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Abstract. Bishop’s notion of function space, here called Bishop space, is a function-theoretic analogue
to the classical set-theoretic notion of a topological space. Bishop introduced this concept in 1967,
without really exploring it, and Bridges revived the subject in 2012. A Bishop topology on some
inhabited set X is a set F of real-valued functions on X which includes the constant maps and it is
closed under addition, uniform limits and composition with the Bishop-continuous functions of type
R→ R. The theory of Bishop spaces can be seen as an abstract, constructive version of the theory of
the ring of continuous functions. In this paper we define various notions of embeddings of one Bishop
space to another and we develop their basic theory in parallel to the classical theory of embeddings of
rings of continuous functions. Our main result is the translation within the theory of Bishop spaces of
the fundamental Urysohn extension theorem, which we show that it is constructively provable. We
work within Bishop’s informal system of constructive mathematics BISH, inductive definitions with
countably many premises included.

1 Introduction

The theory of Bishop spaces (TBS) is a constructive approach to general topology based on
the notion of function space, here called Bishop space, that it was introduced by Bishop
in [1], p.71, but it was not really studied until Bridges’s paper [7], that was followed by
Ishihara’a paper [16], and our development of TBS in [22]-[24]. The main characteristics of
TBS are the following:

1. Points are accepted from the beginning, hence it is not a point-free approach to topology.
2. Most of its notions are function-theoretic. Set-theoretic notions are avoided or play a

secondary role to its development.
3. It is constructive. We work within Bishop’s informal system of constructive mathematics

BISH (see [4], [5]), inductive definitions with rules of countably many premises included,
a system connected to Martin-Löf’s constructivism [17] and type theory [18]. The
underlying logic of BISH is intuitionistic, while Myhill’s system CST∗ of constructive
Set Theory with inductive definitions, or Martin-Löf’s extensional type theory, can be
considered as formalizations of its underlying set theory.

4. It has simple foundation and it follows the style of standard mathematics.

In other words, TBS is an approach to constructive point-function topology. The main
motivation behind the introduction of Bishop spaces is that function-based concepts suit
better to constructive study rather than set-based ones. Instead of having space-structures
on a set X and R, that determine a posteriori which functions of type X → R are continuous
with respect to them, we start from a given class of “continuous” functions of type X → R
that determines a posteriori a topological space-structure on X. “Continuity” in TBS is a
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primitive notion, a starting point similar to Spanier’s theory of quasi-topological spaces
in [27], or to the theory of limit spaces of Fréchet in [13].
TBS permits a “communication” with the classical theory of the rings of continuous
functions, since many concepts, questions and results from the classical theory of C(X),
where X is a topological space, can be translated into TBS. Although this communication
does not imply a direct translation from the theory of C(X) to TBS, since the logic of TBS
is intuitionistic, it is one of the features of TBS which makes it, in our view, so special as an
approach to constructive topology. One could see TBS as an abstract, constructive version
of the classical theory of C(X), which we hope to be of interest to a classical mathematician
too.
In this paper we develop the constructive basic theory of embeddings of Bishop spaces in
parallel to the classical basic theory of embeddings of rings of continuous functions which is
found in the book [11] of Gillman and Jerison. Our main result is the incorporation of the
fundamental Urysohn extension theorem within the theory of embeddings of Bishop spaces.

2 Basic definitions and facts

In order to be self-contained we include in this section some basic definitions and facts
necessary to the rest of the paper, that are partly found in [23]. For all proofs not included
in this paper we refer to [24].
If X, Y are sets and R is the set of the constructive reals, we denote by F(X, Y ) the
functions of type X → Y , by F(X) the functions of type X → R, by Fb(X) the bounded
elements of F(X), and by Const(X) the subset of F(X) of all constant functions a, where
a ∈ R. A function φ : R→ R is called Bishop-continuous, if φ is uniformly continuous on
every bounded subset of R, and we denote their set by Bic(R). If f, g ∈ F(X), ε > 0, and
Φ ⊆ F(X), we define U(g, f, ε) and U(Φ, f) by

U(g, f, ε) := ∀x∈X(|g(x)− f(x)| ≤ ε),

U(Φ, f) := ∀ε>0∃g∈Φ(U(g, f, ε)).

Definition 1. A Bishop space is a pair F = (X,F ), where X is an inhabited set and
F ⊆ F(X), a Bishop topology on X, or simply a topology on X, satisfies the following
conditions:

(BS1) a ∈ R→ a ∈ F .
(BS2) f ∈ F → g ∈ F → f + g ∈ F .
(BS3) f ∈ F → φ ∈ Bic(R)→ φ ◦ f ∈ F ,

X R

R.

................................................................................................................. ............
f

............................................................................................................
.....
.......
.....

φ ∈ Bic(R)

............................................................................................................................................................................ ........
....

F 3 φ ◦ f

(BS4) f ∈ F(X)→ U(F, f)→ f ∈ F .
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Bishop used the term function space for F and topology for F . Since the former is used in
many different contexts, we prefer the term Bishop space for F , while we use the latter,
as the topology of functions F on X corresponds nicely to the standard topology of opens
T on X. Using BS2 and BS3 we get that if F is a topology on X, then fg, λf , −f ,
max{f, g} = f ∨ g, min{f, g} = f ∧ g and |f | ∈ F , for every f, g ∈ F and λ ∈ R. By BS4 F
is closed under uniform limits, where fn

u→ f denotes that f is the uniform limit of (fn)n∈N.
Moreover, Const(X) ⊆ F ⊆ F(X), where Const(X) is the trivial topology on X and F(X)
is the discrete topology on X. If F is a topology on X, the set Fb of all bounded elements
of F is also a topology on X that corresponds to the ring C∗(X) of the bounded elements
of C(X), for some topological space X. It is easy to see that Bic(R) is a topology on R,
and the structure R = (R,Bic(R)) is the Bishop space of reals.
The importance of the notion of a Bishop topology lies on Bishop’s inductive concept of
the least topology including a given subbase F0, found in [1], p.72, and in [4], p.78, where
the definitional clauses of a Bishop topology are turned into inductive rules.

Definition 2. The least topology F(F0) generated by a set F0 ⊆ F(X), called a subbase of
F(F0), is defined by the following inductive rules:

f0 ∈ F0

f0 ∈ F(F0)
,

a ∈ R
a ∈ F(F0)

,
f, g ∈ F(F0)

f + g ∈ F(F0)
,

f ∈ F(F0), φ ∈ Bic(R)

φ ◦ f ∈ F(F0)
,

(g ∈ F(F0), U(g, f, ε))ε>0

f ∈ F(F0)
.

If F0 is inhabited, then the rule of the inclusion of the constant functions is redundant to
the rule of closure under composition with Bic(R). The most complex inductive rule above
can be replaced by the rule

g1 ∈ F(F0) ∧ U(g1, f,
1
2
), g2 ∈ F(F0) ∧ U(g2, f,

1
22

), g3 ∈ F(F0) ∧ U(g3, f,
1
23

), . . .

f ∈ F(F0)
,

which has the “structure” of Brouwer’s z-inference with countably many conditions in its
premiss (see e.g., [19]). The above rules induce the following induction principle IndF on
F(F0):

∀f0∈F0(P (f0))→
∀a∈R(P (a))→
∀f,g∈F(F0)(P (f)→ P (g)→ P (f + g))→
∀f∈F(F0)∀φ∈Bic(R)(P (f)→ P (φ ◦ f))→
∀f∈F(F0)(∀ε>0∃g∈F(F0)(P (g) ∧ U(g, f, ε))→ P (f))→
∀f∈F(F0)(P (f)),

where P is any property on F(X). Hence, starting with a constructively acceptable subbase
F0 the generated least topology F(F0) is a constructively graspable set of functions exactly
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because of the corresponding principle IndF . Despite the seemingly set-theoretic character
of the notion of a Bishop space the core of TBS is the study of the inductively generated
Bishop spaces. For example, since idR ∈ Bic(R), where idR is the identity on R, we get
by the closure of F(idR) under BS3 that Bic(R) = F(idR). Moreover, most of the new
Bishop spaces generated from old ones are defined through the concept of the least topology.
A property P on F(X) is lifted from a subbase F0 to the generated topology F(F0), if
∀f0∈F0(P (f0))→ ∀f∈F(F0)(P (f)). It is easy to see inductively that boundedness is a lifted
property. If (X, d) is a metric space and the elements of F0 are bounded and uniformly
continuous functions, then uniform continuity is also a lifted property 1.

Definition 3. If F = (X,F ) and G = (Y,G) are Bishop spaces, a Bishop morphism, or
simply a morphism, from F to G is a function h : X → Y such that ∀g∈G(g ◦ h ∈ F )

X Y

R.

................................................................................................................. ............
h

............................................................................................................
.....
.......
.....

g ∈ G

............................................................................................................................................................................ ........
....

F 3 g ◦ h

We denote by Mor(F ,G) the set of morphisms from F to G, which are the arrows in the
category of Bishop spaces Bis. It is easy to see that if F = (X,F ) is a Bishop space,
then F = Mor(F ,R). If F = (X,F ) and G0 = (Y,F(G0)) are Bishop spaces, a function
h : X → Y ∈ Mor(F ,G0) if and only if ∀g0∈G0(g0 ◦ h ∈ F )

X Y

R,

................................................................................................................. ............
h

............................................................................................................
.....
.......
.....

g0 ∈ G0

............................................................................................................................................................................ ........
....

F 3 g0 ◦ h

1 Since Bishop did not pursue a constructive reconstruction of topology in [1], he didn’t mention IndF , or some
related lifted property. Apart from the notion of a Bishop space, Bishop introduced in [1], p.68, the inductive
notion of the least algebra B(B0,F ) of Borel sets generated by a given set B0,F of F -complemented subsets,
where F is an arbitrary subset of F(X). Since this notion was central to the development of constructive measure
theory in [1], Bishop explicitly mentioned there the corresponding induction principle IndB on B(B0,F ) and
studied specific lifted properties in that setting. Brouwer’s inductive definition of the countable ordinals in [8] and
Bishop’s inductive notion of a Borel set were the main non-elementary inductively defined classes of mathematical
objects used in constructive mathematics and motivated the formal study of inductive definitions in the 60s and
the 70s (see [9]). Since then the use of inductive definitions in constructive mathematics and theoretical computer
science became a common practice. In [3] Bishop and Cheng developed though, a reconstruction of constructive
measure theory independently from the inductive definition of Borel sets, that replaced the old theory in [4].
In [2] Bishop, influenced by Gödel’s Dialectica interpretation, discussed a formal system Σ that would “efficiently
express” his informal system of constructive mathematics. Since the new measure theory was already conceived
and the theory of Bishop spaces was not elaborated at all, Bishop found no reason to extend Σ to subsume
inductive definitions. In [20] Myhill proposed instead the formal theory CST of sets and functions to codify [1].
He also took Bishop’s inductive definitions at face value and showed that the existence and disjunction properties
of CST persist in the extended with inductive definitions system CST∗.
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a very useful property that it is proved inductively and we call the lifting of morphisms.
If h ∈ Mor(F ,G) is onto Y , then h is called a set-epimorphism, and we denote their set
by setEpi(F ,G). We call some h ∈ Mor(F ,G) open, if ∀f∈F∃g∈G(f = g ◦ h). Clearly, if
h ∈ Mor(F ,G) such that h is 1-1 and onto Y , then h−1 ∈ Mor(G,F) if and only if h is
open. In this case h is called an isomorphism between F and G. In [23] we showed that in
the case of a set-epimorphism h, openness of h is also a lifted property.

Definition 4. If F = (X,F ) is a Bishop space and A ⊆ X is inhabited, the relative Bishop
space of F on A is the structure F|A = (A,F|A), where F|A := F({f|A | f ∈ F}). We also call
F|A a subspace of F . If F = (X,F ) and G = (Y,G) are given Bishop spaces, their product is
the structure F×G = (X×Y, F×G), where F×G := F({f ◦π1 | f ∈ F}∪{g◦π2 | g ∈ G}),
and π1, π2 are the projections of X × Y to X and Y , respectively.

If F0 is a subbase of F , we get inductively that F|A = F({f0|A | f0 ∈ F0}). It is straightfor-
ward to see that F×G satisfies the universal property for products and that F×G is the least
topology which turns the projections π1, π2 into morphisms. If F0 is a subbase of F and G0 is
a subbase of G, then we get inductively that F(F0)×F(G0) = F({f0◦π1 | f0 ∈ F0}∪{g0◦π2 |
g0 ∈ G0}). Consequently, Bic(R)× Bic(R) = F({idR ◦ π1} ∪ {idR ◦ π2}) = F(π1, π2). The
arbitrary product

∏
i∈I Fi of a family (Fi)i∈I of Bishop spaces indexed by some I is defined

similarly. Using the lifting of morphisms it is easy to show the following proposition.

Proposition 1. Suppose that F = (X,F ), G = (Y,G), H = (Z,H) are Bishop spaces and
A ⊆ X, B ⊆ Y .
(i) j ∈ Mor(H,F × G) if and only if π1 ◦ j ∈ Mor(H,F) and π2 ◦ j ∈ Mor(H,G).
(ii) If e : X → B, then e ∈ Mor(F ,G)↔ e ∈ Mor(F ,G|B).
(iii) (F ×G)|A×B = F|A ×G|B.

Note that Proposition 1(i) and (iii) hold for arbitrary products too. If Fi = (Xi, Fi) is a family
of Bishop spaces indexed by some inhabited set I and x = (xi)i∈I ∈

∏
i∈I Xi, then the slice

S(x; j) through x parallel to xj , where j ∈ I, is the set S(x; j) := Xj×
∏

i 6=j{xi} ⊆
∏

i∈I Xi

of all I-tuples where all components other the j-component are the ones of x, while the
j-component ranges over Xj. The next fact is used in the proof of the Proposition 11 and
it is a direct consequence of the Proposition 1.

Proposition 2. If Fi = (Xi, Fi) is a family of Bishop spaces indexed by some inhabited
set I and x = (xi)i∈I ∈

∏
i∈I Xi, then the function sj : Xj → S(x; j), defined by xj 7→

xj×
∏

i 6=j{xi}, where S(x; j) is the slice through x parallel to xj, is an isomorphism between
Fj and S(x; j) = (S(x; j), F (x; j)), where F (x; j) = (

∏
i∈I Fi)|S(x;j).

Definition 5. If G = (Y,G) is a Bishop space, X is an inhabited set and θ : X → Y ,
the weak topology F (θ) on X induced by θ is defined as F (θ) := F({g ◦ θ | g ∈ G}). The
space F(θ) = (X,F (θ)) is called the weak Bishop space on X induced by θ. If F = (X,F )
is a Bishop space, Y is an inhabited set and e : X → Y is onto Y , the set of functions
Ge := {g ∈ F(Y ) | g ◦ e ∈ F} is a topology on Y . We call Ge = (Y,Ge) the quotient Bishop
space, and Ge the quotient topology on Y , with respect to e.
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The weak topology F (θ) is the least topology on X which makes θ a morphism. If θ is onto Y ,
then θ ∈ setEpi(F(θ),G), and by the lifting of openness we get that F (θ) = {g ◦ θ | g ∈ G},
a fact that we use in the proof of the Proposition 6. In analogy to classical topology, the
quotient topology Ge is the largest topology on Y which makes e a morphism.
In [4], pp.91-2, it is shown2 that if D ⊆ X is a dense subset of the metric space X, Y is a
complete metric space, and f : D → Y is uniformly continuous with modulus of continuity
ω, then there exists a unique uniform continuous extension g : X → Y of f with modulus
of continuity 1

2
ω. The next lemma is a useful generalization of it3 that we proved in [24]

and we use it here in the proof of the Proposition 3(vi).

Lemma 1. Suppose that X is an inhabited metric space, D ⊆ X is dense in X and Y is a
complete metric space. If f : D → Y is uniformly continuous on every bounded subset of D,
then there exists a unique extension g : X → Y of f which is uniformly continuous on every
bounded subset of X with modulus of continuity ωg,B(ε) = 1

2
ωf,B∩D(ε), for every inhabited,

bounded and metric-open subset B of X. Moreover, if f is bounded by some M > 0, then g
is also bounded by M .

Within BISH a compact metric space is defined as a complete and totally bounded space. A
locally compact metric space X is a space in which every bounded subset of X is included
in a compact one. If X is locally compact, the set Bic(X), defined like Bic(R), is a topology
on X. Using the definition of a continuous function on a locally compact metric space,
given in [4], p.110, Bishop’s formulation of the Tietze theorem for metric spaces becomes as
follows.

Theorem 1. Let Y be a locally compact subset of a metric space X and I ⊂ R an inhabited
compact interval. Let f : Y → I be uniformly continuous on the bounded subsets of Y . Then
there exists a function g : X → I which is uniformly continuous on the bounded subsets of
X, and which satisfies g(y) = f(y), for every y ∈ Y .

Corollary 1. If Y is a locally compact subset of R and g : Y → I ∈ Bic(Y ), where I ⊂ R
is an inhabited compact interval, then there exists a function φ : R → I ∈ Bic(R) which
satisfies φ(y) = g(y), for every y ∈ Y .

We use the Corollary 1 in the proof of the Propositions 3(v) and 8, while in [24] we used it
to show the following fundamental fact, which is used here in the proof of the Proposition 9.

Theorem 2. Suppose that (X,F ) is a Bishop space and f ∈ F such that f ≥ c, for some
c > 0. Then, 1

f
∈ F .

2 The uniqueness property is included, for example, in [21], p.238.
3 According to Bishop and Bridges [4], p.85, if B ⊆ X, where (X, d) is an inhabited metric space, B is a bounded
subset of X, if there is some x0 ∈ X such that B ∪ {x0} with the induced metric is a bounded metric space. If
we suppose that the inclusion map of a subset is the identity (see [4], p.68), the induced metric on B ∪ {x0} is
reduced to the relative metric on B ∪ {x0}. We may also denote a bounded subset B of an inhabited metric
space X by by (B, x0,M), where M > 0 is a bound for B ∪ {x0}. If (B, x0,M) is a bounded subset of X then
B ⊆ B(x0,M), and (B(x0,M), x0, 2M) is also a bounded subset of X. I.e., a bounded subset of X is included in
an inhabited bounded subset of X which is also metric-open i.e., it includes an open ball of every element of it.
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Definition 6. If (X,F ) is a Bishop space, the relations defined by

x1 1F x2 :↔ ∃f∈F (f(x1) 1R f(x2)),

A 1F B :↔ ∃f∈F∀a∈A∀b∈B(f(a) = 0 ∧ f(b) = 1)

where x1, x2 ∈ X, a 1R b :↔ a > b∨a < b↔ |a− b| > 0, for every a, b ∈ R, and A,B ⊆ X,
are the canonical point-point and set-set apartness relations on X. If 1 is a point-point
apartness relation on X 4, F is called 1-Hausdorff, if 1⊆1F . The F -zero sets Z(F ) of
(X,F ) are the subsets of X of the form ζ(f) = {x ∈ X | f(x) = 0}, where f ∈ F .

In [24] we showed within BISH that Z(F ) is closed under countably infinite intersections,
and the sets [f ≤ a] = {x ∈ X | f(x) ≤ a}, [f ≥ a] = {x ∈ X | f(x) ≥ a}, where a ∈ R,
are in Z(F ). We also used the Theorem 2 to show the Urysohn lemma for the zero sets of a
Bishop space. According to the classical Urysohn lemma for C(X)-zero sets, the disjoint
zero sets of any topological space X are separated by some f ∈ C(X) (see [11], p.17).
Constructively, we need to replace the negative notion of disjointness of two zero sets by a
positive notion.

Theorem 3 (Urysohn lemma for F -zero sets). If (X,F ) is a Bishop space and A,B ⊆
X, then A 1F B ↔ ∃f,g∈F∃c>0(A ⊆ ζ(f) ∧ B ⊆ ζ(g) ∧ |f |+ |g| ≥ c).

3 Embeddings of Bishop spaces

If G,F are Bishop spaces, the notions “G is embedded in F” and “G is bounded-embedded
in F” translate into TBS the notions “Y is C-embedded in X” and “Y is C∗-embedded
in X”, for some Y ⊆ X and a given topology of opens T on X (see [11], p.17). If F
is a topology on X, f ∈ F and a, b ∈ R such that a ≤ b, we say that a, b bound f , if
∀x∈X(a ≺ f(x) ≺ b), where ≺∈ {<,≤}.

Definition 7. If F = (X,F ), G = (Y,G) are Bishop spaces and Y ⊆ X, then
(i) G is embedded in F , if ∀g∈G∃f∈F (f|Y = g).
(ii) G is bounded-embedded in F , if Gb is embedded in Fb.
(iii) G is full bounded-embedded in F , if G is bounded-embedded in F , and for every g ∈ Gb,
if a, b bound g, then a, b bound some extension f of g in Fb.
(iv) G is dense-embedded in F , if ∀g∈G∃!f∈F (f|Y = g).
(v) G is dense-bounded-embedded in F and G is dense-full bounded-embedded in F are
defined similarly to (iv).
(vi) F extends G, if ∀f∈F (f|Y ∈ G).

Clearly, (X,G) is embedded in (X,F ) if and only if G ⊆ F . The Definition 7(vi) is necessary,
since a topology F on some X does not necessarily behave like C(X), where every f ∈ C(X)
restricted to Y belongs to C(Y ). By the definition of the relative Bishop space we get

4 See definition 2.1 in [4], p.72. It is also easy to see that a 1R b↔ a 1Bic(R) b, for every a, b ∈ R.
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immediately that F extends F|Y . If G is embedded in F , then G ′ is embedded in F , where
G ′ = (Y,G′) and G′ ⊆ G. If (X,F ) is a Bishop space and Y ⊆ X, a retraction of X onto Y
is a function r : X → Y such that r(y) = y, for every y ∈ Y , and r ∈ Mor(F ,F|Y ). In this
case Y is called a retract of X. For example, the Cantor space with the product topology
on (2,F(2)) is a retract of the Baire space with the product topology on (N,F(N)).

Proposition 3. Suppose that Y ⊆ X and 1 is a point-point apartness relation on X.
(i) (Y,Const(Y )) is embedded in every Bishop space (X,F ).
(ii) If ∀x∈X(x ∈ Y ∨ x /∈ Y ), then (Y,F(Y )) is embedded in (X,F(X)).
(iii) If Y = {x1, . . . , xn}, where xi 1 xj, for every i 6= j ∈ {1, . . . , n}, and F is a topology
on X which is 1-Hausdorff, then (Y,F(Y )) is full bounded-embedded in (X,F ).
(iv) (N,F(N)) is full bounded-embedded in (Q,Bic(Q)).
(v) If X = R and Y is locally compact, then (Y,Bic(Y )) is bounded-embedded in R.
(vi) If X is a locally compact metric space and Y is dense in X, then (Y,Bic(Y )) is dense-
embedded and dense-bounded-embedded in (X,Bic(X)).
(vii) If F is a topology on X and Y is a retract of X, then F|Y is embedded in F .

Proof. (i) and (ii) are trivial. To show (iii) we fix some g ∈ F(Y ) and let g(xi) = ai, for every
i. If we consider the (n− 1) + (n− 2) + . . .+ 1 functions fij ∈ F such that fij(xi) 1R fij(xj),
for every i < j, then the function f on X, defined by f(x) :=

∑n
i=1 aiAi(x), where

Ai(x) :=
n∏

k=i+1

fik(x)− fik(xk)
fik(xi)− fik(xk)

i−1∏
k=1

fki(xk)− fki(x)

fki(xk)− fki(xi)
,

is in F and Ai(xj) = 1, if j = i, Ai(xj) = 0, if j 6= i. Hence, f extends g, and clearly
(Y,F(Y )) is full-bounded embedded in (X,F ). We need the 1-Hausdorff condition on F so
that (fij(xi)− fij(xj)) 1R 0 and then (fij(xi)− fij(xj)−1 is well-defined, for every i < j.
(iv) If q is a rational such that q ≥ 0, there is a unique n ∈ N such that q ∈ [n, n + 1).
If g : N → R, we define φ∗(q) = γn(q), where γn : Q ∩ [n, n + 1) → R is defined by
γn(q) = (g(n+ 1)− g(n))q+ (n+ 1)g(n)− g(n+ 1)n i.e., γn(Q∩ [n, n+ 1)) is the set of the
rational values in the linear segment between g(n) and g(n+ 1). Of course, φ∗(n) = g(n).
Next we define φ∗(q) = g(0), for every q < 0. To show that φ∗ ∈ Bic(Q), and since φ∗ is
constant on Q−, it suffices to show that φ∗ ∈ Bic(Q+). For that we fix a bounded subset
(B, q0,M) of Q+, where without loss of generality M ∈ N. Since B ⊆ B(q0,M), we have
that B ⊆ [n,N ], where n,N ∈ N, n < N , q0−M ∈ [n, n+1) and q0 +M ∈ [N,N+1). Each
γi is uniformly continuous on [i, i+ 1)∩Q with modulus of continuity ωi(ε) = ε

|g(i+1)−g(i)|+1
,

for every ε > 0. Hence, φ∗ is uniformly continuous on B with modulus of continuity
ωφ∗,B(ε) = min{ωi(ε) | n ≤ i ≤ N}, for every ε > 0. If g is bounded, then by its definition
φ∗ is also bounded and if a, b bound g, then a, b bound φ∗.
(v) If M > 0 such that f(Y ) ⊆ [−M,M ], then we use the Corollary 1.
(vi) Since R is a complete metric space, we use the Lemma 1.
(vii) We show first that r is a quotient map i.e., F|Y = Gr = {g : Y → R | g ◦ r ∈ F}.
By the definition of r ∈ Mor(F ,F|Y ), we have that ∀g∈F|Y (g ◦ r ∈ F ) i.e., F|Y ⊆ Gr. For
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that we can also use our remark in Section 2 that the quotient topology Gr is the largest
topology such that r is a morphism. If g ∈ Gr, then (g ◦ r)|Y = g ∈ F|Y i.e., F|Y ⊇ Gr.
Hence, if g ∈ F|Y = Gr, the function g ◦ r ∈ F extends g.

Proposition 4. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces and Y ⊆ X. If G
is embedded in F , then G is bounded-embedded in F .

Proof. We show that if g ∈ Gb and ∃f∈F (f|Y = g), then ∃f∈Fb
(f|Y = g); if f extends g and

|g| ≤M , then h = (−M ∨ f) ∧M ∈ Fb and h|Y = g. I.e., G is bounded-embedded in F , if
∀g∈Gb

∃f∈F (f|Y = g). Since Gb ⊆ G and G is embedded in F , G is bounded-embedded in F .

There are trivial counterexamples to the converse of the previous proposition; if Y is an
unbounded locally compact subset of R, then by the Proposition 3(v) (Y,Bic(Y )) is full
bounded-embedded in Rb, while (Y,Bic(Y )) is not embedded in Rb, since idY ∈ Bic(Y )
and any extension of idY is an unbounded function.

Proposition 5. If Z ⊆ Y ⊆ X, H = (Z,H), G = (Y,G), F = (X,F ) are Bishop spaces,
F extends G and G is embedded in F , then H is embedded in F if and only if H is embedded
in G.

Proof. If ∀h∈H∃f∈F (f|Z = h), we show that ∀h∈H∃g∈G(g|Z = h). If h ∈ H and we restrict
some f ∈ F which extends h to Y , we get an extension of h in G. For the converse if h ∈ H,
we extend it to some g ∈ G, and g is extended to some f ∈ F , since G is embedded in F .

The next three propositions show how the embedding of G in F generates new embeddings
under the presence of certain morphisms.

Proposition 6. Suppose that F = (X,F ),G = (Y,G) and H = (B,H) are Bishop spaces,
where B ⊆ Y . If H is embedded in G and e ∈ setEpi(F ,G), then the weak Bishop space
F(e|A) on A = e−1(B) induced by e|A is embedded in F .

Proof. Since e : X → Y is onto Y , we have that e|A : A → B is onto B and e|A ∈
setEpi(F(e|A),H), where by a remark following the definition of weak topology in Section
2 we have that F (e|A) = {h ◦ e|A | h ∈ H}. If we fix some h ◦ e|A ∈ F (e|A), where
h ∈ H, then, since H is embedded in G, there is some g ∈ G such that g|B = h. Since
e ∈ setEpi(F ,G) ⊆ Mor(F ,G), we get that g ◦e ∈ F . If a ∈ A, then (g ◦e)(a) = g(b) = h(b),
where b = e(a). Since (h ◦ e|A)(a) = h(e(a)) = h(b), we get that (g ◦ e)|A = h ◦ e|A i.e.,
F(e|A) is embedded in F .

Proposition 7. If F = (X,F ),G = (Y,G) H = (Z,H) are Bishop spaces, Y ⊆ X, G
is embedded in F and e ∈ Mor(F ,H) is open, then the quotient Bishop space Ge|Y =
(e(Y ), Ge|Y ) is embedded in H.

Proof. Let g′ : e(Y ) → R ∈ Ge|Y i.e., g′ ◦ e|Y ∈ G. Since G is embedded in F , there
exists some f ∈ F such that f|Y = g′ ◦ e|Y . Since e is open, there exists some h ∈ H
such that f = h ◦ e. We show that h|e(Y ) = g′; if b = e(y) ∈ e(Y ), for some y ∈ Y , then
h(b) = h(e(y)) = f(y) = (g′ ◦ e|Y )(y) = g′(e(y)) = g′(b).
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Next we translate to TBS the classical fact that if an element of C(X) carries a subset of
X homeomorphically onto a closed set S in R, then S is C-embedded in X (see [11], p.20).

Proposition 8. Suppose that A is a locally compact subset of R, F = (X,F ) is a Bishop
space, Y ⊆ X and f ∈ F such that f|Y : Y → A is an isomorphism between F|Y and
(A,Bic(A)b). Then F|Y is embedded in F .

Proof. Since f|Y is an isomorphism between F|Y and (A,Bic(A)b), its inverse θ is an isomor-
phism between (A,Bic(A)b) and F|Y . We fix some g ∈ F|Y . Since θ ∈ Mor((A,Bic(A)b),F|Y ),
we have that g ◦ θ ∈ Bic(A)b. By the Corollary 1 there exists some φ ∈ Bic(R) which
extends g ◦ θ. By BS3 we have that φ ◦ f ∈ F and for every y ∈ Y we have that
(φ ◦ f)(y) = ((g ◦ θ) ◦ f)(y) = (g ◦ (θ ◦ f))(y) = (g ◦ (θ ◦ f|Y ))(y) = (g ◦ id|Y )(y) = g(y).

If (X, T ) is a topological space and Y ⊆ X is C∗-embedded in X, then if Y is also C-
embedded in X, it is (completely) separated in C(X) from every C(X)-zero set disjoint
from it (see [11], pp.19-20). If we add within TBS a positive notion of disjointness between
Y and ζ(f) though, we avoid the corresponding hypothesis of G being embedded in F .

Definition 8. If F is a topology on X, f ∈ F and Y ⊆ X, we say that Y and ζ(f)
are separated, Sep(Y, ζ(f)), if ∀y∈Y (|f(y)| > 0), and Y and ζ(f) are uniformly separated,
Usep(Y, ζ(f)), if there is some c > 0 such that ∀y∈Y (|f(y)| ≥ c).

Of course, Usep(Y, ζ(f)) → Sep(Y, ζ(f)). If f, g ∈ F such that |f | + |g| ≥ c (see the
formulation of the Theorem 3), then we get Usep(ζ(g), ζ(f)) and Usep(ζ(f), ζ(g)). Since
the sets U(f) = {x ∈ X | f(x) > 0}, where f ∈ F , are basic open sets in the induced
neighborhood structure on X by F (see [4], p.77), we call Y a uniform Gδ-set, if there exists
a sequence (fn)n in F such that Y =

⋂
n∈N U(f(n)) and Usep(Y, ζ(fn)), for every n ∈ N.

Proposition 9. If F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X, F extends G, G is
bounded-embedded in F , and f ∈ F , then Usep(Y, ζ(f))→ Y 1F ζ(f).

Proof. Since |f | ∈ F and F extends G, we have that |f ||Y ∈ G, and |f ||Y ≥ c. By

Theorem 2 we get that 1
|f ||Y
∈ G. Since 0 < 1

|f ||Y
≤ 1

c
, we actually have that 1

|f ||Y
∈ Gb.

Since G is bounded-embedded in F , there exists h ∈ F such that h|Y = 1
|f ||Y

. Since

|h| ∈ F satisfies |h||Y = 1
|f ||Y

too, we suppose without loss of generality that h ≥ 0. If we

define g := h|f |, then g ∈ F , g(y) = h(y)|f(y)| = 1
|f(y)| |f(y)| = 1, for every y ∈ Y , and

g(x) = h(x)|f(x)| = h(x)0 = 0, for every x ∈ ζ(f).

Corollary 2. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X, and G is
full bounded-embedded in F . If Y is a uniform Gδ-set, then Y is an F -zero set.

Proof. Suppose that Y =
⋂
n∈N U(fn) and ∀y∈Y (|fn(y)| ≥ cn), where cn > 0, for every

n ∈ N. Since U(f) = U(f ∨ 0) and Usep(Y, ζ(f))→ Usep(Y, ζ(f ∨ 0)), we assume without
loss of generality that fn ≥ 0, for every n ∈ N. By the proof the Proposition 9 we have that
there is a function hn ∈ F such that hn ≥ 0, (hnfn)(Y ) = 1 and (hnfn)(ζ(fn)) = 0, for every
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n ∈ N. Therefore, Y ⊆ ζ(gn), where gn = (hnfn− 2
3
)∧0, for every n ∈ N. Next we show that

ζ(gn) ⊆ U(fn), for every n ∈ N. Since G is full bounded-embedded in F and according to

the the proof the Proposition 9, 0 < 1
fn|Y
≤ 1

cn
, we get that 0 < hn ≤ 1

cn
. If z ∈ X such that

gn(z) = 0, then hn(z)fn(z) ≥ 2
3
, and since hn(z) > 0, we conclude that fn(z) ≥ 2

3hn(z)
> 0.

Thus, Y ⊆
⋂
n∈N ζ(gn) ⊆

⋂
n∈N U(fn) = Y , which implies that Y =

⋂
n∈N ζ(gn) = ζ(g), for

some g ∈ F , since Z(F ) is closed under countably infinite intersections.

Without the condition of G being full bounded-embedded in F in the previous proposition
we can show only that ¬(fn(z) = 0). Although fn(z) ≥ 0, we cannot infer within BISH that
fn(z) > 0; the property of the reals ∀x,y∈R(¬(x ≥ y) → x < y) is equivalent to Markov’s
principle (MP) (see [5], p.14), and it is easy to see that this property is equivalent to
∀x∈R(x ≥ 0 → ¬(x = 0) → x > 0). Next we translate to TBS the classical result that
if Y is C∗-embedded in X such that Y is (completely) separated from every C(X)-zero
set disjoint from it, then Y is C-embedded in X. Constructively it is not clear, as it is
in the classical case, how to show that the expected positive formulation of the previous
condition provides an inverse to Proposition 4. The reason is that if (X,F ) is an arbitrary
Bishop space, it is not certain that tan ◦f ∈ F , for some f : X → (−π

2
, π
2
) ∈ F (note

that tan−1 = arctan ∈ Bic(R)). If Φ1, Φ2 ⊆ F(X), we denote by Φ1 ∨ Φ2 the least topology
including them. The proof of the interesting case of the next theorem is in BISH + MP.

Theorem 4. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X, a > 0,
e : (−a, a)→ R such that e−1 : R→ (−a, a) ∈ Bic(R), and F(a) = (X,F (a)), where

F (a) = F ∨ {e ◦ f | f ∈ F and f(X) ⊆ (−a, a)}.

(i) If G is full bounded-embedded in F , then G is embedded in F(a).
(ii) (MP) If ∀f∈F (Sep(Y, ζ(f))→ Y 1F ζ(f)) and G is bounded-embedded in F , then G is
embedded in F(a).

Proof. We fix some g ∈ G. Since e−1 ∈ Bic(R), by the condition BS3 we have that
e−1 ◦ g : Y → (−a, a) ∈ Gb. Since G is bounded-embedded in F , there is some f ∈ Fb such
that f|Y = e−1 ◦ g.
(i) If G is full bounded-embedded in F , then we have that f : X → (−a, a). Hence,
e ◦ f ∈ F (a), and (e ◦ f)|Y = e ◦ f|Y = e ◦ (e−1 ◦ g) = g.
(ii) In [24] we showed within BISH that [|f | ≥ a] = {x ∈ X | |f |(x) ≥ a} = ζ(f ∗), where
f ∗ = (|f |−a)∧0 ∈ F . If y ∈ Y , then |f ∗(y)| = |(|f(y)|−a)∧0| = |(|(e−1 ◦g)(y)|−a)∧0| =
||(e−1 ◦ g)(y)| − a| = a− |(e−1 ◦ g)(y)| > 0, since |(e−1 ◦ g)(y)| ∈ [0, a) (if −a < x < a, then
|x| < a). Since Sep(Y, ζ(f ∗)), by our hypothesis there exists some h ∈ F such that 0 ≤ h ≤ 1,
h(Y ) = 1 and h(ζ(f ∗)) = 0. There is no loss of generality if we assume that 0 ≤ h ≤ 1, since
if h ∈ F separates Y and ζ(f ∗), then |h|∧1 ∈ F separates them too. We define J := f ·h ∈ F .
If y ∈ Y , we have that J(y) = f(y)h(y) = f(y). Next we show that ∀x∈X(¬(|J(x)| ≥ a)). If
x ∈ X such that |J(x)| ≥ a, then |f(x)| ≥ |f(x)||h(x)| = |j(x)| ≥ a, therefore x ∈ ζ(f ∗).
Consequently, h(x) = 0, and 0 = |J(x)| ≥ a > 0, which leads to a contradiction. Because of
MP we get that ∀x∈X(|J(x)| < a)), in other words, J : X → (−a, a). Hence e ◦ J ∈ F (a),
and (e ◦ J)|Y = e ◦ JY = e ◦ f = e ◦ (e−1 ◦ g) = g.
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4 The Urysohn extension theorem

In this section we show the Urysohn extension theorem within TBS, an adaptation of
Urysohn’s theorem that any closed set in a normal topological space is C∗-embedded
(see [11], p.266). As Gillman and Jerison note in [11], p.18, it is “the basic result about
C∗-embedding”. According to it, a subspace Y of a topological space X is C∗-embedded
in X if and only if any two (completely) separated sets in Y are (completely) separated
in X. Here we call Urysohn extension theorem the appropriate translation to TBS of the
non-trivial sufficient condition. Next follows the translation to TBS of the trivial necessity
condition. The hypothesis “F extends G” of the Theorem 5 is not necessary to its proof.

Proposition 10. Suppose that F = (X,F ), G = (Y,G) are Bishop spaces and Y ⊆ X. If
G is bounded-embedded in F , then ∀A,B⊆Y (A 1Gb

B → A 1Fb
B).

Proof. If A,B ⊆ Y such that A,B are separated by some g ∈ Gb, then, since G is bounded-
embedded in F , there is some f ∈ Fb which extends g, hence f separates A and B.

Next we show that the proof of the classical Urysohn extension theorem can be carried
out within BISH. Recall that if x ∈ R, then x = (xn)n∈N, where xn ∈ Q, for every n ∈ N,
such that ∀n,m∈N+(|xm − xn| ≤ m−1 + n−1). Moreover, x > 0 :↔ ∃n∈N(xn > 1

n
), and

x ≥ 0 :↔ ∀n∈N(xn ≥ − 1
n
) (see [4], pp.18-22). If q ∈ Q, then q = (qn)n∈N ∈ R, where qn = q,

for every n ∈ N. Using MP one shows immediately that ¬(x ≤ −q)→ ¬(x ≥ q)→ |x| < q,
where x ∈ R and q ∈ Q. Without MP and completely within BISH, we show that under the
same hypotheses one gets that |x| ≤ q, which is what we need in order to get a constructive
proof of the Urysohn extension theorem.

Lemma 2. ∀q∈Q∀x∈R(¬(x ≤ −q)→ ¬(x ≥ q)→ |x| ≤ q).

Proof. We fix some q ∈ Q, x = (xn)n ∈ R and we suppose that ¬(x ≤ −q) and ¬(x ≥ q).
Since |x| = (max{xn,−xn})n∈N, we show that q ≥ |x| ↔ q − |x| ≥ 0 ↔ ∀n(q −
max{xn,−xn} ≥ − 1

n
). If we fix some n ∈ N, and since xn ∈ Q, we consider the fol-

lowing case distinction.
(i) xn ≥ 0: Then q −max{xn,−xn} = q − xn and we get that q − xn < − 1

n
→ xn − q >

1
n
→ x > q → x ≥ q → ⊥, by our second hypothesis. Hence, q − xn ≥ − 1

n
.

(ii) xn ≤ 0: Then q −max{xn,−xn} = q + xn and we get that q + xn < − 1
n
→ −q − xn >

1
n
→ −q > x→ −q ≥ x→ ⊥, by our first hypothesis. Hence, q + xn ≥ − 1

n
.

Theorem 5 (Urysohn extension theorem for Bishop spaces). Suppose that F =
(X,F ), G = (Y,G) are Bishop spaces, Y ⊆ X and F extends G. If ∀A,B⊆Y (A 1Gb

B →
A 1Fb

B), then G is bounded-embedded in F .

Proof. We fix some g ∈ Gb, and let |g| ≤M , for some natural M > 0. In order to find an
extension of g in Fb we define a sequence (gn)n∈N+ , such that gn ∈ Gb and

|gn| ≤ 3rn, rn :=
M

2
(
2

3
)n,
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for every n ∈ N+. For n = 1 we define g1 = g, and we have that |g1| ≤M = 3r1. Suppose
next that we have defined some gn ∈ Gb such that |gn| ≤ 3rn. We consider the sets

An = [gn ≤ −rn] = {y ∈ Y | gn(y) ≤ −rn},

Bn = [gn ≥ rn] = {y ∈ Y | gn(y) ≥ rn}.

Clearly, g∗n(An) = −rn and g∗n(Bn) = rn, where g∗n = (−rn ∨ gn)∧ rn ∈ Gb. Since g∗n(An) 1R
g∗n(Bn), we get that An 1Gb

Bn, therefore there exists some f ∈ Fb such that An 1f Bn.
Without loss of generality we assume that fn(An) = −rn, fn(Bn) = rn and |fn| ≤ rn. Next
we define

gn+1 := gn − fn|Y ∈ Gb,

since F extends G. If y ∈ An we have that

|gn+1(y)| = |(gn − fn|Y )(y)| = |gn(y)− (−rn)| = |gn(y) + rn| ≤ 2rn,

since −3rn ≤ gn(y) ≤ −rn → −2rn ≤ gn(y) + rn ≤ 0. If y ∈ Bn we have that

|gn+1(y)| = |(gn − fn|Y )(y)| = |gn(y)− rn| = gn(y)− rn ≤ 2rn,

since rn ≤ gn(y) ≤ 3rn → 0 ≤ gn(y)− rn ≤ 2rn. Next we show that ∀y∈Y (|gn+1(y)| ≤ 2rn).
We fix some y ∈ Y and we suppose that |gn+1(y)| > 2rn. This implies that y /∈ An ∪ Bn,
since if y ∈ An ∪Bn, then by the previous calculations we get that |gn+1(y)| ≤ 2rn, which
contradicts our hypothesis. Hence we have that ¬(gn(y) ≤ −rn) and ¬(gn(y) ≥ rn). By the
Lemma 2 we get that |gn(y)| ≤ rn, therefore |gn+1(y)| ≤ |gn(y)|+ |fn(y)| ≤ rn + rn = 2rn,
which contradicts our assumption |gn+1(y)| > 2rn. Thus we get that |gn+1(y)| ≤ 2rn, and
since y is arbitrary we get

|gn+1| ≤ 2rn = 3rn+1.

By the condition BS4 the function f :=
∑∞

n=1 fn belongs to F , since the partial sums
converge uniformly to f . Note that the infinite sum is well-defined by the Weierstrass
comparison test (see [4], p.32). Note also that

(f1 + . . .+ fn)|Y = (g1 − g2) + (g2 − g3) + . . .+ (gn − gn+1) = g1 − gn+1.

Since rn
n→ 0, we get gn+1

n→ 0, hence f|Y = g1 = g. Note that f is also bounded by M :

|f | = |
∞∑
n=1

fn| ≤
∞∑
n=1

|fn| ≤
∞∑
n=1

M

2
(
2

3
)n =

M

2

∞∑
n=1

(
2

3
)n =

M

2
2 = M.

The main hypothesis of the Urysohn extension theorem

∀A,B⊆Y (A 1Gb
B → A 1Fb

B)

requires quantification over the power set of Y , therefore it is against the practice of
predicative constructive mathematics. It is clear though by the above proof that we do not
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need to quantify over all the subsets of Y , but only over the ones which have the form of
An and Bn. If we replace the initial main hypothesis by the following

∀g,g′∈Gb
∀a,b∈R([g ≤ a] 1Gb

[g′ ≥ b]→ [g ≤ a] 1Fb
[g′ ≥ b]),

we get a stronger form of the Urysohn extension theorem, since this is the least condition in
order the above proof to work. Actually, this stronger formulation of the Urysohn extension
theorem applies to the classical setting too. A slight variation of the previous new main
hypothesis, which is probably better to use, is

∀g,g′∈Gb
(ζ(g) 1Gb

ζ(g′)→ ζ(g) 1Fb
ζ(g′)),

since the sets of the form An and Bn are Gb-zero sets.

Definition 9. If (X,F ) is a Bishop space and Y ⊆ X is inhabited, we say that Y is a
Urysohn subset of X, if ∀g,g′∈(F|Y )b(ζ(g) 1(F|Y )b ζ(g′)→ ζ(g) 1Fb

ζ(g′)).

Next follows a direct corollary of the Theorem 5 and the previous remark.

Corollary 3. Suppose that F = (X,F ) is a Bishop space, Y ⊆ X is a Urysohn subset of
X and g : Y → R is in (F|Y )b. Then there exists f : X → R in Fb which extends g.

An absolute retract for normal topological spaces is a space that can be substituted for R in
the formulation of the Tietze theorem, according to which a continuous real-valued function
on a closed subset of a normal topological space has a continuous extension (see [10], p.151).

Definition 10. If Q is a property on sets, a Bishop space H = (Z,H) is called an absolute
retract with respect to Q, or H is AR(Q), if for every Bishop space F = (X,F ) and Y ⊆ X
we have that

Q(Y )→ ∀e∈Mor(F|Y ,H)∃e∗∈Mor(F ,H)(e
∗
|Y = e).

Clearly, the Corollary 3 says that R is AR(Urysohn). The next proposition shows that
there exist many absolute retracts. In particular, the products Rn,R∞ are AR(Urysohn).

Proposition 11. Suppose that Hi = (Zi, Hi) is a Bishop space, for every i ∈ I. Then∏
i∈I Hi is AR(Q) if and only if Hi is AR(Q), for every i ∈ I.

Proof. (←) If Y ⊆ X such that Q(Y ) and if Hi is AR(Q), for every i ∈ I, then by the
Proposition 1(i) we have that

e : Y →
∏
i∈I

Zi ∈ Mor(F|Y ,
∏
i∈I

Hi∈I)↔ ∀i∈I(πi ◦ e ∈ Mor(F|Y ,Hi))

→ ∀i∈I(∃e∗i∈Mor(F ,Hi)(e
∗
i |Y = πi ◦ e)).

We define e∗ : X →
∏

i∈I Zi by x 7→ (e∗i (x))i∈I . Clearly, e∗(y) = e∗i (y))i∈I = ((πi ◦
e)(y))i∈I = e(y) and e∗ ∈ Mor(F ,

∏
i∈I Hi∈I), by the Proposition 1(i) and the fact that

e∗i = πi ◦ e∗ ∈ Mor(F ,Hi), for every i ∈ I.
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(→) Suppose that
∏

i∈I Hi is AR(Q) and ei : Y → Zi ∈ Mor(F|Y ,Hi). If we fix z = (zi)i∈I ∈∏
i∈I Zi, then by the Proposition 2 the function

si : Zi → S(z; i) = Zi ×
∏
j 6=i

{zj} ⊆
∏
i∈I

Zi

zi 7→ zi ×
∏
j 6=i

{zj}

is an isomorphism betweenHi and the slice space S(z; i) = (S(z; i), H(z; i)), where H(z; i) =
(
∏

i∈I Hi)|S(z;i). Hence, the mapping si ◦ ei : Y →
∏

i∈I Zi ∈ Mor(F|Y ,
∏

i∈I Hi∈I). By our
hypothesis there exists some e∗ : X →

∏
i∈I Zi ∈ Mor(F|Y ,

∏
i∈I Hi∈I) which extends si ◦ ei.

Thus, πi ◦ e∗ : X → Zi ∈ Mor(F ,Hi), for every i ∈ I. But πi ◦ e∗ = ei, since for every y ∈ Y
we have that (πi ◦ e∗)(y) = π(e∗(y)) = πi((si ◦ ei)(y)) = πi(ei(y)×

∏
j 6=i{zj}) = ei(y).

5 Concluding comments

In this paper we presented the basic theory of embeddings of Bishop spaces and we showed
that the classical proof of the Urysohn extension theorem for topological spaces generates
a constructive proof of the Urysohn extension theorem for Bishop spaces. Our results
form only the very beginning of a theory of embeddings of Bishop spaces. If we look at
the classical theory of embeddings of rings of continuous functions, we will see too many
topics that at first sight it seems difficult, to say the least, to develop constructively. The
Stone-Čech compactification and Hewitt’s realcompactfication depend on the existence of
non-trivial ultrafilters, while many facts in the characterizations of the maximal ideals of
C(X) or C∗(X) depend on non-constructive formulations of compactness.
Nevertheless, we find ecouraging that quite “soon” one can start developing a theory of
embeddings within TBS, and also rewarding that non-trivial theorems, like the Urysohn
extension theorem, belong to it. Behind these partial “successes” lies, in our view, the
function-theoretic character of TBS which offers the direct “communication” between TBS
and the theory of C(X) that we mentioned in the Introduction. Maybe, this is the main
advantage of TBS with respect to other approaches to constructive topology.
The apartness relations mentioned already here show the connection of TBS with the theory
of apartness spaces of Bridges and Vı̂ţă in [6]. Both these theories start from a notion of
space that differs from a topological space treated intuitionistically, as in [28] or [12], or from
a constructive variation of the notion of a base of a topological space, the starting point of
the point-free formal topology of Martin-Löf and Sambin (see [25], [26]) and Bishop’s theory
of neighborhood spaces, as it is developed mainly by Ishihara in [14] and [15]. In our opinion,
if the notion of space in constructive topology “mimics” that of topological space, then it is
more difficult to constructivise topology than starting from a notion of space which by its
definition is more suitable to constructive study. The function-theoretic character of the
notion of Bishop space and of Bishop morphism, in contrast to the set-theoretic character of
an apartness space and of a strongly continuous function, seems to facilitate a constructive
reconstruction of topology and a possible future translation of TBS to type theory.
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