is wrong.
- often used to show an exceptional situation in QM.
- what does it mean that particles are not individuals?
- what is the alternative ontology?
- individuated identical particles also in classical mechanics!

Bohmian Mechanics

The Theory

configuration of particles: $Q(t) = (Q_1(t), \dots, Q_N(t)) \in \mathbb{R}^{3N}$ guiding equation:

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = \frac{j(Q(t))}{\rho(Q(t))},$$

with probability density

$$\rho = \psi^* \psi$$

and probability current $j = (\mathbf{j}_1, \dots, \mathbf{j}_N)$,

$$\mathbf{j}_i = rac{\hbar}{m_i} \operatorname{Im} \psi^*
abla_i \psi.$$

Bohmian Mechanics

Identical Particles

Physics of Identical Particles

same situation as in classical mechanics.

identical = same mass.

particles individuated by position.

Bohmian Mechanics

Identical Particles: The Natural Configuration Space

no label for identical particles.

 \rightarrow configuration $Q(t) = \{Q_1, Q_2, \dots, Q_N\}.$

Identical Particles: The Natural Configuration Space

no label for identical particles.

 \rightarrow configuration $Q(t) = \{Q_1, Q_2, \dots, Q_N\}.$

new configuration space from the very beginning:

$${}^{\mathsf{N}}\mathbb{R}^3 = \{S \subset \mathbb{R}^3 : |S| = \mathsf{N}\}.$$

Identical Particles: The Natural Configuration Space

no label for identical particles.

 \rightarrow configuration $Q(t) = \{Q_1, Q_2, \dots, Q_N\}.$

new configuration space from the very beginning:

$${}^{\mathsf{N}}\mathbb{R}^3 = \{S \subset \mathbb{R}^3 : |S| = \mathsf{N}\}.$$

NB:

- complex topology of ${}^{N}\mathbb{R}^{3}$.
- derivation of boson/fermion alternative.

Sources: [3, Chap. 8] and [2, Sect. 8.5].

Bohmian Mechanics

Physics of Identical Particles

Identical Particles: Law of Motion

identical particles: same masses.

- \rightarrow guiding equation permutation invariant for identical particles.
- \rightarrow law of motion on ${}^{N}\mathbb{R}^{3}$.

Bohmian Mechanics

Identical Particles: Law of Motion

identical particles: same masses.

- \rightarrow guiding equation permutation invariant for identical particles.
- \rightarrow law of motion on ${}^{N}\mathbb{R}^{3}.$

different masses:

- \rightarrow guiding equation no longer permutation invariant.
- \rightarrow no law of motion on ${}^{N}\mathbb{R}^{3}$.

Identity-based Bohmian Mechanics

The Theory

all particles are identical.

- \rightarrow dynamics on ${}^N \mathbb{R}^3$ for all particles.
- \rightarrow symmetrized guiding equation:

$$\frac{\mathrm{d} Q_k}{\mathrm{d} t} = \frac{\sum_{\sigma \in S_N} \mathbf{j}_{\sigma(k)} \circ \sigma}{\sum_{\sigma \in S_N} \rho \circ \sigma} (Q(t)).$$

Identity-based Bohmian Mechanics

The Theory

all particles are identical.

- \rightarrow dynamics on ${}^N \mathbb{R}^3$ for all particles.
- \rightarrow symmetrized guiding equation:

$$\frac{\mathrm{d} Q_k}{\mathrm{d} t} = \frac{\sum_{\sigma \in S_N} \mathbf{j}_{\sigma(k)} \circ \sigma}{\sum_{\sigma \in S_N} \rho \circ \sigma} (Q(t)).$$

only under certain circumstances "assignment" of mass. Sources: [5] and [6].

Identity-based Bohmian Mechanics

Example: Two-Particle Universe

electron m_e , muon m_μ with

$$\Psi(q_1,q_2)=\phi(q_1)\chi(q_2).$$

standard guiding law:

$$\frac{\mathrm{d}Q_1}{\mathrm{d}t} = \frac{\hbar}{m_e} \operatorname{Im} \frac{\nabla \phi(Q_1)}{\phi(Q_1)},$$
$$\frac{\mathrm{d}Q_2}{\mathrm{d}t} = \frac{\hbar}{m_\mu} \operatorname{Im} \frac{\nabla \chi(Q_2)}{\chi(Q_2)}.$$

Example con't

symmetrized guiding law:

$$\frac{\mathrm{d}Q_{1}}{\mathrm{d}t} = \frac{\frac{\hbar}{m_{e}} |\chi(Q_{2})|^{2} \operatorname{Im} \left(\phi^{*}(Q_{1})\nabla\phi(Q_{1})\right) + \frac{\hbar}{m_{\mu}} |\phi(Q_{2})|^{2} \operatorname{Im} \left(\chi^{*}(Q_{1})\nabla\chi(Q_{1})\right)}{|\phi(Q_{1})|^{2} |\chi(Q_{2})|^{2} + |\phi(Q_{2})|^{2} |\chi(Q_{1})|^{2}}$$
$$\frac{\mathrm{d}Q_{2}}{\mathrm{d}t} = \frac{\frac{\hbar}{m_{\mu}} |\phi(Q_{1})|^{2} \operatorname{Im} \left(\chi^{*}(Q_{2})\nabla\chi(Q_{2})\right) + \frac{\hbar}{m_{e}} |\chi(Q_{1})|^{2} \operatorname{Im} \left(\phi^{*}(Q_{2})\nabla\phi(Q_{2})\right)}{|\phi(Q_{1})|^{2} |\chi(Q_{2})|^{2} + |\phi(Q_{2})|^{2} |\chi(Q_{1})|^{2}}.$$

Example con't

symmetrized guiding law:

$$\frac{\mathrm{d}Q_{1}}{\mathrm{d}t} = \frac{\frac{\hbar}{m_{e}} \left| \chi(Q_{2}) \right|^{2} \operatorname{Im} \left(\phi^{*}(Q_{1}) \nabla \phi(Q_{1}) \right) + \frac{\hbar}{m_{\mu}} \left| \phi(Q_{2}) \right|^{2} \operatorname{Im} \left(\chi^{*}(Q_{1}) \nabla \chi(Q_{1}) \right)}{\left| \phi(Q_{1}) \right|^{2} \left| \chi(Q_{2}) \right|^{2} + \left| \phi(Q_{2}) \right|^{2} \left| \chi(Q_{1}) \right|^{2}}$$

$$\frac{\mathrm{d}Q_{2}}{\mathrm{d}t} = \frac{\frac{\hbar}{m_{\mu}} |\phi(Q_{1})|^{2} \operatorname{Im}\left(\chi^{*}(Q_{2})\nabla\chi(Q_{2})\right) + \frac{\hbar}{m_{e}} |\chi(Q_{1})|^{2} \operatorname{Im}\left(\phi^{*}(Q_{2})\nabla\phi(Q_{2})\right)}{|\phi(Q_{1})|^{2} |\chi(Q_{2})|^{2} + |\phi(Q_{2})|^{2} |\chi(Q_{1})|^{2}}$$

assume: disjoint support of ϕ and $\chi.$

- \rightarrow standard and symmetrized laws coincide.
- \rightarrow same trajectories.

initial positions \rightarrow particle species.

Identity-based Bohmian Mechanics

Empirical Equivalence

- in general different trajectories from BM's.
- same statistical predictions.
- empirically equivalent to BM and QM.
- \rightarrow shapes of trajectories "irrelevant" for the empirical predictions.
- \rightarrow measurement = measurement of positions.

Identity-based Bohmian Mechanics

Physics of Identical Particles

particles always distinguished by position.

Identity-based Bohmian Mechanics

particles always distinguished by position.

identity: permutation-invariance of the law of motion.

Identity-based Bohmian Mechanics

Lessons

particles always distinguished by position.

identity: permutation-invariance of the law of motion.

dynamics on ${}^{N}\mathbb{R}^{3}$ for identical particles.

Identity-based Bohmian Mechanics

Lessons

particles always distinguished by position.

identity: permutation-invariance of the law of motion.

dynamics on ${}^{N}\mathbb{R}^{3}$ for identical particles.

identical particles are not an innovation of QM.

particles always distinguished by position.

identity: permutation-invariance of the law of motion.

dynamics on $N\mathbb{R}^3$ for identical particles.

identical particles are not an innovation of QM.

sparse ontology can lead to more complicated physical laws.

particles always distinguished by position.

identity: permutation-invariance of the law of motion.

dynamics on $N\mathbb{R}^3$ for identical particles.

identical particles are not an innovation of QM.

sparse ontology can lead to more complicated physical laws.

all properties of particles from trajectories alone \rightarrow initial positions.

Lessons

- particles always distinguished by position.
- identity: permutation-invariance of the law of motion.
- dynamics on $N \mathbb{R}^3$ for identical particles.
- identical particles are not an innovation of QM.
- sparse ontology can lead to more complicated physical laws.
- all properties of particles from trajectories alone \rightarrow initial positions.
- primitive ontology cannot be derived from quantum formalism.

Lessons

- particles always distinguished by position.
- identity: permutation-invariance of the law of motion.
- dynamics on $N \mathbb{R}^3$ for identical particles.
- identical particles are not an innovation of QM.
- sparse ontology can lead to more complicated physical laws.
- all properties of particles from trajectories alone \rightarrow initial positions. primitive ontology cannot be derived from quantum formalism.
- primitive ontology cannot be derived from experiment.

- [1] D. Dürr. Bohmsche Mechanik als Grundlage der Quantenmechanik. Berlin: Springer, 2001.
- D. Dürr and S. Teufel. Bohmian Mechanics: The Physics and Mathematics of Quantum Theory. Berlin: Springer, 2009.
- [3] D. Dürr, S. Goldstein, and N. Zanghi. Quantum Physics without Quantum Philosophy. Heidelberg: Springer, 2013.
- [4] S. French and M. Redhead. Quantum physics and the identity of indiscernibles. The British Journal for the Philosophy of Science, 39(2):233–246, 1988.
- [5] S. Goldstein, J. Taylor, R. Tumulka, and N. Zanghi. Are all particles identical? Journal of Physics A: Mathematical and General, 38(7):1567–1576, 2005.
- [6] S. Goldstein, J. Taylor, R. Tumulka, and N. Zanghi. Are all particles real? Studies in History and Philosophy of Modern Physics, 36(1):103–112, 2005.
- [7] K. Stierstadt. Thermodynamik: Von der Mikrophysik zur Makrophysik. Heidelberg: Springer, 2010.